Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 315 Accesses

Abstract

In this chapter the transport models are applied to the simulation of three different types of devices to assess the accuracy of the transport models either by comparison to each other or experimental data. In addition, the transport in the different device types is analyzed with the appropriate simulation model. The first set of devices, unipolar 1D N+NN+ and P+PP+ structures, is mainly of academic interest and is frequently investigated because of its relative simplicity (e.g. [9.1–9.6]), which reduces the CPU time and makes it easier to compare the MC model to the momentum-based models. The second group of devices consists of CMOS devices, which are the standard devices of today’s integrated circuits. With the introduction of the SiGe technology many new types of CMOS devices have appeared [9.7, 9.8]. The most important types are MOSFETs with strained Si channels [9.9–9.13]), which are investigated together with standard Si MOSFETs in the second part of this chapter. In addition, PMOSFETs with a strained SiGe channel, which have promising potential for low noise amplifiers, are discussed [9.14–9.18]. The third group of investigated devices consists of SiGe HBTs, which exhibit a superior RF and noise performance compared to standard Si BJTs [9.19–9.22].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Nekovee, B. J. Geurts, H. M. J. Boots, and M. F. H. Schuurmans, “Failure of extended-moment-equation approaches to describe ballistic transport in submicrometer structures”, Phys. Rev. B, vol. 45, no. 12, pp. 6643–6651, 1992.

    Article  Google Scholar 

  2. B. Meinerzhagen, R. Thoma, H. J. Peifer, and W. L. Engl, “On the consistency of the hydrodynamic and the Monte Carlo models”, in Proc. IWCE, Illinois, 1992, Urbana-Champaign, pp. 7–12.

    Google Scholar 

  3. C. L. Gardner, “Hydrodynamic and Monte Carlo simulation of an electron shock wave in a 1-µm n+-n-n+ diode”, IEEE Trans. Electron Devices, vol. 40, no. 2, pp. 455–457, 1993.

    Article  Google Scholar 

  4. L. Reggiani, P. Shiktorov, V. Gruzinskis, E. Starikov, L. Varani, T. González, M. J. Martín, and D. Pardo, “Hydrodynamic modeling of transport and noise spectra in n+n++ semiconductor structures”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 295–298.

    Google Scholar 

  5. B. Fischer, “A full-band Monte Carlo charge transport model for nanoscale silicon devices including strain”, Doctor thesis, University Hannover, Hannover, 1999.

    Google Scholar 

  6. T. W. Tang and H. Gan, “Two formulations of semiconductor transport equations based on spherical harmonic expansion of the Boltzmann transport equation”, IEEE Trans. Electron Devices, vol. 47, no. 9, pp. 1726–1732, 2000.

    Article  Google Scholar 

  7. U. König, “Electronic Si/SiGe devices: Basics, technology, performance”, in Advances in Solid State Physics (Festkörperprobleme), vol. 32, pp. 199–220. Vieweg, Braunschweig, 1992.

    Google Scholar 

  8. F.Schäffier, “High—mobility Si and Ge structures”, Semicond. Sei. Technol., vol. 12, pp. 1515–1549, 1997.

    Article  Google Scholar 

  9. J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, “Strain dependence of the Performance Enhancement in Strained-Si n-MOSFETs”, in IEDM Tech. Dig., 1994, pp. 373–376.

    Google Scholar 

  10. K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and analysis of deep submicron strained-Si N-MOSFET’s”, IEEE Trans. Electron Devices, vol. 47, no. 7, pp. 1406–1415, 2000.

    Article  Google Scholar 

  11. K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill, and H.-S. P. Wong, “Strained Si NMOSFETs for high performance CMOS technology”, Symposium on VLSI Technology Digest of Technical Papers, pp. 59–60, 2001.

    Google Scholar 

  12. J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E.A.Fitzgerald,and D.A.Antoniadis,“Strained silicon MOSFET technology”, IEDM Tech. Dig., pp. 23–26, 2002.

    Google Scholar 

  13. S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi, P. Bai, J. Bielefeld, R. Bigwood, J. Brandenburg, M. Buehler, S. Cea, V. Chikarmane, C. Choi, R. Frankovic, T. Ghani, G. Glass, W. Han, T. Hoffmann, M. Hussein, P. Jacob A. Jain, C. Jan, S. Joshi, C. Kenyon, J. Klaus, S. Klopic, J. Luce, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, P. Nguyen, H. Pearson, T. Sandford, R. Schweinfurth, R. Shaheed, S. Sivakumar, M. Taylor, B. Tufts, C. Wallace, P. Wang, C. Weber, and M. Bohr, “A 90nm logic technology featuring 50nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and lum2 SRAM cell”, IEDM Tech. Dig., pp. 61–64, 2002.

