Compressed air tunnelling - determination of air requirement

  • Stephan Semprich
  • Yannick Scheid
  • Jens Gattermann


In shallow tunnelling below the groundwater table compressed air can be used for preventing water inflow into the tunnel. When using this method air loss takes place through both the unsupported tunnel face and shrinkage cracks of the shotcrete lining. Until today it has been very difficult to correctly estimate the amount of air loss during the design phase of a project, although it could be a significant factor concerning the total costs of the tunnel construction. For solving this problem the multi-phase flow in the soil above the tunnel has to be considered. The aim of the project was to develop a new approach, based on existing design principles and unsaturated soil constitutive models. At the Institute for Soil Mechanics and Foundation Engineering in Graz, large scale laboratory tests were conducted to simulate the air-permeability of the shotcrete lining and the soil. Additionally, the experimental data are compared with results of numerical models. The models are based on existing constitutive laws to describe the mechanical behaviour of unsaturated soils. In this contribution results of the tests are discussed and a methodology is presented to estimate the amount of air loss during tunnel advance.


Capillary Pressure Water Saturation Crack Width Unsaturated Soil Tunnel Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Glossop R. (1976) The Invention and Early Use of Compressed Air to Exclude Water from Shafts and Tunnels during Construction. Géotechnique, Vol. 26, No. 2: 253-280CrossRefGoogle Scholar
  2. [2]
    Hewett B.H.M., Johannesson S. (1922) Shield and Compressed Air Tunnelling. McGraw Hill, New York, USAGoogle Scholar
  3. [3]
    Rabcewicz L. von (1950) Verfahren zum Ausbau von unterirdischen Hohlräumen, insbesondere von Tunneln. Österreichisches Patentamt, Patentschrift No. 165573, AustriaGoogle Scholar
  4. [4]
    Triger J. (1841) Mémoire sur un Appareil à Air Comprimé pour le Percement des Puits de Mines et autres Travaux sous les Eaux et dans les Sables Submergés. Comte Rendu des Séances de l’cadémie des Sciences, Vol. 13: 884-896Google Scholar
  5. [5]
    Schenck zu Schweinsberg W.-R., Wagner H. (1963) Luftverbrauch und Überdeckung beim Tunnelvortrieb mit Druckluft, Bautechnik, Vol. 40, No. 2: 41-47Google Scholar
  6. [6]
    Krabbe W. (1969) Die Wasserhaltung beim Schildvortrieb durch Grundwasserabsenkung und Druckluft. Vorträge der Baugrundtagung in Hamburg, Herausgegeben von der Deutschen Gesellschaft für Erd- und Grundbau e.V., Essen, Germany: 285-317Google Scholar
  7. [7]
    Javadi A.A., Farmani R., Toropov V.V., Snee, C.P.M. (1998) Identification of parameters for air permeability of shotcrete tunnel lining using a genetic algorithm. Computers and Geotechnics, Vol. 25, No. 1: 1-24CrossRefGoogle Scholar
  8. [8]
    Kramer J., Semprich S. (1989) Erfahrungen über Druckluftverbrauch bei der Spritzbetonbauweise. Taschenbuch für den Tunnelbau, Glückauf Verlag, Essen, Germany: 91-153Google Scholar
  9. [9]
    Chen Z.-S., Hofstetter G., Mang H. (1991) 3D-Boundary Element Analysis of the Lowered Groundwater Level for Tunnels Driven Under Compressed Air. Numerical and Analytical Methods in Geomechanics, Vol.15: 735-752MATHCrossRefGoogle Scholar
  10. [10]
    Gülzow H.G. (1994) Dreidimensionale Berechnung des Zweiphasenströmungsfeldes beim Tunnelvortrieb unter Druckluft in wassergesättigten Böden, Veröffentlichungen des Instituts für Grundbau, Bodenmechanik, Felsmechanik und Verkehrswasserbau der RWTH Aachen, Germany, No. 25Google Scholar
  11. [11]
    Hochgürtel T. (1998) Numerische Untersuchungen zur Beurteilung der Standsicherheit der Ortsbrust beim Einsatz von Druckluft zur Wasserhaltung im schildvorgetriebenen Tunnelbau. Veröffentlichungen des Instituts für Grundbau, Bodenmechanik, Felsmechanik und Verkehrswasserbau der RWTH Aachen, Germany, No. 32Google Scholar
