A coupled FE-model for tunneling by means of compressed air

  • Gerhard Öttl
  • Rudolf F. Stark
  • Robert Stelzer
  • Günter Hofstetter


This chapter deals with the development and the application of a coupled numerical model for tunnelling below the groundwater table, taking into account compressed air as a means for displacing the groundwater in the vicinity of the tunnel face. The coupled solid-fluid model is characterized by treating the soil as a three-phase material, consisting of the deformable soil skeleton and the fluid phases water and compressed air. It contains a number of special cases, which are of interest in geotechnical engineering. In particular, a two-phase formulation for dewatering of soils under atmospheric conditions and a two-phase formulation for fully saturated conditions, applicable to consolidation problems, are included in the complete model.


Water Saturation Unsaturated Soil Hydrostatic Stress Mass Balance Equation Soil Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alonso E., Gens A., Hight D. (1987) Special problems soils: General report.Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering, 3: 1087-1146Google Scholar
  2. [2]
    Beer G., Plank J. (1999) Joint research initiative on numerical simulation in tunnelling. Felsbau, 17(1): 7-9Google Scholar
  3. [3]
    Biot M.A. (1941) General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2): 155-164MATHCrossRefGoogle Scholar
  4. [4]
    Bishop A.W., Blight G.E. (1963) Some aspects of effective stress in saturated and partly saturated soils. Geotéchnique, 13(3): 177-197CrossRefGoogle Scholar
  5. [5]
    de Boer R., Ehlers W., Kowalski S., Plischka J. (1991) Porous Media: A Survey of Different Approaches. Forschungsberichte aus dem Fachbereich Bauwesen,54, Universität - Gesamthochschule Essen, Essen, GermanyGoogle Scholar
  6. [6]
    de Boer R. (1996) Highlights in the historical development of the porous media theory: Toward a consistent macroscopic theory. Applied Mechanics Reviews, 49(4): 201-261CrossRefGoogle Scholar
  7. [7]
    Chen Z.S., Hofstetter G., Mang H.A. (1991) 3D Boundary Element, Analysis of the Lowered Groundwater Level for Tunnels Driven Under Compressed Air. International Journal for Numerical and Analytical Methods in Geomechanics, 15: 735-752MATHCrossRefGoogle Scholar
  8. [8]
    Gülzow H.G. (1994) Dreidimensionale Berechnung des Zweiphasenströmungsfeldes beim Tunnelvortrieb unter Druckluft in wassergesättigten Böden. Veröffentlichungen des Instituts für Grundbau, Bodenmechanik, Felsmechanik und Verkehrswasserbau der RWTH-Aachen, 25, GermanyGoogle Scholar
  9. [9]
    Carter J.P., Balaam N.P. (1995) AFENA User s Manual, Version 5.0. Centre for Geotechnical Research, University of Sydney, SydneyGoogle Scholar
  10. [10]
    Coleman J.D. (1962) Stress strain relations for partly saturated soil. Geotéchnique, 12(4): 348-350CrossRefGoogle Scholar
  11. [11]
    Ehlers W. (1989) Poröse Medien, ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsberichte aus dem Fachbereich Bauwesen, 47, Universität - Gesamthochschule Essen, Essen, GermanyGoogle Scholar
  12. [12]
    Predlund D.G., Morgenstern N.R., Widger R.A. (1978) The shear strength of unsaturated soils. Canadian Geotechnical Journal, 15(3): 313-321CrossRefGoogle Scholar
  13. [13]
    Fredlund D.G., Rahardjo H. (1993) Soil Mechanics for Unsaturated Soils, John Wiley and Sons, New YorkCrossRefGoogle Scholar
  14. [14]
    van Genuchten M.Th. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892-898CrossRefGoogle Scholar
  15. [15]
    Hochgürtel T. (1998) Numerische Untersuchungen zur Beurteilung der Standsicherheit der Ortsbrust beim Einsatz von Druckluft zur Wasserhaltung im schildvorgetriebenen Tunnelbau. PhD thesis, Institut für Grundbau, Bodenmechanik, Felsmechanik und Verkehrswasserbau, RWTH-Aachen, AachenGoogle Scholar
  16. [16]
    Hofstetter G., Oettl G., Stark R.F. (1999) A soil model for tunneling under compressed air. Proceedings of the European Conference on Computational Mechanics, ECCM’99, Ed.: W. Wunderlich, Lehrstuhl für Statik, TU München, München, CD-ROMGoogle Scholar
  17. [17]
    Kammerer G. (2000) Experimentelle Untersuchung en von Strömungsvorgängen in teilgesättigten Böden und in Spritzbetonrissen im Hinblick auf den Einsatz von Druckluft zur Wasserhaltung im Tunnelbau. Dissertation, Institut für Bodenmechanik und Grundbau, Technische Universität Graz, GrazGoogle Scholar
  18. [18]
    Klubertanz G. (1999) Zur hydromechanischen Kopplung in dreiphasigen porösen Medien. PhD thesis, École Polytechnique Fédérale de Lausanne, LausanneGoogle Scholar
  19. [19]
    Kramer J. (1987) U-Bahn Bau in Essen, Baulos 30 - Spritzbetonbauweise unter Druckluft: Luftverbrauch und Spannungsumlagerungen im Boden, Senkungen. Proceedings der STUVA Tagung, Essen, Forschung + Praxis, STUVA, Essen, Vol. 32: 193-199Google Scholar
  20. [20]
    Kramer J., Semprich S. (1989) Erfahrungen über Druckluftverbrauch bei der Spritzbetonbauweise. Taschenbuch für den Tunnelbau, 13: 91-153Google Scholar
  21. [21]
    Lewis R.W., Schrefler B.A. (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley and Sons, Chichester, 2nd editionMATHGoogle Scholar
  22. [22]
    Liakopoulos A.C. (1965) Transient Flow Through Unsaturated Porous Media. PhD thesis, University of California, BerkeleyGoogle Scholar
  23. [23]
    Malvern L.E. (1969) Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, New JerseyGoogle Scholar
  24. [24]
    Mualem Y. (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3): 513-522CrossRefGoogle Scholar
  25. Oettl G. A coupled FE-model for dewatering of soils. Dissertation, University of Innsbruck, in preparation.Google Scholar
  26. [26]
    Oettl G., Stark R.F., Hofstetter G. (1998) A comparison of elastic-plastic soil models for 2D FE analyses of tunnelling. Computers and Geotechnics, 23: 19-38CrossRefGoogle Scholar
  27. [27]
    Schrefler B.A., Xiaoyong Z. (1993) A fully coupled model for water flow and airflow in deformable porous media. Water Resources Research, 29(1): 155-167CrossRefGoogle Scholar
  28. [28]
    Schrefler B.A., Simoni L. (1995) Numerical Solutions of Thermo-Hydro-Mechanical Problems. Modern Issues in Non-saturated Soils, Eds.: A. Gens, P. Jouanna, B.A. Schrefler, CISM Courses and Lectures, 357: 213-275Google Scholar
  29. [29]
    Wheeler S.J., Sivakumar V. (1995) An elasto-plastic critical state framework for unsaturated soil. Geotéchnique, 45(1): 35-53CrossRefGoogle Scholar
  30. [30]
    Wriggers P. (2001) Nichtlineare Finite-Element-Methoden. Springer Verlag Berlin HeidelbergMATHCrossRefGoogle Scholar
  31. [31]
    Zienkiewicz O.C., Taylor R.L. (1989) The Finite Element Method, 4. ed., Vol. 1: Basic Formulation and Linear Problems, Vol. 2: Solid and Fluid Mechanics, Dynamics and Non-linearity, 1991, McGraw Hill, UK.Google Scholar
  32. [32]
    Zienkiewicz O.C., Xie Y.M., Schrefler B.A., Ledesma A., Biĉaniĉ N. (1990) Static and dynamic behaviour of soils: A rational approach to quantitative solutions, ii. semi-saturated problems. Proceedings of the Royal Society of London, A(429): 311-321Google Scholar
  33. [33]
    Huerta A., Rodriguez-Ferran A., Diez P., Sarrate J. (1999) Adaptive finite element strategies based on error assessment. International Journal for Numerical Methods in Engineering, 46: 1803-1818MATHCrossRefGoogle Scholar
  34. [34]
    Zienkiewicz O., Zhu J. (1992) The superconvergent patch recovery and a posteriori error estimates. International Journal for Numerical Methods in Engineering, 33: 1331-1382MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    El-Hamalawi A., Bolton M. D. (1999) An a posteriori error estimator for planestrain geotechnical analyses. Finite Elements in Analysis and Design, 33: 335-354MATHCrossRefGoogle Scholar
  36. [36]
    Hicks M. A. (2000) Coupled computations for an elastic-perfectly plastic soil using adaptive mesh refinement. International Journal for Numerical and Analytical Methods in Geomechanics, 24: 453-476MATHCrossRefGoogle Scholar
  37. [37]
    Wiberg N. E., Abdulwahab F., Ziukas S. (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. International Journal for Numerical Methods in Engineering, 37: 3417-3440MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    Ehlers W., Ellsiepen P., Ammann M. (1999) Localization phenomena in saturated and empty frictional porous materials computed by time- and spaceadaptive methods. Proceedings of the European Conference on Computational Mechanics (ECCM), MunichGoogle Scholar
  39. [39]
    Li L. Y., Bettess P. (1995) Notes on mesh optimal criteria in adaptive finite element computations. Communications in Numerical Methods in Engineering, 11: 911-915MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    Huemer T. (1998) Automatische Vemetzung und adaptive nichtlineare statische Berechnung von Flächentragwerken mittels vierknotiger finiter Elemente. Ph.D. Thesis, University of Technology, Vienna, AustriaGoogle Scholar
  41. [41]
    Zhu J., Zienkiewicz O., Hint on E., Wu J. (1991) A new approach to the development of automatic quadrilateral mesh generation. International Journal of Numerical Methods in Engineering, 32: 849-866MATHCrossRefGoogle Scholar
  42. Stelzer R. 2D adaptive FE-analysis of three-phase problems. Dissertation, University of Innsbruck, in preparation.Google Scholar
  43. Hächl M. 3D numerical simulation of three-phase problems. Dissertation, University of Innsbruck, in preparation.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Gerhard Öttl
    • 1
  • Rudolf F. Stark
    • 1
  • Robert Stelzer
    • 1
  • Günter Hofstetter
    • 1
  1. 1.Institute for Structural Analysis and Strength of MaterialsUniversity of InnsbruckAustria

Personalised recommendations