    Google Scholar 

  14. S. Verdonckt-Vandebroek, E. F. Crabbé, B. S. Meyerson, D. L. Harame, P. J. Restle, J. M. C. Stork, and J. B. Johnson, “SiGe-channel heterojunction pMOSFET’s”, IEEE Trans. Electron Devices, vol. 41, no. 1, pp. 90–101, 1994.

    Article  Google Scholar 

  15. L. Risch, H. Fischer, F. Hofmann, F. Schäfer, M. Eller, and T. Aeugle, “Fabrication and electrical characterization of Si/SiGe p—channel MOSFETs with a delta doped boron layer”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 465–468.

    Google Scholar 

  16. P. Bouillon, T. Skotnicki, S. Bodnar, C. Morin, J.-L. Regolini, P. Gouagout,and P. Dollfus, “Experiments with 0.18 µm SiGe channel pMOSFETs and p+poly—SiGe gate”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 473–476.

    Google Scholar 

  17. S. Okhonin, M. A. Py, B. Georgescu, H. Fischer, and L. Risch,201C; “Dc and low-frequency noise characteristics of SiGe p-channel FET’s designed for 0.13-µm technology, IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1514–1517, 1999.

    Article  Google Scholar 

  18. A. Asai, J. Sato-Iwanaga, A. Inoue, Y. Hara, Y. Kanzawa, H. Sorada, T. Kawashima, T. Ohnishi, T. Takagi, and M. Kubo, “Low-frequency noise characteristics in sige channel heterostructure dynamic threshold pMOSFET (HDTMOS)”, IEDM Tech. Dig., pp. 35–38, 2002.

    Google Scholar 

  19. S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, “Heterojunction bipolar transistors using Si-Ge alloys”, IEEE Trans. Electron Devices, vol. 36, no. 10, pp. 2043–2064, 1989.

    Article  Google Scholar 

  20. J. D. Cressler, “Re-engineering silicon: Si-Ge heterojunction bipolar technology”, IEEE Spectrum, vol. 3, pp. 49–55, 1995.

    Article  Google Scholar 

  21. A. Schuppen, “SiGe—HBTs for mobile communication”, Solid—State Electron., vol. 43, pp. 1373–1381, 1999.

    Article  Google Scholar 

  22. C. K. Maiti and G. A. Armstrong, Applications of Silicon—Germanium Heterostructure Devices, Series in Optics and Optoelectronics. Institute of Physics Publishing, Bristol, Philadelphia, 2001.

    Google Scholar 

  23. K. A. Hennacy and Neil Goldsman, “A generalized Legendre polynimial/sparse matrix approach for determining the distribution function in non-polar semiconductors”, Solid—State Electron., vol. 36, pp. 869–877, 1993.

    Article  Google Scholar 

  24. M. Lundstrom, “Elementary scattering theory of the Si MOSFET”, IEEE Electron Device Lett., vol. 18, no. 7, pp. 361–363, 1997.

    Article  Google Scholar 

  25. J.-P. Nougier, “Fluctuations and noise of hot carriers in semiconducor materials and devices”, IEEE Trans. Electron Devices, vol. ED-41, no. 11, pp. 2034–2049, 1994.

    Article  Google Scholar 

  26. Sh. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press, Cambridge, New York, Melbourne, 1996.

    Book  Google Scholar 

  27. C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Hierarchical 2—D DD and HD noise simulations of Si and SiGe devices: Part I Theory”, IEEE Trans. Electron Devices, vol. 49, no. 7, pp. 1250–1257, 2002.

    Article  Google Scholar 

  28. F. Bonani, G. Ghione, M. R. Pinto, and R. K. Smith, “An efficient approach to noise analysis through multidimentional physics-based models”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 261–269, 1998.

    Article  Google Scholar 

  29. J.-S. Goo, C. Choi, F. Danneville, E. Morifuji, H. Sasaki Momose, Z. Yu, H. Iwai, T. H. Lee, and R. W. Dutton, “An accurate and efficient high frequency noise simulation technique for deep submicron MOSFETs”, IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2410–2419, 2000.

    Article  Google Scholar 

  30. F. Bonani and G. Ghione, Noise in Semiconductor Devices, Modeling and Simulation, Advanced Microelectronics. Springer, Berlin, Heidelberg, New York, 2001.

    Google Scholar 

  31. W. Shockley, John A. Copeland, and R. P. James, “The impedance field method of noise calculation in active semiconductor devices”, in Quantum theory of atoms, molecules and solid state, P. O. Lowdin, Ed., pp. 537–563. Academic Press, 1966.

    Google Scholar 

  32. E. V. Sukhorukov and D. Loss, “Noise in multiterminal diffuse conductors:Universality, nonlocality, and exchange effects”, Phys. Rev. B, vol. 59, pp. 13054–13066, 1999.

