Skip to main content

Stochastic Properties of Monte-Carlo Device Simulations

  • Chapter
Hierarchical Device Simulation

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

The relative stochastic error of a quantity evaluated by stationary MC simulation is proportional to its variance, which can be evaluated with the corresponding autocorrelation function (cf. Sec. 3.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. D. Yoder, K. Gärtner, U. Krumbein, and W. Fichtner, “Optimized terminal current calculation for Monte Carlo device simulation”, IEEE Trans. Computer-Aided Des., vol. 16, pp. 1082–1087, 1997.

    Article  Google Scholar 

  2. C. Jungemann and B. Meinerzhagen, “Analysis of the stochastic error of stationary Monte Carlo device simulations”, IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 985–992, 2001.

    Article  Google Scholar 

  3. L. Varani, L. Reggiani, T. Kuhn, T. González, and D. Pardo, “Microscopic simulation of electronic noise in semiconductor materials and devices”, IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 1916–1925, 1994.

    Article  Google Scholar 

  4. F. M. Bufler, A. Schenk, and W. Fichtner, “Efficient Monte Carlo device model-ing”, IEEE Trans. Electron Devices, vol. 47, no. 10, pp. 1891–1897, 2000.

    Article  Google Scholar 

  5. C. Moglestue, “Monte-Carlo particle modelling of noise in semiconductors”, in International Conference on Noise in Physical Systems and 1/f Fluctuations, 1983, pp. 23–25.

    Google Scholar 

  6. J. M. Higman, K. Hess, C. G. Hwang, and R. W. Dutton, “Coupled Monte Carlo-drift diffusion analysis of hot-electron effects in MOSFET’s”, IEEE Trans. Electron Devices, vol. 36, no. 5, pp. 930–937, 1989.

    Article  Google Scholar 

  7. F. Venturi, R. K. Smith, E. C. Sangiorgi, M. R. Pinto, and B. Riccó, “A general purpose device simulation coupling Poisson and Monte Carlo transport with application to deep submicron MOSFET’s”, IEEE Trans. Computer-Aided Des., vol. 8, no. 4, pp. 360–369, 1989.

    Article  Google Scholar 

  8. C. Jungemann and B. Meinerzhagen, “On the applicability of nonself-consistent Monte Carlo device simulations”, IEEE Trans. Electron Devices, vol. 49, no. 6, pp. 1072–1074, 2002.

    Article  Google Scholar 

  9. M. V. Fischetti and S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects”, Phys. Rev. B, vol. 38, pp. 9721–9745, 1988.

    Article  Google Scholar 

  10. C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Comparative study of electron transit times evaluated by DD, HD, and MC device simulation for a SiGe HBT”, IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2216–2220, 2001.

    Article  Google Scholar 

  11. F. M. Klaassen and J. Prins, “Thermal noise of MOS transistors”, Philips Res. Repts, pp. 505–514, 1967.

    Google Scholar 

  12. A. J. Scholten, L. F. Tiemeijer, R. van Langevelde, R. J. Havens, V. C. Venezia, A. T. A Zegers van Duijnhoven, B. Neinhüs, C. Jungemann, and D. B. M. Klaassen, “Compact modeling of drain and gate current noise for RF CMOS”, IEDM Tech. Dig., pp. 129–132, 2002.

    Google Scholar 

  13. C. Jacoboni, “Generalization of the Monte Carlo method for charge transport to biased simulations”, in Proceedings of the Sixth International Nasecode Conference, 1989, pp. 226–231.

    Google Scholar 

  14. M. G. Gray, T. E. Booth, T. J. T. Kwan, and C. M. Snell, “A multi-comb180 8 Stochastic Properties of Monte-Carlo Device Simulationsvariance reduction scheme for Monte Carlo semiconductor simulators”, IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 918–924, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Jungemann, C., Meinerzhagen, B. (2003). Stochastic Properties of Monte-Carlo Device Simulations. In: Hierarchical Device Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6086-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6086-2_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7226-1

  • Online ISBN: 978-3-7091-6086-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics