• Christoph Jungemann
  • Bernd Meinerzhagen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In this chapter the transport models are applied to the simulation of three different types of devices to assess the accuracy of the transport models either by comparison to each other or experimental data. In addition, the transport in the different device types is analyzed with the appropriate simulation model. The first set of devices, unipolar 1D N+NN+ and P+PP+ structures, is mainly of academic interest and is frequently investigated because of its relative simplicity (e.g. [9.1–9.6]), which reduces the CPU time and makes it easier to compare the MC model to the momentum-based models. The second group of devices consists of CMOS devices, which are the standard devices of today’s integrated circuits. With the introduction of the SiGe technology many new types of CMOS devices have appeared [9.7, 9.8]. The most important types are MOSFETs with strained Si channels [9.9–9.13]), which are investigated together with standard Si MOSFETs in the second part of this chapter. In addition, PMOSFETs with a strained SiGe channel, which have promising potential for low noise amplifiers, are discussed [9.14–9.18]. The third group of investigated devices consists of SiGe HBTs, which exhibit a superior RF and noise performance compared to standard Si BJTs [9.19–9.22].


Gate Length SiGe Layer IEEE Electron Device IEDM Tech Velocity Overshoot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [9.1]
    M. Nekovee, B. J. Geurts, H. M. J. Boots, and M. F. H. Schuurmans, “Failure of extended-moment-equation approaches to describe ballistic transport in submicrometer structures”, Phys. Rev. B, vol. 45, no. 12, pp. 6643–6651, 1992.CrossRefGoogle Scholar
  2. [9.2]
    B. Meinerzhagen, R. Thoma, H. J. Peifer, and W. L. Engl, “On the consistency of the hydrodynamic and the Monte Carlo models”, in Proc. IWCE, Illinois, 1992, Urbana-Champaign, pp. 7–12.Google Scholar
  3. [9.3]
    C. L. Gardner, “Hydrodynamic and Monte Carlo simulation of an electron shock wave in a 1-µm n+-n-n+ diode”, IEEE Trans. Electron Devices, vol. 40, no. 2, pp. 455–457, 1993.CrossRefGoogle Scholar
  4. [9.4]
    L. Reggiani, P. Shiktorov, V. Gruzinskis, E. Starikov, L. Varani, T. González, M. J. Martín, and D. Pardo, “Hydrodynamic modeling of transport and noise spectra in n+n++ semiconductor structures”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 295–298.Google Scholar
  5. [9.5]
    B. Fischer, “A full-band Monte Carlo charge transport model for nanoscale silicon devices including strain”, Doctor thesis, University Hannover, Hannover, 1999.Google Scholar
  6. [9.6]
    T. W. Tang and H. Gan, “Two formulations of semiconductor transport equations based on spherical harmonic expansion of the Boltzmann transport equation”, IEEE Trans. Electron Devices, vol. 47, no. 9, pp. 1726–1732, 2000.CrossRefGoogle Scholar
  7. [9.7]
    U. König, “Electronic Si/SiGe devices: Basics, technology, performance”, in Advances in Solid State Physics (Festkörperprobleme), vol. 32, pp. 199–220. Vieweg, Braunschweig, 1992.Google Scholar
  8. [9.8]
    F.Schäffier, “High—mobility Si and Ge structures”, Semicond. Sei. Technol., vol. 12, pp. 1515–1549, 1997.CrossRefGoogle Scholar
  9. [9.9]
    J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, “Strain dependence of the Performance Enhancement in Strained-Si n-MOSFETs”, in IEDM Tech. Dig., 1994, pp. 373–376.Google Scholar
  10. [9.10]
    K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and analysis of deep submicron strained-Si N-MOSFET’s”, IEEE Trans. Electron Devices, vol. 47, no. 7, pp. 1406–1415, 2000.CrossRefGoogle Scholar
  11. [9.11]
    K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill, and H.-S. P. Wong, “Strained Si NMOSFETs for high performance CMOS technology”, Symposium on VLSI Technology Digest of Technical Papers, pp. 59–60, 2001.Google Scholar
  12. [9.12]
    J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E.A.Fitzgerald,and D.A.Antoniadis,“Strained silicon MOSFET technology”, IEDM Tech. Dig., pp. 23–26, 2002.Google Scholar
  13. [9.13]