    Google Scholar 

  33. L. Varani, T. Kuhn, L Reggiani, and Y. Perles, “Current and number fluctuations in submicron n+nn+ structures”, Solid--State Electron., vol. 36, pp. 251–261, 1993.

    Article  Google Scholar 

  34. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer, Wien, 1984.

    Book  Google Scholar 

  35. R. K. Mains, G. I. Haddad, and P. A. Blakey, “Simulation of GaAs IMPATT diodes including energy and velocity transport equations”, IEEE Trans. Electron Devices, vol. 30, no. 10, pp. 1327–1337, 1983.

    Article  Google Scholar 

  36. H. J. Peifer, B. Meinerzhagen, R. Thoma, and W. L. Engl, “Evaluation of impact ionization modeling in the framework of hydrodynamic equations”, in IEDM Tech. Dig., 1991, pp. 131–134.

    Google Scholar 

  37. A. Cappy, F. Danneville, and G Dambrine, “Noise modelling in linear and nonlinear devices”, IEICE Trans. on Electronics, vol. E82-C, no. 6, pp. 900–907, 1999.

    Google Scholar 

  38. T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems”, Rev. Mod. Phys., vol. 54, pp. 437–672, 1982.

    Article  Google Scholar 

  39. W. V. Roosbroeck, “Theory of the flow of electrons and holes in germanium andother semiconductors”, Bell System Technical Journal, pp. 561–607, 1950.

    Google Scholar 

  40. W. Shockley, Electrons and Holes in Semiconductors, van Nostrand, Princeton,New Jersey, 1950.

    Google Scholar 

  41. W. L. Engl, H. K. Dirks, and B. Meinerzhagen, “Device modeling”, Proc. IEEE, vol. 71, pp. 10–33, 1983.

    Article  Google Scholar 

  42. P. A. Blakey and K. Joardar, “An analytic theory of the impact of velocity overshoot on the drain characteristics of field-effect transistors”, IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 740–742, 1992.

    Article  Google Scholar 

  43. S. Y. Chou, D. A. Antoniadis, and H. I. Smith, “Observation of electron velocity overshoot in sub-100-nm-channel MOSFET’s in silicon”, IEEE Electron Device Lett., vol. 6, no. 12, pp. 665–667, 1985.

    Article  Google Scholar 

  44. G. A. S. Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, and E. Canin, “High transconductance and velocity overshoot in NMOS devices at the 0.1-µm gate-length level”, IEEE Electron Device Lett., vol. 9, no. 9, pp. 464–466, 1988.

    Article  Google Scholar 

  45. F. Assaderaghi, P. K. Ko, and C. Hu, “Observation of Velocity Overshoot in Silicon Inversion Layers”, IEEE Electron Device Lett., vol. 14, no. 10, pp. 484–486, 1993.

    Article  Google Scholar 

  46. F. Assaderaghi, D. Sinitsky, J. Bokor, P. K. Ko, H. Gaw, and C. Hu, “High-field transport of inversion-layer electrons and holes including velocity overshoot”, IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 664–671, 1997.

    Article  Google Scholar 

  47. B. Cheng, V. R. Rao, and J. C. S. Woo, “Exploration of velocity overshoot in a high-performance deep sub-0.1-µm SOI MOSFET with asymmmetric channel profile”, IEEE Electron Device Lett., vol. 20, no. 10, pp. 538–540, 1999.

    Article  Google Scholar 

  48. R. K. Cook and J. Frey, “An efficient technique for two-dimensional simulation of velocity overshoot effects in Si and GaAs devices”, COMPEL Int. J. Comput. Math. Electr. Electron. Eng., vol. 1, pp. 65–87, 1982.

    Article  Google Scholar 

  49. G. Baccarani and M. R. Wordeman, “An investigation of steady-state velocity overshoot in silicon”, Solid-State Electron., vol. 28, pp. 407–416, 1985.

    Article  Google Scholar 

  50. T. Kobayashi and K. Saito, “Two-dimentional analysis of velocity overshoot effects in ultrashort-channel Si MOSFET’s”, IEEE Trans. Electron Devices, vol. 32, no. 4, pp. 788–792, 1985.

    Article  Google Scholar 

  51. T. W. Tang, H. H. Ou, and D. H. Navon, “Prediction of velocity overshoot by a nonlocal hot-carrier transport model”, 1985.

    Google Scholar 

  52. B. Meinerzhagen and W. L. Engl, “The influence of the thermal equilibrium approximation on the accuracy of classical two-dimensional numerical modeling of silicon submicrometer MOS transistors”, IEEE Trans. Electron Devices, vol. 35, no. 5, pp. 689–697, 1988.

    Article  Google Scholar 

  53. M. Tomizawa, K. Yokoyama, and A. Yoshii, “Nonstationary carrier dynamics in quarter-micron Si MOSFETs”, IEEE Trans. Computer-Aided Des., vol. CAD-7, pp. 254–258, 1988.

    Article  Google Scholar 

  54. P. J. H. Elias, T. G. Roer, and F. M. Klaassen, “Electron velocity overshoot in sub-micron silicon CMOS transistors”, in ESSDERC, Notthingham, sept 1990.

    Google Scholar 

  55. S. E. Laux and M. V. Fischetti, “Monte-Carlo Simulation of Submicrorneter Si n-MOSFET’s at 77 and 300 K”, IEEE Electron Device Lett., vol. 9, no. 9, pp. 467–469, 1988.

    Article  Google Scholar 

  56. S. E. Laux and W. Lee, “Collector signal delay in the presence of velocity overshoot”, IEEE Electron Device Lett., vol. 11, no. 4, pp. 174–176, 1990.

    Article  Google Scholar 

  57. S. E. Laux and M. V. Fischetti, “Monte Carlo study of velocity overshoot in switching a 0.1-micron CMOS inverter”, in IEDM Tech. Dig., 1997, pp. 877–880.

    Google Scholar 

  58. C. Jungemann and B. Meinerzhagen, “Impact of the velocity overshoot on the performance of NMOSFETs with gate lengths from 80 to 250nm”, in Proc. ESSDERC, Leuven (Belgium), 1999, pp. 236–239.

    Google Scholar 

  59. J.D. Bude, “MOSFET modeling into the ballistic regime”, in Proc. SISPAD, 2000, pp. 23–26.

    Google Scholar 

  60. M. Rodder, M. Hanratty, D. Rogers, T. Laaksonen, J. C. Hu, S. Murtaza, C.-P. Chao, S. Hantangady, S. Aur, A. Amerasekera, and I.-C. Chen, “A 0.1µm gate length CMOS technology with 30A gate dielectric for 1.0V-1.5V applications”, in IEDM Tech. Dig., 1997, pp. 223–226.

    Google Scholar 

  61. L. T. Su, H. Hu, J. B. Jacobs, M. J. Sherony, A. Wei, and D. A. Antoniadis, “Tradeoffs of current drive vs. short-channel effect in deep-submicrometer bulk and SOI MOSFETs”, in IEDM Tech. Dig., 1994, pp. 649–652.

    Google Scholar 

  62. F. Assad, Z. Ren, D. Vasileska, S. Datta, and M. Lundstrom, “On the performance limits for Si MOSFET’s: A theoretical study”, IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 232–240, 2000.

    Article  Google Scholar 

  63. R. Thoma, A. Emunds, B. Meinerzhagen, H. J. Peifer, and W. L. Engl, “Hydrodynamic equations for semiconductors with nonparabolic bandstructures”, IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1343–1352, 1991.

    Article  Google Scholar 

  64. S. A. Mujtaba, R. W. Dutton, and D. L. Scharfetter, “Semi-empirical local NMOS mobility model for 2-D device simulation incorporating screened minority impurity scattering”, in NUPAD Tech. Dig., Honolulu, 1994, vol. 5, pp. 3–6.

    Google Scholar 

  65. W. Hänsch and M. Miura-Mattausch, “A new current relation for hot electron transport”, in Proc. NASECODE IV, 1985, pp. 311–314.

    Google Scholar 

  66. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: Part I-Effects of substrate impurity concentration”, IEEE Trans. Electron Devices, vol. 41, pp. 2357–2362, 1994.

    Article  Google Scholar 

  67. J.A. Cooper and D. F.Nelson, “High-field drift velocity of electrons at the SiSiO2 interface as determined by a time-of-flight technique”, J. Appl. Phys., vol. 54, pp. 1445–1456, 1983.

    Article  Google Scholar 

  68. D. F. Nelson and J. A. Cooper, “High Field Surface Drift Velocity in Silicon”,in The Physics of Submicron Structures. Plenum Press, New York, 1984.

    Google Scholar 

  69. H. K. Gummel, “On the definition of the cutoff frequency fr”, Proc. IEEE, p.2159, 1969.

    Google Scholar 

  70. S. M. Sze, Physics of Semiconductors Devices, Wiley, New York, 1981.

    Google Scholar 

  71. C. Jungemann, “Methoden zur Simulation hochenergetischer Elektronen in Ul-trakurzkanaltransistoren”, Doctor thesis, RWTH Aachen, Aachen, 1995, Shaker.

    Google Scholar 

  72. T. Vogelsang and R. K. Hofmann, “Electron transport in strained Si layers onSil_sGex substrates”, Appl. Phys. Lett., vol. 63, pp. 186–188, 1993.

