Intracavitary Treatment of Malignant Gliomas: Radioimmunotherapy Targeting Fibronectin

  • M. Ravic
Conference paper
Part of the Acta Neurochirurgica Supplements book series (NEUROCHIRURGICA, volume 88)


Since brain tumours are a heterogeneous group, management strategies vary with tumour type. The most common type of primary brain tumour is glioma [27], with high-grade glioma representing more than 40% of these tumours. Of the high-grade gliomas, gliobastoma multiforme (GBM) is the most prevalent and one of the most aggressive tumours, being highly infiltrative, with tumour cells typically extending several centimetres away from the tumour mass as seen on microscopic examination. The incidence of GBM varies markedly with age, ranging from 0.2/100,000 population (under 14 years of age) to 4.5/100,000 population (over 45 years of age) [30]. Prognosis for patients with brain tumours is extremely poor: in adults with GBM, median survival is reported to range from 40-60 weeks for newly diagnosed patients and from 16-24 weeks for patients with recurrent disease [17, 18, 31].


Malignant Glioma Recurrent Malignant Glioma Normal Human Fibroblast Cell Intracavitary Treatment Normal Human Fibroblast Cell Line 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alitalo K, Vaheri A (1982) Pericellular matrix in malignant transformation. Advanc Cancer Res 37: 111–115CrossRefGoogle Scholar
  2. 2.
    Antisoma Immunohistochemistry Study; Data on fileGoogle Scholar
  3. 3.
    Bigner DD, Brown MT, Friedman AH, Coleman RE, Akabani G, Friedman HS, Thorstad WL, McLendon RE, Bigner S, Xiao-Guang Z, Pegran CN, Wikstrand CJ, Herndon JE, Vick NA, Paleologos N, Cokgor I, Provonzale JM, Zalutsky MR (1998) Iodine-131-labeled Anti-tenascin monoclonal antibody 8106 treatment of patients with recurrent malignant gliomas: phase I trial results. J Clin Oncol 16(6): 2202–2212PubMedGoogle Scholar
  4. 4.
    Borsi L, Balza E, Allemanni G, Zardi L (1992) Differential expression of the fibronectin isoform containing the ED-B oncofetal domain in normal human fibroblast cell lines originating from different tissues. Exp Cell Res 199: 98–105PubMedCrossRefGoogle Scholar
  5. 5.
    Cardillo T, Ying Z, Gold D (2001) Therapeutic Advantage of 90Yttrium-versus 131Iodine-labeled PAM4 Antibody in Experimental Pancreatic Cancer. Clin Cancer Res 7: 3186–3192PubMedGoogle Scholar
  6. 6.
    Carnemolla B, Balza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natali PG (1989) A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 108: 1139–1148PubMedCrossRefGoogle Scholar
  7. 7.
    Castellani P, Viale G, Dorcaratto A, Nicoll G, Kaczmarek J, Querzé G, Zardi L (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59: 612–618PubMedCrossRefGoogle Scholar
  8. 8.
    Cokgor I, Akabani G, Kuan C, Friedman H, Coleman R, McLendon R, Bigner S, Zhao X, Garcia-Turner A, Pegran C, Wikstrand C, Shafman T, Herndon J, Provenzale J, Zalutsky M, Bigner D (2000) Phase I trial results of Iodine-131-labeled Antitenascin monoclonal antibody 8106 treatment of patients with newly diagnosed malignant gliomas. J Clin Oncol 18(15): 3862–3872PubMedGoogle Scholar
  9. 9.
    Corson DT, Meares CF (2000) Efficient multigram synthesis of the bifunctional chelating agent (S)-1-p-Isothiocyanatobenzyldieethylenetetraaminepentaacetic Acid. Bioconjugate Chem 11: 292–299CrossRefGoogle Scholar
  10. 10.
    Florell RC, MacDonald DR, Irish WD et al (1992) Selection bias, survival and brachytherapy for glioma. J Neurosurg 76: 179–183PubMedCrossRefGoogle Scholar
  11. 11.
    French-Constant C, Van de Water L, Dvorak HF, Hynes RO (1989) Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol 109: 903–914CrossRefGoogle Scholar
  12. 12.
    Goldenberg DM (2002) Targeted therapy of cancer with radio-labeled antibodies. J Nucl Med 43(5): 693–713PubMedGoogle Scholar
  13. 13.
    Hopkins K, Chandler C, Eatough J, Moss T, Kemshead J (1998) Direct injection of 90Y MoAbs into glioma tumour resection cavities leads to limited diffusion of the radioimmunoconjugates into the normal brain parenchyma: a model to estimate absorbed radiation dose. Int J radiation Oncology 40(4): 835–844CrossRefGoogle Scholar
  14. 14.
    Kaczmarek J, Castellani P, Nicole) G, Spina B, Allemanni G, Zardi L (1994) Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer 58: 11–16CrossRefGoogle Scholar
  15. 15.
    Kemshead JT, Hopkins K, Pizer B, Papanastassiou V, Coakham H, Bullimore J, Chandler C (1998) Dose escalation with repeated intrathecal injections of 131I-labeled MoAbs for the treatment of central nervous system malignancies. B J Cancer 77(12): 2324–2330CrossRefGoogle Scholar
  16. 16.
    Kosmas C, Snook D, Gooden CS, courtenay-Luck NS, McCall MJ, Meares CF, Epenetos AA (1992) Development of humoral immune responses against a macrocyclic chelating agentGoogle Scholar
  17. 17.
    Levin RA, Resser KJ, McGrath L, Vestnys P, Nutik S, Wilson CB (1984) PCNU treatment for recurrent malignant gliomas. Cancer Treat Rep 68: 969–973PubMedGoogle Scholar
  18. 18.
    Mahaley MS Jr (1991) Neurooncology index and review (adult primary brain tumours). Radiotherapy, chemotherapy, immunotherapy, photodynamic therapy. J Neurooncol 11: 85–147PubMedCrossRefGoogle Scholar
  19. 19.
    Maraveyas A, Snook D, Hird V, Kosmas C, Meares CF, Lambert HE, Epenetos AA (1994) Pharmacokinetics and toxicity of an yttrium-90-CITC-DTPA-HMFG1 radioimmunoconjugate for intraperitoneal radioimmunotherapy of ovarian cancer. Cancer [Suppl] 73(3): 1067–1075Google Scholar
  20. 20.
    Mariani G, Lasku A, Pau A, Villa G, Motta C, Calcagno G, Taddei G, Castellani P, Syrigos K, Dorcaratto A, Epenetos A, Zardi L, Viale G (1997) Pilot pharmacokinetic and immunoscintigraphic study with the technetium-99m-labeled monoclonal antibody BC-1 directed against oncofoetal fibronectin in patients with brain tumours. Cancer [Suppl] 80(12): 2484–2489Google Scholar
  21. 21.
    Meares CF, McCall MJ, Reardan DT, Goodwin DA, Diamanti CI, McTigue M (1984) Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. Anal Biochem 142: 68–78PubMedCrossRefGoogle Scholar
  22. 22.
    Mishra AK, Iznaga-Escobar N, Figueredo R, Jain VK, Dwarakanath BS, Perez-Rodriguez R, Sharma AK, Mathew TL (2002) Preparation and comparative evaluation of 99mTclabeled 2-iminothiolane modified antibodies and CITC-DTPA immunoconjugates of anti-EGF-receptor antibodies. Meth Find Exp Clin Pharmacol 24(10): 653–660CrossRefGoogle Scholar
  23. 23.
    Mosher DF (1984) Physiology of fibronectin. Ann Rev Med 35: 561–575PubMedCrossRefGoogle Scholar
  24. 24.
    Nicolo G, Salvi S, Oliven G, Borsi L, Catellani P, Zardi L (1990) Expression of tenascin and of the ED-B containing oncofoetal fibronectin isoform in human cancer. Cell Differentiation Development 32: 401–408CrossRefGoogle Scholar
  25. 25.
    Norton PA, Hynes RO (1987) Alternative splicing of chicken fibronectin in embryos and in normal and transformed cells. Mol Cell Biol 7: 4297–4307PubMedGoogle Scholar
  26. 26.
    Paganelli G, Bartolomei M, Ferrari M, Cremonesi M, Broggi G, Maira G, Sturiale C, Grana C, Prisco G, Gatti M, Caliceti P, Chinol M (2001) Pre-targeted locoregional radioimmunotherapy with 90Y-biotin in glioma patients: Phase I Study and preliminary therapeutic results. Cancer Biotherapy and Radio-Pharmaceuticals 16(3): 227–234CrossRefGoogle Scholar
  27. 27.
    Reifenberger G, Prior R, Deckert M, Wechsler W (1989) Epidermal growth factor receptor expression and growth fraction in human tumours of the nervous system. Virchows Archiv A Pathol Anat 414: 147–155CrossRefGoogle Scholar
  28. 28.
    Riva P, Franceschi G, Frattarelli M, Riva N, Guiducci G, Cremonini AM, Giuliani G, Casi M, Gentile R, Jekunen AA, Kairemo KJ (1999) 131I Radioconjugated antibodies for the locoregional radioimmunotherapy of high grade malignant glioma: phase I and II study. Acta Oncologica 38(3): 351–359PubMedCrossRefGoogle Scholar
  29. 29.
    Ruoslahti E (1988) Fibronectin and its receptors. Ann Rev Biochem 57: 375–413PubMedCrossRefGoogle Scholar
  30. 30.
    Salcman M (1995) Glioblastoma and malignant astrocytoma. Brain tumors. In: Kaye AH, Laws ER Jr (eds) Brain Tumors. Churchill Livingstone, New York, pp 449–477Google Scholar
  31. 31.
    Schold SC Jr, Friedman HS, Bigner DD (1987) Therapeutic profile of the human glioma line D-54 MG in athymic mice. Cancer Treat Rep 71: 849–850PubMedGoogle Scholar
  32. 32.
    Yamada KM (1983) Cell surface interactions with extracellular materials. Ann Rev Biochem 52: 761–799PubMedCrossRefGoogle Scholar
  33. 33.
    Zardi L, Carnemolla B, Siri A, Petersen TE, Paolella G, Sebastio G, Baralle FE (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 6: 2337–2342PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • M. Ravic
    • 1
  1. 1.Antisoma pIcWest Africa HouseUK

Personalised recommendations