  12. [12]
    Javadi A.A. (2001) Estimation of Air Losses from Tunnels Driven under Compressed Air. Proc. 10th Int. Conf. on Computer Methods and Advances in Geomechanics, Desai, Kundu, Harpalani, Contractor and Kemeny (eds.), Vol. 1: 207-211Google Scholar
  13. [13]
    Perau E. (1999) Flow of Water and Air in Soils due to Tunnelling under Compressed Air. Proc. 12th European Conf. Soil Mechanics Geotechnical Engineering (ECSMGE), Geotechnical Engineering for Transportation Infrastructure, Barends, Lindenberg, Luger, de Quelerij and Verruijt (eds.), Balkema, Rotterdam, Netherlands, Vol. 3: 2093-2099Google Scholar
  14. [14]
    Oettl G., Stark R.F., Hofstetter G. (2000) Verification of a Fully Coupled FE Model for Tunneling under Compressed Air. GAMM Annual MeetingGoogle Scholar
  15. [15]
    Strobl B. (1991) Die NATM in Böden in Kombination mit Druckluft. Dissertation, Institut für Bodenmechanik, Felsmechanik und Grundbau, Technische Universität Graz, AustriaGoogle Scholar
  16. [16]
    Kammerer G. (2000) Experimentelle Untersuchungen von Strömungsvorgängen in teilgesättigten Böden und Spritzbetonrissen im Hinblick auf den Einsatz von Druckluft im Tunnelbau. Mitteilungshefte der Gruppe Geotechnik Graz, Technische Universität Graz, Austria, No. 8Google Scholar
  17. [17]
    Distelmaier H. (1981) Anwendung von Spritzbetonbauweisen im Tunnelbau unter Druckluftbedingungen. Tunnel, Vol. 81, No. 1: 199-240Google Scholar
  18. [18]
    Snee C.P.M., Javadi A.A. (1996) Prediction of Compressed Air Leakage from Tunnels. Tunnelling and Underground Space Technology, Vol. 11, No. 2: 189-195CrossRefGoogle Scholar
  19. [19]
    Javadi A.A., Snee C.P.M. (1997) The Contribution of Air Flow from Compressed Air Tunnelling to Surface Settlement. Tunnels for People, Golser, Hinkel and Schubert (eds), Vol. 2: 483-489Google Scholar
  20. [20]
    Kammerer G., Semprich S. (1998) Settlements Due to Tunnelling Under Compressed Air. Int. Conf on Soil-Structure Interaction in Urban Civil Engineering, Darmstadt Geotechnics, Vol. 1, No. 4: 85-96Google Scholar
  21. [21]
    Schreyer J. (1981) Spritzbeton unter Druckluft. STUVA-Forschungsbericht 15/81, Köln, GermanyGoogle Scholar
  22. [22]
    Semprich S. (1988, un-publ.) Luftdurchlässigkeitsversuch Essen (Tunnelvortriebe unter Druckluft). F+E Bericht Nr. 87-55, Bilfinger+Berger Bauaktiengesellschaft, Mannheim, GermanyGoogle Scholar
  23. [23]
    Scheid Y., Semprich S., Kammerer G. (2001) Using Compressed Air in Shallow Tunnelling - A Method to Reduce Detrimental Effects on the Environment. Proc. of the AITES-ITA 2001 World Tunnel Congress, Progress in Tunnelling after 2000, Teuscher and Colombo (eds), Milan, Italy: 665-679Google Scholar
  24. [24]
    Wyckoff R.D., Botset H.G. (1936) The Flow of Gas-liquid Mixtures through Unconsolidated Sands. General and Applied Physics, Vol. 7: 325-345Google Scholar
  25. [25]
    Roth C.H., Malicki M.A., Plagge R. (1992) Empirical Evaluation of the Relationship Between Soil Dielectric Constant and Volumetric Water Content as the Basis for Calibrating Soil Moisture Measurements by TDR. Journal of Soil Science, Vol. 43: 1-13CrossRefGoogle Scholar
  26. [26]
    Stacheder M. (1996) Die Time Domain Reflectometry in der Geotechnik, Messung von Wassergehalt, elektrischer Leitfähigkeit und Stofftransport. Schriftenreihe Angewandte Geologie, Universität Karlsruhe, Germany, No. 40Google Scholar
  27. [27]
    Scheid Y. (2000) Die TDR-Methode zur Bestimmung des Sättigungsgrades teilgesättigter Böden. 2nd Workshop Teilgesättigte Böden, Schanz and Witt (eds.), Schriftenreihe Geotechnik, Bauhaus-Universität Weimar, Germany, No. 4: 35-55Google Scholar
  28. [28]
    Kramer J. (1987) U-Bahn-Bau in Essen, Baulos 30, Spritzbetonbauweise unter Druckluft - Luftverbrauch, Spannungsumlagerungen im Boden, Senkungen. Forschung + Praxis, Vol. 32: 193-199Google Scholar
  29. [29]
    Croney D., Coleman J.D. (1960) Pore Pressure and Suction in Soil. Proc. of the Conf. Pore Pressure and Suction in Soils: 31-37Google Scholar
  30. [30]
    Pruess K., Oldenburg C, Moridis G. (1999) TOUGH2 User’s Guide, Version 2.0. Earth Sciences Division, Ernest Orlando Lawrence Berkeley National LaboratoryCrossRefGoogle Scholar
  31. [31]
    Finsterle S., Moridis G.J., Pruess K. (1994) A TOUGH2 Equation-of-state Module for the Simulation of Two-Phase Flow of Air, Water, and a Miscible Gelling Liquid. Report LBL-36086 UC-400, Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, University of CaliforniaCrossRefGoogle Scholar
  32. [32]
    Narasimhan T.N., Witherspoon P.A. (1976) Integrated Finite Difference Method for Analyzing Fluid Flow in Porous Media. Water Resources Research, Vol. 12, No. 1: 57-64CrossRefGoogle Scholar
  33. [33]
    Moridis G.J., Pruess K. (1998) T2SOLV: An Enhanced Package of Solvers for the TOUGH2 Family of Reservoir Simulation Codes. Geothermics, Vol. 27, No. 4: 415-444Google Scholar
  34. [34]
    Genuchten M.T. van (1980) A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sciences Society, Vol. 44: 892-898CrossRefGoogle Scholar
  35. [35]
    Mualem Y. (1976) A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resources Research, Vol. 12, No. 3: 513-522CrossRefGoogle Scholar
  36. [36]
    Corey A.T. (1954) The Interrelation between Gas and Oil Relative Permeabilities. Producers Monthly: 38-41Google Scholar
  37. [37]
    Semprich S., Scheid Y. (2002) An Approach to Describe the Flow of Air and Water in Shallow Tunnelling using Compressed Air. Proc. of the 3rd Int. Conf. on Unsaturated Soils (UNSAT2002), Jucá, de Campos and Marinho (eds), Recife, Brazil, Vol. 2: 787-792Google Scholar
  38. [38]
    Semprich S. (1985) Untersuchungsergebnisse an Innenschalen aus wasserundurchlässigem Beton bei Tunnelbauwerken im Fels. Teil 1: Theoretische Überlegungen zur Rissbildung sowie Ausführungserfahrungen vom Baulos 14 des Hasenbergtunnels Stuttgart. Forschung+Praxis, Vol. 30: 97-102Google Scholar
  39. [39]
    Deutscher Beton-Verein (1994) DBV-Sachstandsbericht Stahlbetoninnenschalen im U-Bahnbau, GermanyGoogle Scholar
  40. [40]
    Hellmich Ch., Mang H.A. (1999) Influence of the Dilatation of Soil and Shotcrete on the Load Bearing Behaviour of NATM-Tunnels. Felsbau 17, No. 1: 35-43Google Scholar
  41. [41]
    Sternath R. (2000) Tunnels for HS Railways in Germany. Tunnels and Tunnelling International, Vol. 32, No. 10: 53-59Google Scholar
  42. [42]
    Sänger C. (2000) Neubaustrecke Köln-Rhein/Main Los 2.4 - Siegauen Tunnel. Vorträge der Baugrundtagung 2000 in Hannover, Deutsche Gesellschaft für Geotechnik (ed.), Verlag Glückauf GmbH, Cloppenburg, Germany: 375-392Google Scholar
  43. [43]
    Semprich S., Sochatzy G., Gutzeit M., Fuchs R. (2002) Stabilisierungsinjektionen der quartären Kiese - ein Qualitätsmerkmal für den Schildvortrieb Baulos Ul/1 der U-Bahn Wien. Beiträge zum 17. Christian Veder Kolloquium, Injektionen in Boden und Fels, Mitteilungshefte der Gruppe Geotechnik Graz, Technische Universität Graz, Austria, No. 13: 53-64Google Scholar
  44. [44]
    Semprich S., Lesnik M., Scheid Y. (2002, in print) Tunnelling under Compressed Air using Grouting Techniques. Proc. 4th Int. Symp. Geotechnical Aspects of Underground Construction in Soft Ground, IS-Toulouse 2002Google Scholar
  45. [45]
    Weiler A., Misch V. (1982) Tunnelvortrieb unter Druckluft im Schutze einer chemischen Injektion (Baulos 6/7, Stadtbahn Duisburg, TA 5A). Geotechnik, No. 4: 169-177Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Stephan Semprich
    • 1
  • Yannick Scheid
    • 1
  • Jens Gattermann
    • 2
  1. 1.Institute for Soil Mechanics and Foundation EngineeringGraz University of TechnologyAustria
  2. 2.Ed. Züblin AGChina

Personalised recommendations