    Article  Google Scholar 

  73. F. M. Bufler, P. Graf, S. Keith, and B. Meinerzhagen, “Full band Monte Carloinvestigation of electron transport in strained Si grown on Sii_xGe, substrates”,Appl. Phys. Lett., vol. 70, pp. 2144–2146, 1997.

    Article  Google Scholar 

  74. S. Keith, F. M. Buffer, and B. Meinerzhagen, “Full band Monte-Carlo device simulation of an 0.1 pm n-channel MOSFET in strained silicon material”, in Proc. ESSDERC, Stuttgart, Sept. 1997, pp. 200–203.

    Google Scholar 

  75. M. V. Fischetti, F. Gamiz, and W. Hänsch, “On the enhanced electron mobilityin strained-silicon inversion layers”, J. Appl. Phys., vol. 92, pp. 7320–7324, 2002.

    Article  Google Scholar 

  76. Y. Taur, C. H. Wann, and D. J. Frank, “25 nm CMOS design considerations”,IEDM Tech. Dig., pp. 789–792, 1998.

    Google Scholar 

  77. S. Keith, C. Jungemann, and B. Meinerzhagen, “Full band Monte Carlo device simulation of 0.1–0.5µm strained-Si P-MOSFETs”, in Proc. ESSDERC, Bordeaux, 1998, pp. 1–0.

    Google Scholar 

  78. F. M. Bufler, P. Graf, and B. Meinerzhagen, “High-field hole transport in strained Si and SiGe by Monte Carlo simulation: Full band versus analytic band models”, VLSI Design, vol. 8, pp. 41–45, 1998.

    Article  Google Scholar 

  79. F. M. Buffer, “Full-band Monte Carlo simulation of electrons and holes in strained Si and SiGe”, Dissertation, Universität Bremen, Bremen, 1997, (H. Utz Verlag Wissenschaft, München: 1998).

    Google Scholar 

  80. C. Jungemann, S. Keith, and B. Meinerzhagen, “Full-band Monte Carlo simulation of a 0.12µm-Si-PMOSFET with and without a strained SiGe-channel”, in IEDM Tech. Dig., San Francisco (USA), 1998, pp. 897–900.

    Google Scholar 

  81. H. Fischer, “Transporteigenschaften von Sii-xGe-p-MOSFETs”, Dissertation, Universität der Bundeswehr München, München, 1999.

    Google Scholar 

  82. T. H. Ning, P. W. Cook, R. H. Dennard, C. M. Osburn, S. E. Schuster, and H.-N. Yu, “1 p,m MOSFET VLSI technology: Part iv Hot-electron design constrains”, IEEE Trans. Electron Devices, vol. 26, no. 4, pp. 346–353, 1979.

    Article  Google Scholar 

  83. E. Takeda and N. Suzuki, “An empirical model for device degradation due to hot-carrier injection”, IEEE Electron Device Lett., vol. 4, no. 4, pp. 111–113, 1983.

    Article  Google Scholar 

  84. Shaker C. Hu, S.C. Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. W. Terrill, “Hot-electron induced MOSFET degradation - model, monitor, and improvement”, IEEE Trans. Electron Devices, vol. 32, no. 2, pp. 375–385, 1985.

    Article  Google Scholar 

  85. J. M. Higman, K. Hess, C. G. Hwang, and R. W. Dutton, “Coupled Monte Carlo-drift diffusion analysis of hot-electron effects in MOSFET’s”, IEEE Trans.Electron Devices, vol. 36, no. 5, pp. 930–937, 1989.

    Article  Google Scholar 

  86. M. V. Fischetti, S. E. Laux, and E. Crabbe, “Understanding hot-electron transport in silicon devices: Is there a shortcut?”, J. Appl. Phys., vol. 78, pp. 1058–1087, 1995.

    Google Scholar 

  87. C. Jungemann, S. Yamaguchi, and H. Goto, “On the accuracy and efficiency of substrate current calculations for sub-µm n-MOSFET’s”, IEEE Electron Device Lett., vol. 17, no. 10, pp. 464–466, 1996.

    Article  Google Scholar 

  88. I. Izawa, M. Katsube, Y. Yohoyama, K. Hashimoto, E. Kawamura, A. Shimizi, H. Takagi, F. Inoue, H. Shimizu, K. Furumochi, H. Goto, S. Kawamura, K. Watanabe, and K. Aoyama, “A novel embedded SRAM technology with 10 µm2 full-CMOS cells for 0.25 pm logic devices”, in IEDM Tech. Dig., 1994, pp. 941–943.

    Google Scholar 

  89. N. Khalil, J. Faricelli, D. Bell, and S. Selberherr, “The extraction of two-dimensional MOS transistor doping via inverse modeling”, IEEE Electron Device Lett., vol. 16, no. 1, pp. 17–19, 1995.