    S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi, P. Bai, J. Bielefeld, R. Bigwood, J. Brandenburg, M. Buehler, S. Cea, V. Chikarmane, C. Choi, R. Frankovic, T. Ghani, G. Glass, W. Han, T. Hoffmann, M. Hussein, P. Jacob A. Jain, C. Jan, S. Joshi, C. Kenyon, J. Klaus, S. Klopic, J. Luce, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, P. Nguyen, H. Pearson, T. Sandford, R. Schweinfurth, R. Shaheed, S. Sivakumar, M. Taylor, B. Tufts, C. Wallace, P. Wang, C. Weber, and M. Bohr, “A 90nm logic technology featuring 50nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and lum2 SRAM cell”, IEDM Tech. Dig., pp. 61–64, 2002.Google Scholar
  14. [9.14]
    S. Verdonckt-Vandebroek, E. F. Crabbé, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, and J. B. Johnson, “SiGe-channel heterojunction pMOSFET’s”, IEEE Trans. Electron Devices, vol. 41, no. 1, pp. 90–101, 1994.CrossRefGoogle Scholar
  15. [9.15]
    L. Risch, H. Fischer, F. Hofmann, F. Schäfer, M. Eller, and T. Aeugle, “Fabrication and electrical characterization of Si/SiGe p—channel MOSFETs with a delta doped boron layer”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 465–468.Google Scholar
  16. [9.16]
    P. Bouillon, T. Skotnicki, S. Bodnar, C. Morin, J.-L. Regolini, P. Gouagout,and P. Dollfus, “Experiments with 0.18 µm SiGe channel pMOSFETs and p+poly—SiGe gate”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 473–476.Google Scholar
  17. [9.17]
    S. Okhonin, M. A. Py, B. Georgescu, H. Fischer, and L. Risch,201C; “Dc and low-frequency noise characteristics of SiGe p-channel FET’s designed for 0.13-µm technology, IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1514–1517, 1999.CrossRefGoogle Scholar
  18. [9.18]
    A. Asai, J. Sato-Iwanaga, A. Inoue, Y. Hara, Y. Kanzawa, H. Sorada, T. Kawashima, T. Ohnishi, T. Takagi, and M. Kubo, “Low-frequency noise characteristics in sige channel heterostructure dynamic threshold pMOSFET (HDTMOS)”, IEDM Tech. Dig., pp. 35–38, 2002.Google Scholar
  19. [9.19]
    S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, “Heterojunction bipolar transistors using Si-Ge alloys”, IEEE Trans. Electron Devices, vol. 36, no. 10, pp. 2043–2064, 1989.CrossRefGoogle Scholar
  20. [9.20]
    J. D. Cressler, “Re-engineering silicon: Si-Ge heterojunction bipolar technology”, IEEE Spectrum, vol. 3, pp. 49–55, 1995.CrossRefGoogle Scholar
  21. [9.21]
    A. Schuppen, “SiGe—HBTs for mobile communication”, Solid—State Electron., vol. 43, pp. 1373–1381, 1999.CrossRefGoogle Scholar
  22. [9.22]
    C. K. Maiti and G. A. Armstrong, Applications of Silicon—Germanium Heterostructure Devices, Series in Optics and Optoelectronics. Institute of Physics Publishing, Bristol, Philadelphia, 2001.Google Scholar
  23. [9.23]
    K. A. Hennacy and Neil Goldsman, “A generalized Legendre polynimial/sparse matrix approach for determining the distribution function in non-polar semiconductors”, Solid—State Electron., vol. 36, pp. 869–877, 1993.CrossRefGoogle Scholar
  24. [9.24]
    M. Lundstrom, “Elementary scattering theory of the Si MOSFET”, IEEE Electron Device Lett., vol. 18, no. 7, pp. 361–363, 1997.CrossRefGoogle Scholar
  25. [9.25]
    J.-P. Nougier, “Fluctuations and noise of hot carriers in semiconducor materials and devices”, IEEE Trans. Electron Devices, vol. ED-41, no. 11, pp. 2034–2049, 1994.CrossRefGoogle Scholar
  26. [9.26]
    Sh. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press, Cambridge, New York, Melbourne, 1996.CrossRefGoogle Scholar
  27. [9.27]
    C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Hierarchical 2—D DD and HD noise simulations of Si and SiGe devices: Part I Theory”, IEEE Trans. Electron Devices, vol. 49, no. 7, pp. 1250–1257, 2002.CrossRefGoogle Scholar
  28. [9.28]
    F. Bonani, G. Ghione, M. R. Pinto, and R. K. Smith, “An efficient approach to noise analysis through multidimentional physics-based models”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 261–269, 1998.CrossRefGoogle Scholar
  29. [9.29]
    J.-S. Goo, C. Choi, F. Danneville, E. Morifuji, H. Sasaki Momose, Z. Yu, H. Iwai, T. H. Lee, and R. W. Dutton, “An accurate and efficient high frequency noise simulation technique for deep submicron MOSFETs”, IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2410–2419, 2000.CrossRefGoogle Scholar
  30. [9.30]
    F. Bonani and G. Ghione, Noise in Semiconductor Devices, Modeling and Simulation, Advanced Microelectronics. Springer, Berlin, Heidelberg, New York, 2001.Google Scholar
  31. [9.31]
    W. Shockley, John A. Copeland, and R. P. James, “The impedance field method of noise calculation in active semiconductor devices”, in Quantum theory of atoms, molecules and solid state, P. O. Lowdin, Ed., pp. 537–563. Academic Press, 1966.Google Scholar
  32. [9.32]
    E. V. Sukhorukov and D. Loss, “Noise in multiterminal diffuse conductors:Universality, nonlocality, and exchange effects”, Phys. Rev. B, vol. 59, pp. 13054–13066, 1999.Google Scholar
  33. [9.33]
    L. Varani, T. Kuhn, L Reggiani, and Y. Perles, “Current and number fluctuations in submicron n+nn+ structures”, Solid--State Electron., vol. 36, pp. 251–261, 1993.CrossRefGoogle Scholar
  34. [9.34]
    S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer, Wien, 1984.CrossRefGoogle Scholar
  35. [9.35]
    R. K. Mains, G. I. Haddad, and P. A. Blakey, “Simulation of GaAs IMPATT diodes including energy and velocity transport equations”, IEEE Trans. Electron Devices, vol. 30, no. 10, pp. 1327–1337, 1983.CrossRefGoogle Scholar
  36. [9.36]
    H. J. Peifer, B. Meinerzhagen, R. Thoma, and W. L. Engl, “Evaluation of impact ionization modeling in the framework of hydrodynamic equations”, in IEDM Tech. Dig., 1991, pp. 131–134.Google Scholar
  37. [9.37]
    A. Cappy, F. Danneville, and G Dambrine, “Noise modelling in linear and nonlinear devices”, IEICE Trans. on Electronics, vol. E82-C, no. 6, pp. 900–907, 1999.Google Scholar
  38. [9.38]
    T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems”, Rev. Mod. Phys., vol. 54, pp. 437–672, 1982.CrossRefGoogle Scholar
  39. [9.39]
    W. V. Roosbroeck, “Theory of the flow of electrons and holes in germanium andother semiconductors”, Bell System Technical Journal, pp. 561–607, 1950.Google Scholar
  40. [9.40]
    W. Shockley, Electrons and Holes in Semiconductors, van Nostrand, Princeton,New Jersey, 1950.Google Scholar
  41. [9.41]
    W. L. Engl, H. K. Dirks, and B. Meinerzhagen, “Device modeling”, Proc. IEEE, vol. 71, pp. 10–33, 1983.CrossRefGoogle Scholar
  42. [9.42]
    P. A. Blakey and K. Joardar, “An analytic theory of the impact of velocity overshoot on the drain characteristics of field-effect transistors”, IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 740–742, 1992.CrossRefGoogle Scholar
  43. [9.43]
    S. Y. Chou, D. A. Antoniadis, and H. I. Smith, “Observation of electron velocity overshoot in sub-100-nm-channel MOSFET’s in silicon”, IEEE Electron Device Lett., vol. 6, no. 12, pp. 665–667, 1985.CrossRefGoogle Scholar
  44. [9.44]
    G. A. S. Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, and E. Canin, “High transconductance and velocity overshoot in NMOS devices at the 0.1-µm gate-length level”, IEEE Electron Device Lett., vol. 9, no. 9, pp. 464–466, 1988.CrossRefGoogle Scholar
  45. [9.45]
    F. Assaderaghi, P. K. Ko, and C. Hu, “Observation of Velocity Overshoot in Silicon Inversion Layers”, IEEE Electron Device Lett., vol. 14, no. 10, pp. 484–486, 1993.CrossRefGoogle Scholar
  46. [9.46]
    F. Assaderaghi, D. Sinitsky, J. Bokor, P. K. Ko, H. Gaw, and C. Hu, “High-field transport of inversion-layer electrons and holes including velocity overshoot”, IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 664–671, 1997.CrossRefGoogle Scholar
  47. [9.47]
    B. Cheng, V. R. Rao, and J. C. S. Woo, “Exploration of velocity overshoot in a high-performance deep sub-0.1-µm SOI MOSFET with asymmmetric channel profile”, IEEE Electron Device Lett., vol. 20, no. 10, pp. 538–540, 1999.CrossRefGoogle Scholar
  48. [9.48]
    R. K. Cook and J. Frey, “An efficient technique for two-dimensional simulation of velocity overshoot effects in Si and GaAs devices”, COMPEL Int. J. Comput. Math. Electr. Electron. Eng., vol. 1, pp. 65–87, 1982.CrossRefGoogle Scholar
  49. [9.49]
    G. Baccarani and M. R. Wordeman, “An investigation of steady-state velocity overshoot in silicon”, Solid-State Electron., vol. 28, pp. 407–416, 1985.CrossRefGoogle Scholar
  50. [9.50]
    T. Kobayashi and K. Saito, “Two-dimentional analysis of velocity overshoot effects in ultrashort-channel Si MOSFET’s”, IEEE Trans. Electron Devices, vol. 32, no. 4, pp. 788–792, 1985.CrossRefGoogle Scholar
  51. [9.51]
    T. W. Tang, H. H. Ou, and D. H. Navon, “Prediction of velocity overshoot by a nonlocal hot-carrier transport model”, 1985.Google Scholar
  52. [9.52]
    B. Meinerzhagen and W. L. Engl, “The influence of the thermal equilibrium approximation on the accuracy of classical two-dimensional numerical modeling of silicon submicrometer MOS transistors”, IEEE Trans. Electron Devices, vol. 35, no. 5, pp. 689–697, 1988.CrossRefGoogle Scholar
  53. [9.53]
    M. Tomizawa, K. Yokoyama, and A. Yoshii, “Nonstationary carrier dynamics in quarter-micron Si MOSFETs”, IEEE Trans. Computer-Aided Des., vol. CAD-7, pp. 254–258, 1988.CrossRefGoogle Scholar
  54. [9.54]
    P. J. H. Elias, T. G. Roer, and F. M. Klaassen, “Electron velocity overshoot in sub-micron silicon CMOS transistors”, in ESSDERC, Notthingham, sept 1990.Google Scholar
  55. [9.55]
    S. E. Laux and M. V. Fischetti, “Monte-Carlo Simulation of Submicrorneter Si n-MOSFET’s at 77 and 300 K”, IEEE Electron Device Lett., vol. 9, no. 9, pp. 467–469, 1988.CrossRefGoogle Scholar
  56. [9.56]
    S. E. Laux and W. Lee, “Collector signal delay in the presence of velocity overshoot”, IEEE Electron Device Lett., vol. 11, no. 4, pp. 174–176, 1990.CrossRefGoogle Scholar
  57. [9.57]
    S. E. Laux and M. V. Fischetti, “Monte Carlo study of velocity overshoot in switching a 0.1-micron CMOS inverter”, in IEDM Tech. Dig., 1997, pp. 877–880.Google Scholar
  58. [9.58]
    C. Jungemann and B. Meinerzhagen, “Impact of the velocity overshoot on the performance of NMOSFETs with gate lengths from 80 to 250nm”, in Proc. ESSDERC, Leuven (Belgium), 1999, pp. 236–239.Google Scholar
  59. [9.59]
    J.D. Bude, “MOSFET modeling into the ballistic regime”, in Proc. SISPAD, 2000, pp. 23–26.Google Scholar
  60. [9.60]
    M. Rodder, M. Hanratty, D. Rogers, T. Laaksonen, J. C. Hu, S. Murtaza, C.-P. Chao, S. Hantangady, S. Aur, A. Amerasekera, and I.-C. Chen, “A 0.1µm gate length CMOS technology with 30A gate dielectric for 1.0V-1.5V applications”, in IEDM Tech. Dig., 1997, pp. 223–226.Google Scholar
  61. [9.61]
    L. T. Su, H. Hu, J. B. Jacobs, M. J. Sherony, A. Wei, and D. A. Antoniadis, “Tradeoffs of current drive vs. short-channel effect in deep-submicrometer bulk and SOI MOSFETs”, in IEDM Tech. Dig., 1994, pp. 649–652.Google Scholar
  62. [9.62]
    F. Assad, Z. Ren, D. Vasileska, S. Datta, and M. Lundstrom, “On the performance limits for Si MOSFET’s: A theoretical study”, IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 232–240, 2000.CrossRefGoogle Scholar
  63. [9.63]
    R. Thoma, A. Emunds, B. Meinerzhagen, H. J. Peifer, and W. L. Engl, “Hydrodynamic equations for semiconductors with nonparabolic bandstructures”, IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1343–1352, 1991.CrossRefGoogle Scholar
  64. [9.64]
    S. A. Mujtaba, R. W. Dutton, and D. L. Scharfetter, “Semi-empirical local NMOS mobility model for 2-D device simulation incorporating screened minority impurity scattering”, in NUPAD Tech. Dig., Honolulu, 1994, vol. 5, pp. 3–6.Google Scholar
  65. [9.65]
    W. Hänsch and M. Miura-Mattausch, “A new current relation for hot electron transport”, in Proc. NASECODE IV, 1985, pp. 311–314.Google Scholar
  66. [9.66]
    S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: Part I-Effects of substrate impurity concentration”, IEEE Trans. Electron Devices, vol. 41, pp. 2357–2362, 1994.CrossRefGoogle Scholar
  67. [9.67]
    J.A. Cooper and D. F.Nelson, “High-field drift velocity of electrons at the SiSiO2 interface as determined by a time-of-flight technique”, J. Appl. Phys., vol. 54, pp. 1445–1456, 1983.CrossRefGoogle Scholar
  68. [9.68]
    D. F. Nelson and J. A. Cooper, “High Field Surface Drift Velocity in Silicon”,in The Physics of Submicron Structures. Plenum Press, New York, 1984.Google Scholar
  69. [9.69]
    H. K. Gummel, “On the definition of the cutoff frequency fr”, Proc. IEEE, p.2159, 1969.Google Scholar
  70. [9.70]
    S. M. Sze, Physics of Semiconductors Devices, Wiley, New York, 1981.Google Scholar
  71. [9.71]
    C. Jungemann, “Methoden zur Simulation hochenergetischer Elektronen in Ul-trakurzkanaltransistoren”, Doctor thesis, RWTH Aachen, Aachen, 1995, Shaker.Google Scholar
  72. [9.72]
    T. Vogelsang and R. K. Hofmann, “Electron transport in strained Si layers onSil_sGex substrates”, Appl. Phys. Lett., vol. 63, pp. 186–188, 1993.CrossRefGoogle Scholar
  73. [9.73]
    F. M. Bufler, P. Graf, S. Keith, and B. Meinerzhagen, “Full band Monte Carloinvestigation of electron transport in strained Si grown on Sii_xGe, substrates”,Appl. Phys. Lett., vol. 70, pp. 2144–2146, 1997.CrossRefGoogle Scholar
  74. [9.74]
    S. Keith, F. M. Buffer, and B. Meinerzhagen, “Full band Monte-Carlo device simulation of an 0.1 pm n-channel MOSFET in strained silicon material”, in Proc. ESSDERC, Stuttgart, Sept. 1997, pp. 200–203.Google Scholar
  75. [9.75]
    M. V. Fischetti, F. Gamiz, and W. Hänsch, “On the enhanced electron mobilityin strained-silicon inversion layers”, J. Appl. Phys., vol. 92, pp. 7320–7324, 2002.CrossRefGoogle Scholar
  76. [9.76]
    Y. Taur, C. H. Wann, and D. J. Frank, “25 nm CMOS design considerations”,IEDM Tech. Dig., pp. 789–792, 1998.Google Scholar
  77. [9.77]
    S. Keith, C. Jungemann, and B. Meinerzhagen, “Full band Monte Carlo device simulation of 0.1–0.5µm strained-Si P-MOSFETs”, in Proc. ESSDERC, Bordeaux, 1998, pp. 1–0.Google Scholar
  78. [9.78]
    F. M. Bufler, P. Graf, and B. Meinerzhagen, “High-field hole transport in strained Si and SiGe by Monte Carlo simulation: Full band versus analytic band models”, VLSI Design, vol. 8, pp. 41–45, 1998.CrossRefGoogle Scholar
  79. [9.79]
    F. M. Buffer, “Full-band Monte Carlo simulation of electrons and holes in strained Si and SiGe”, Dissertation, Universität Bremen, Bremen, 1997, (H. Utz Verlag Wissenschaft, München: 1998).Google Scholar
  80. [9.80]
    C. Jungemann, S. Keith, and B. Meinerzhagen, “Full-band Monte Carlo simulation of a 0.12µm-Si-PMOSFET with and without a strained SiGe-channel”, in IEDM Tech. Dig., San Francisco (USA), 1998, pp. 897–900.Google Scholar
  81. [9.81]
    H. Fischer, “Transporteigenschaften von Sii-xGe-p-MOSFETs”, Dissertation, Universität der Bundeswehr München, München, 1999.Google Scholar
  82. [9.82]
    T. H. Ning, P. W. Cook, R. H. Dennard, C. M. Osburn, S. E. Schuster, and H.-N. Yu, “1 p,m MOSFET VLSI technology: Part iv Hot-electron design constrains”, IEEE Trans. Electron Devices, vol. 26, no. 4, pp. 346–353, 1979.CrossRefGoogle Scholar
  83. [9.83]
    E. Takeda and N. Suzuki, “An empirical model for device degradation due to hot-carrier injection”, IEEE Electron Device Lett., vol. 4, no. 4, pp. 111–113, 1983.CrossRefGoogle Scholar
  84. [9.84]
    Shaker C. Hu, S.C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill, “Hot-electron induced MOSFET degradation - model, monitor, and improvement”, IEEE Trans. Electron Devices, vol. 32, no. 2, pp. 375–385, 1985.CrossRefGoogle Scholar
  85. [9.85]
    J. M. Higman, K. Hess, C. G. Hwang, and R. W. Dutton, “Coupled Monte Carlo-drift diffusion analysis of hot-electron effects in MOSFET’s”, IEEE Trans.Electron Devices, vol. 36, no. 5, pp. 930–937, 1989.CrossRefGoogle Scholar
  86. [9.86]
    M. V. Fischetti, S. E. Laux, and E. Crabbe, “Understanding hot-electron transport in silicon devices: Is there a shortcut?”, J. Appl. Phys., vol. 78, pp. 1058–1087, 1995.Google Scholar
  87. [9.87]
    C. Jungemann, S. Yamaguchi, and H. Goto, “On the accuracy and efficiency of substrate current calculations for sub-µm n-MOSFET’s”, IEEE Electron Device Lett., vol. 17, no. 10, pp. 464–466, 1996.CrossRefGoogle Scholar
  88. [9.88]
    I. Izawa, M. Katsube, Y. Yohoyama, K. Hashimoto, E. Kawamura, A. Shimizi, H. Takagi, F. Inoue, H. Shimizu, K. Furumochi, H. Goto, S. Kawamura, K. Watanabe, and K. Aoyama, “A novel embedded SRAM technology with 10 µm2 full-CMOS cells for 0.25 pm logic devices”, in IEDM Tech. Dig., 1994, pp. 941–943.Google Scholar
  89. [9.89]
    N. Khalil, J. Faricelli, D. Bell, and S. Selberherr, “The extraction of two-dimensional MOS transistor doping via inverse modeling”, IEEE Electron Device Lett., vol. 16, no. 1, pp. 17–19, 1995.CrossRefGoogle Scholar
  90. [9.90]
    C. Jungemann, S. Yamaguchi, and H. Goto, “Accurate prediction of hot-carrier effects for a deep sub-µm CMOS technology based on inverse modeling and full band Monte Carlo device simulation”, in Proc. SISPAD, 1996, vol. 1, pp. 59–60.Google Scholar
  91. [9.91]
    H. Goto, S. Yamaguchi, and C. Jungemann, “Inverse modeling as a basis for predictive device simulation of deep submicron metal-oxide-semiconductor field effect transistors”, Jpn. J. Appl. Phys., vol. 37, pp. 5437–5443, 1998.CrossRefGoogle Scholar
  92. [9.92]
    A. Pacelli and U. Ravaioli, “Analysis of variance-reduction schemes for ensemble Monte-Carlo simulation of semiconductor devices”, Solid-State Electron., vol. 41, pp. 599–605, 1997.CrossRefGoogle Scholar
  93. [9.93]
    J. D. Bude and M. Mastrapasqua, “Impact ionization and distribution functions in sub-micron nMOSFET technologies”, IEEE Electron Device Lett., vol. 16, no. 10, pp. 439–441, 1995.CrossRefGoogle Scholar
  94. [9.94]
    C. Jungemann, S. Yamaguchi, and H. Goto, “Efficient full band Monte Carlo hot carrier simulation for silicon devices”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 821–824.Google Scholar
  95. [9.95]
    C. Jungemann, S. Yamaguchi, and H. Goto, “Is there experimental evidence for a difference between surface and bulk impact ionization in silicon”, in IEDM Tech. Dig., 1996, pp. 383–386.Google Scholar
  96. [9.96]
    C. Jungemann, B. Meinerzhagen, S. Decker, S. Keith, S. Yamaguchi, and H. Goto, “Is physically sound and predictive modeling of NMOS substrate currents possible?”, Solid-State Electron., vol. 42, pp. 647–655, 1998.CrossRefGoogle Scholar
  97. [9.97]
    W. Jacobs, “The SATURN Technology CAD system”, in Technology CAD Systems, F. Fasching, S. Halama, and S. Selberherr, Eds. Springer, Wien, New York, 1993.Google Scholar
  98. [9.98]
    A. Schütz, S. Selberherr, and H. W. Pötzl, “A two-dimensional model of the avalanche effect in MOS transistors”, Solid-State Electron., vol. 25, pp. 177–183, 1982.CrossRefGoogle Scholar
  99. [9.99]
    J. W. Slotboom, G. Streutker, G. J. T. Davids, and P. B. Hartog, “Surface impact ionization in Silicon devices”, in IEDM, 1987, pp. 494–497.Google Scholar
  100. [9.100]
    M. Fukuma and W. W. Lui, “MOSFET substrate current model including energy transport”, IEEE Electron Device Lett., vol. 8, no. 5, pp. 214–216, 1987.CrossRefGoogle Scholar
  101. [9.101]
    J. W. Slotboom, G. Streutker, M. J. v. Dort, P. H. Woerlee, A. Pruijmboom, andD. J. Gravesteijn, “Non-local impact ionization in silicon devices”, in IEDM, 1991, pp. 127–130.Google Scholar
  102. [9.102]
    M. Takeda, J. Frey, Z. Peng, and N. Goldsman, “Simulation of substrate current characteristics of submicron MOSFETs”, Electronics Letters, vol. 27, pp. 144–146, 1991.CrossRefGoogle Scholar
  103. [9.103]
    V. M. Agostinelli, Jr. T. J. Bordelon, X. Wang, K. Hasnat, C.-F. Yeap, D. B. Lemersal, Jr., A. F. Tasch, and C. M. Mazier, “Two-dimensional energy-dependent models for the simulation of substrate current in submicron MOSFETs”, IEEE Trans. Electron Devices, vol. 41, no. 10, pp. 1784–1795, 1994.CrossRefGoogle Scholar
  104. [9.104]
    T. Thurgate and N. Chan, “An impact ionization model for two-dimensional device simulation”, IEEE Trans. Electron Devices, vol. 32, no. 2, pp. 400–404, 1985.CrossRefGoogle Scholar
  105. [9.105]
    R. Kuhnert, C. Werner, and A. Schütz, “A novel impact-ionization model for 1-µm-MOSFET simulation”, IEEE Trans. Electron Devices, vol. 32, no. 6, pp. 1057–1063, 1985.CrossRefGoogle Scholar
  106. [9.106]
    B. Meinerzhagen, “Consistent gate and substrate current modeling based on energy transport and the Lucky Electron concept”, in IEDM Tech. Dig., 1988, pp. 504–507.Google Scholar
  107. [9.107]
    C. Jungemann, R. Thoma, and W. L. Engl, “A soft threshold lucky electron model for efficient and accurate numerical device simulation”, Solid-State Electron., vol. 39, pp. 1079–1086, 1996.CrossRefGoogle Scholar
  108. [9.108]
    A. G. Chynoweth, “Uniform silicon p - n junctions. II. Ionization rates for electrons”, J. Appl. Phys., vol. 31, pp. 1161–1165, 1960.CrossRefGoogle Scholar
  109. [9.109]
    R. van Overstraeten and H. de Man, “Measurement of the ionization rates indiffused silicon p-n junctions”, SolidState Electron., vol. 13, pp. 583–608, 1970.CrossRefGoogle Scholar
  110. [9.110]
    W. Maes, K. de Meyer, and R. Van Overstraeten, “Impact ionization in silicon:A review and update”, Solid-State Electron., vol. 33, pp. 705–718, 1990.CrossRefGoogle Scholar
  111. [9.111]
    W. Shockley, “Problems related to p - n junctions in silicon”, Solid-State Elec-tron., vol. 2, pp. 35–67, 1961.CrossRefGoogle Scholar
  112. [9.112]
    J. M. Higman, I. C. Kizilyalli, and K. Hess, “Nonlocality of the electron ionization coefficient in n-MOSFET’s: An analytic approach”, IEEE Electron Device Lett., vol. 9, no. 8, pp. 399–401, 1988.CrossRefGoogle Scholar
  113. [9.113]
    K. Taniguchi, M. Yamaji, K. Sonoda, T. Kunikiyo, and C. Hamaguchi, “Monte Carlo study of impact ionization phenomena in small geometry MOSFET’s”, in IEDM Tech. Dig., 1994, pp. 355–358.Google Scholar
  114. [9.114]
    E. Sangiorgi, B. Riccó, and F. Venturi, “MOS2: An efficient Monte Carlo simulator for MOS devices”, IEEE Trans. Computer-Aided Des., vol. 7, no. 2, pp. 259–271, 1988.CrossRefGoogle Scholar
  115. [9.115]
    F. M. Bufler, A. Schenk, and W. Fichtner, “Efficient Monte Carlo device modeling”, IEEE Trans. Electron Devices, vol. 47, no. 10, pp. 1891–1897, 2000.CrossRefGoogle Scholar
  116. [9.116]
    N. Sano, “Increasing importance of electronic thermal noise in sub-0.1µm SiMOSFETs”, IEICE Trans. on Electronics, vol. E83-C, no. 8, pp. 1203–1211, 2000.Google Scholar
  117. [9.117]
    F. Venturi, R. K. Smith, E. C. Sangiorgi, M. R. Pinto, and B. Riccó, “A general purpose device simulation coupling Poisson and Monte Carlo transport with application to deep submicron MOSFET’s”, IEEE Trans. Computer-Aided Des., vol. 8, no. 4, pp. 360–369, 1989.CrossRefGoogle Scholar
  118. [9.118]
    C. Jungemann and B. Meinerzhagen, “On the applicability of nonself-consistent Monte Carlo device simulations”, IEEE Trans. Electron Devices, vol. 49, no. 6, pp. 1072–1074, 2002.CrossRefGoogle Scholar
  119. [9.119]
    B. Neinhüs, S. Decker, P. Graf, F. M. Bufler, and B. Meinerzhagen, “Consistent hydrodynamic and Monte-Carlo simulation of SiGe HBTs based on table models for the relaxation times”, VLSI Design, vol. 8, pp. 387–391, 1998.CrossRefGoogle Scholar
  120. [9.120]
    H.-J. Peifer, “Monte-Carlo Simulation des Hochenergietransports von Elektronen in submikron MOS-Strukturen”, Doctor thesis, RWTH Aachen, Aachen, 1992, Augustinus Buchhandlung.Google Scholar
  121. [9.121]
    B. Meinerzhagen, “Two-dimensional numerical substrate current modeling for n-channel MOS transistors”, in Proc. NASECODE V, 1987, pp. 42–59.Google Scholar
  122. [9.122]
    J. D. Bude, M. R. Pinto, and S. K. Smith, “Monte Carlo simulation of the CHISEL flash memory cell”, IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 1873–1881, 2000.CrossRefGoogle Scholar
  123. [9.123]
    N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, “Influence of thermal noise on drain current in very small Si-MOSFETs”, Jpn. J. Appl. Phys., vol. 39, pp. 1974–1978, 2000.CrossRefGoogle Scholar
  124. [9.124]
    H. K. Gummel, “A self-consistent iterative scheme for one-dimensional steady state transistor calculations”, IEEE Trans. Electron Devices, pp. 455–465, October 1964.Google Scholar
  125. [9.125]
    Y.-J. Park, D. H. Navon, and T.-W. Tang, “Monte Carlo simulation of bipolar transistors”, IEEE Trans. Electron Devices, vol. 31, no. 12, pp. 1724–1730, 1984.CrossRefGoogle Scholar
  126. [9.126]
    C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Comparative study of electron transit times evaluated by DD, HD, and MC device simulation for a SiGe HBT”, IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2216–2220, 2001.CrossRefGoogle Scholar
  127. [9.127]
    P. W. Rambo and J. Denavit, “Time stability of Monte Carlo device simulation”, IEEE Trans. Computer-Aided Des., vol. 12, pp. 1734–1741, 1993.CrossRefGoogle Scholar
  128. [9.128]
    I. Bork, C. Jungemann, B. Meinerzhagen, and W. L. Engl, “Influence of heat flux on the accuracy of hydrodynamic models for ultrashort Si MOSFETs”, in NUPAD Tech. Dig., Honolulu, 1994, vol. 5.Google Scholar
  129. [9.129]
    C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Spatial analysis of the electron transit time in a silicon/germanium heterojunction bipolar transistor by drift-diffusion, hydrodynamic, and full-band Monte Carlo device simulation”, in Proc. SISPAD, Seattle (USA), Sept. 2000, pp. 42–45.Google Scholar
  130. [9.130]
    J. J. H. van den Biesen, “A simple regional analysis of transient times in bipolar transistors”, Solid-State Electron., vol. 29, pp. 529–534, 1986.CrossRefGoogle Scholar
  131. [9.131]
    C. Jungemann, B. Neinhüs, S. Decker, and B. Meinerzhagen, “Hierarchical 2-D DD and HD noise simulations of Si and SiGe devices: Part II—Results”, IEEE Trans. Electron Devices, vol. 49, no. 7, pp. 1258–1264, 2002.CrossRefGoogle Scholar
  132. [9.132]
    D. Knoll, B. Heinemann, H. J. Osten, K. E. Ehwald, B. Tillack, P. Schley, R. Barth, M. Matthes, K. S. Park, Y. Kim, and W. Winkler, “Si/SiGe:C hetero-junction bipolar transistors in an Epi-Free well, single-polysilicon technology”, in IEDM Tech. Dig., 1998, pp. 703–706.Google Scholar
  133. [9.133]
    D. L. Scharfetter, “Measured dependence of lifetime upon defect density and temperature in depletion layers of epitaxial silicon diodes”, in Solid-State Dev. Res. Conf., Santa Barbara, USA, 1967.Google Scholar
  134. [9.134]
    S. Decker, “Numerische Simulation von Si/SiGe-Hochfrequenztransistoren unterbesonderer Berücksichtigung des elektronischen Rauschens”, Dissertation, Universität Bremen, Aachen, 2002.Google Scholar
  135. [9.135]
    F. Bonani and G. Ghione, “Generation-recombination noise modelling in semiconductor devices through population or approximate equivalent current density fluctuations”, Solid-State Electron., vol. 43, pp. 285–295, 1999.CrossRefGoogle Scholar
  136. [9.136]
    S. P. Voinigescu, M. C. Maliepaard, J. L. Showell, G. E. Babcock, D. Marchesan, M. Schroter, P. Schvan, and D. L. Harame, “A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design”, IEEE Solid-State Circuits, vol. 32, no. 9, pp. 1430–1439, 1997.CrossRefGoogle Scholar
  137. [9.137]
    F. Herzel and B. Heinemann, “High-frequency noise analysis of Si/SiGe hetero-junction bipolar transistors”, Int. J. Electronics, vol. 81, pp. 37–48, 1996.CrossRefGoogle Scholar
  138. [9.138]
    K. Aufinger and M. Reisch, “RF noise for bipolar transistors-a critical compar-ison”, in Proc. BCTM, San Francisco, USA, 2001, pp. 110–113.Google Scholar
  139. [9.139]
    M. J. Martín-Martínez, S. Pérez, D. Pardo, and T. González, “High injection effects on noise characteristics of Si BJTs and SiGe HBTs”, Microelectronics Reliability, vol. 41, pp. 847–854, 2001.CrossRefGoogle Scholar
  140. [9.140]
    M. J. Martín, S. Pérez, D. Pardo, and T. González, “Monte Carlo analysis of the noise behavior in Si BJTs and SiGe HBTs at RF frequencies”, J. Appl. Phys., vol. 90, no. 3, pp. 1582–1588, 2001.CrossRefGoogle Scholar
  141. [9.141]
    M. J. Martín-Martínez, S. Pérez, D. Pardo, and T. González, “Influence of Ge profile on the noise behavior of SiGe HBTs under high injection conditions”, Physica B, vol. 314, pp. 381–385, 2002.CrossRefGoogle Scholar
  142. [9.142]
    H. Beneking, High Speed Semiconductor Devices, Chapman & Hall, London, 1994.Google Scholar
  143. [9.143]
    S. E. Laux and K. Hess, “Revisiting the analytic theory of p-n junction impedance: Improvements guided by computer simulation leading to a new equivalent circuit”, IEEE Trans. Electron Devices, vol. 46, no. 2, pp. 396–412, 1999.CrossRefGoogle Scholar
  144. [9.144]
    G. Niu, J. D. Cressler, S. Zhang, W. E. Ansley, C. S. Webster, and D. L. Harame, “A unified approach to RF and microwave noise parameter modeling in bipolar transistors”, IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2568–2574, 2001.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Christoph Jungemann
    • 1
  • Bernd Meinerzhagen
    • 1
  1. 1.Institut für Theoretische Elektrotechnik und MikroelektronikUniversität BremenBremenGermany

Personalised recommendations