    Article  Google Scholar 

  90. C. Jungemann, S. Yamaguchi, and H. Goto, “Accurate prediction of hot-carrier effects for a deep sub-µm CMOS technology based on inverse modeling and full band Monte Carlo device simulation”, in Proc. SISPAD, 1996, vol. 1, pp. 59–60.

    Google Scholar 

  91. H. Goto, S. Yamaguchi, and C. Jungemann, “Inverse modeling as a basis for predictive device simulation of deep submicron metal-oxide-semiconductor field effect transistors”, Jpn. J. Appl. Phys., vol. 37, pp. 5437–5443, 1998.

    Article  Google Scholar 

  92. A. Pacelli and U. Ravaioli, “Analysis of variance-reduction schemes for ensemble Monte-Carlo simulation of semiconductor devices”, Solid-State Electron., vol. 41, pp. 599–605, 1997.

    Article  Google Scholar 

  93. J. D. Bude and M. Mastrapasqua, “Impact ionization and distribution functions in sub-micron nMOSFET technologies”, IEEE Electron Device Lett., vol. 16, no. 10, pp. 439–441, 1995.

    Article  Google Scholar 

  94. C. Jungemann, S. Yamaguchi, and H. Goto, “Efficient full band Monte Carlo hot carrier simulation for silicon devices”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 821–824.

    Google Scholar 

  95. C. Jungemann, S. Yamaguchi, and H. Goto, “Is there experimental evidence for a difference between surface and bulk impact ionization in silicon”, in IEDM Tech. Dig., 1996, pp. 383–386.

    Google Scholar 

  96. C. Jungemann, B. Meinerzhagen, S. Decker, S. Keith, S. Yamaguchi, and H. Goto, “Is physically sound and predictive modeling of NMOS substrate currents possible?”, Solid-State Electron., vol. 42, pp. 647–655, 1998.

    Article  Google Scholar 

  97. W. Jacobs, “The SATURN Technology CAD system”, in Technology CAD Systems, F. Fasching, S. Halama, and S. Selberherr, Eds. Springer, Wien, New York, 1993.

    Google Scholar 

  98. A. Schütz, S. Selberherr, and H. W. Pötzl, “A two-dimensional model of the avalanche effect in MOS transistors”, Solid-State Electron., vol. 25, pp. 177–183, 1982.

    Article  Google Scholar 

  99. J. W. Slotboom, G. Streutker, G. J. T. Davids, and P. B. Hartog, “Surface impact ionization in Silicon devices”, in IEDM, 1987, pp. 494–497.

    Google Scholar 

  100. M. Fukuma and W. W. Lui, “MOSFET substrate current model including energy transport”, IEEE Electron Device Lett., vol. 8, no. 5, pp. 214–216, 1987.

    Article  Google Scholar 

  101. J. W. Slotboom, G. Streutker, M. J. v. Dort, P. H. Woerlee, A. Pruijmboom, andD. J. Gravesteijn, “Non-local impact ionization in silicon devices”, in IEDM, 1991, pp. 127–130.

    Google Scholar 

  102. M. Takeda, J. Frey, Z. Peng, and N. Goldsman, “Simulation of substrate current characteristics of submicron MOSFETs”, Electronics Letters, vol. 27, pp. 144–146, 1991.

    Article  Google Scholar 

  103. V. M. Agostinelli, Jr. T. J. Bordelon, X. Wang, K. Hasnat, C.-F. Yeap, D. B. Lemersal, Jr., A. F. Tasch, and C. M. Mazier, “Two-dimensional energy-dependent models for the simulation of substrate current in submicron MOSFETs”, IEEE Trans. Electron Devices, vol. 41, no. 10, pp. 1784–1795, 1994.

    Article  Google Scholar 

  104. T. Thurgate and N. Chan, “An impact ionization model for two-dimensional device simulation”, IEEE Trans. Electron Devices, vol. 32, no. 2, pp. 400–404, 1985.

    Article  Google Scholar 

  105. R. Kuhnert, C. Werner, and A. Schütz, “A novel impact-ionization model for 1-µm-MOSFET simulation”, IEEE Trans. Electron Devices, vol. 32, no. 6, pp. 1057–1063, 1985.

    Article  Google Scholar 

  106. B. Meinerzhagen, “Consistent gate and substrate current modeling based on energy transport and the Lucky Electron concept”, in IEDM Tech. Dig., 1988, pp. 504–507.

    Google Scholar 

  107. C. Jungemann, R. Thoma, and W. L. Engl, “A soft threshold lucky electron model for efficient and accurate numerical device simulation”, Solid-State Electron., vol. 39, pp. 1079–1086, 1996.

    Article  Google Scholar 

  108. A. G. Chynoweth, “Uniform silicon p - n junctions. II. Ionization rates for electrons”, J. Appl. Phys., vol. 31, pp. 1161–1165, 1960.

    Article  Google Scholar 

  109. R. van Overstraeten and H. de Man, “Measurement of the ionization rates indiffused silicon p-n junctions”, SolidState Electron., vol. 13, pp. 583–608, 1970.

    Article  Google Scholar 

  110. W. Maes, K. de Meyer, and R. Van Overstraeten, “Impact ionization in silicon:A review and update”, Solid-State Electron., vol. 33, pp. 705–718, 1990.

    Article  Google Scholar 

  111. W. Shockley, “Problems related to p - n junctions in silicon”, Solid-State Elec-tron., vol. 2, pp. 35–67, 1961.

    Article  Google Scholar 

  112. J. M. Higman, I. C. Kizilyalli, and K. Hess, “Nonlocality of the electron ionization coefficient in n-MOSFET’s: An analytic approach”, IEEE Electron Device Lett., vol. 9, no. 8, pp. 399–401, 1988.

    Article  Google Scholar 

  113. K. Taniguchi, M. Yamaji, K. Sonoda, T. Kunikiyo, and C. Hamaguchi, “Monte Carlo study of impact ionization phenomena in small geometry MOSFET’s”, in IEDM Tech. Dig., 1994, pp. 355–358.

    Google Scholar 

  114. E. Sangiorgi, B. Riccó, and F. Venturi, “MOS2: An efficient Monte Carlo simulator for MOS devices”, IEEE Trans. Computer-Aided Des., vol. 7, no. 2, pp. 259–271, 1988.

    Article  Google Scholar 

  115. F. M. Bufler, A. Schenk, and W. Fichtner, “Efficient Monte Carlo device modeling”, IEEE Trans. Electron Devices, vol. 47, no. 10, pp. 1891–1897, 2000.

    Article  Google Scholar 

  116. N. Sano, “Increasing importance of electronic thermal noise in sub-0.1µm SiMOSFETs”, IEICE Trans. on Electronics, vol. E83-C, no. 8, pp. 1203–1211, 2000.

    Google Scholar 

  117. F. Venturi, R. K. Smith, E. C. Sangiorgi, M. R. Pinto, and B. Riccó, “A general purpose device simulation coupling Poisson and Monte Carlo transport with application to deep submicron MOSFET’s”, IEEE Trans. Computer-Aided Des., vol. 8, no. 4, pp. 360–369, 1989.

    Article  Google Scholar 

  118. C. Jungemann and B. Meinerzhagen, “On the applicability of nonself-consistent Monte Carlo device simulations”, IEEE Trans. Electron Devices, vol. 49, no. 6, pp. 1072–1074, 2002.

    Article  Google Scholar 

  119. B. Neinhüs, S. Decker, P. Graf, F. M. Bufler, and B. Meinerzhagen, “Consistent hydrodynamic and Monte-Carlo simulation of SiGe HBTs based on table models for the relaxation times”, VLSI Design, vol. 8, pp. 387–391, 1998.

    Article  Google Scholar 

  120. H.-J. Peifer, “Monte-Carlo Simulation des Hochenergietransports von Elektronen in submikron MOS-Strukturen”, Doctor thesis, RWTH Aachen, Aachen, 1992, Augustinus Buchhandlung.

    Google Scholar 

  121. B. Meinerzhagen, “Two-dimensional numerical substrate current modeling for n-channel MOS transistors”, in Proc. NASECODE V, 1987, pp. 42–59.

    Google Scholar 

  122. J. D. Bude, M. R. Pinto, and S. K. Smith, “Monte Carlo simulation of the CHISEL flash memory cell”, IEEE Trans. Electron Devices, vol. 47, no. 11, pp. 1873–1881, 2000.

    Article  Google Scholar 

  123. N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, “Influence of thermal noise on drain current in very small Si-MOSFETs”, Jpn. J. Appl. Phys., vol. 39, pp. 1974–1978, 2000.

    Article  Google Scholar 

  124. H. K. Gummel, “A self-consistent iterative scheme for one-dimensional steady state transistor calculations”, IEEE Trans. Electron Devices, pp. 455–465, October 1964.

    Google Scholar 

  125. Y.-J. Park, D. H. Navon, and T.-W. Tang, “Monte Carlo simulation of bipolar transistors”, IEEE Trans. Electron Devices, vol. 31, no. 12, pp. 1724–1730, 1984.

    Article  Google Scholar 

  126. C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Comparative study of electron transit times evaluated by DD, HD, and MC device simulation for a SiGe HBT”, IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2216–2220, 2001.

    Article  Google Scholar 

  127. P. W. Rambo and J. Denavit, “Time stability of Monte Carlo device simulation”, IEEE Trans. Computer-Aided Des., vol. 12, pp. 1734–1741, 1993.

    Article  Google Scholar 

  128. I. Bork, C. Jungemann, B. Meinerzhagen, and W. L. Engl, “Influence of heat flux on the accuracy of hydrodynamic models for ultrashort Si MOSFETs”, in NUPAD Tech. Dig., Honolulu, 1994, vol. 5.

    Google Scholar 

  129. C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Spatial analysis of the electron transit time in a silicon/germanium heterojunction bipolar transistor by drift-diffusion, hydrodynamic, and full-band Monte Carlo device simulation”, in Proc. SISPAD, Seattle (USA), Sept. 2000, pp. 42–45.

    Google Scholar 

  130. J. J. H. van den Biesen, “A simple regional analysis of transient times in bipolar transistors”, Solid-State Electron., vol. 29, pp. 529–534, 1986.

    Article  Google Scholar 

  131. C. Jungemann, B. Neinhüs, S. Decker, and B. Meinerzhagen, “Hierarchical 2-D DD and HD noise simulations of Si and SiGe devices: Part II—Results”, IEEE Trans. Electron Devices, vol. 49, no. 7, pp. 1258–1264, 2002.

    Article  Google Scholar 

  132. D. Knoll, B. Heinemann, H. J. Osten, K. E. Ehwald, B. Tillack, P. Schley, R. Barth, M. Matthes, K. S. Park, Y. Kim, and W. Winkler, “Si/SiGe:C hetero-junction bipolar transistors in an Epi-Free well, single-polysilicon technology”, in IEDM Tech. Dig., 1998, pp. 703–706.

    Google Scholar 

  133. D. L. Scharfetter, “Measured dependence of lifetime upon defect density and temperature in depletion layers of epitaxial silicon diodes”, in Solid-State Dev. Res. Conf., Santa Barbara, USA, 1967.

    Google Scholar 

  134. S. Decker, “Numerische Simulation von Si/SiGe-Hochfrequenztransistoren unterbesonderer Berücksichtigung des elektronischen Rauschens”, Dissertation, Universität Bremen, Aachen, 2002.

    Google Scholar 

  135. F. Bonani and G. Ghione, “Generation-recombination noise modelling in semiconductor devices through population or approximate equivalent current density fluctuations”, Solid-State Electron., vol. 43, pp. 285–295, 1999.

    Article  Google Scholar 

  136. S. P. Voinigescu, M. C. Maliepaard, J. L. Showell, G. E. Babcock, D. Marchesan, M. Schroter, P. Schvan, and D. L. Harame, “A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design”, IEEE Solid-State Circuits, vol. 32, no. 9, pp. 1430–1439, 1997.

    Article  Google Scholar 

  137. F. Herzel and B. Heinemann, “High-frequency noise analysis of Si/SiGe hetero-junction bipolar transistors”, Int. J. Electronics, vol. 81, pp. 37–48, 1996.

    Article  Google Scholar 

  138. K. Aufinger and M. Reisch, “RF noise for bipolar transistors-a critical compar-ison”, in Proc. BCTM, San Francisco, USA, 2001, pp. 110–113.

    Google Scholar 

  139. M. J. Martín-Martínez, S. Pérez, D. Pardo, and T. González, “High injection effects on noise characteristics of Si BJTs and SiGe HBTs”, Microelectronics Reliability, vol. 41, pp. 847–854, 2001.

    Article  Google Scholar 

  140. M. J. Martín, S. Pérez, D. Pardo, and T. González, “Monte Carlo analysis of the noise behavior in Si BJTs and SiGe HBTs at RF frequencies”, J. Appl. Phys., vol. 90, no. 3, pp. 1582–1588, 2001.

    Article  Google Scholar 

  141. M. J. Martín-Martínez, S. Pérez, D. Pardo, and T. González, “Influence of Ge profile on the noise behavior of SiGe HBTs under high injection conditions”, Physica B, vol. 314, pp. 381–385, 2002.

    Article  Google Scholar 

  142. H. Beneking, High Speed Semiconductor Devices, Chapman & Hall, London, 1994.

    Google Scholar 

  143. S. E. Laux and K. Hess, “Revisiting the analytic theory of p-n junction impedance: Improvements guided by computer simulation leading to a new equivalent circuit”, IEEE Trans. Electron Devices, vol. 46, no. 2, pp. 396–412, 1999.

    Article  Google Scholar 

  144. G. Niu, J. D. Cressler, S. Zhang, W. E. Ansley, C. S. Webster, and D. L. Harame, “A unified approach to RF and microwave noise parameter modeling in bipolar transistors”, IEEE Trans. Electron Devices, vol. 48, no. 11, pp. 2568–2574, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Jungemann, C., Meinerzhagen, B. (2003). Results. In: Hierarchical Device Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6086-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6086-2_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7226-1

  • Online ISBN: 978-3-7091-6086-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics