Device Simulation

  • Christoph Jungemann
  • Bernd Meinerzhagen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In the case of a device simulation the BTE has to be solved self-consistently with the Poisson equation for the electric field [6.1]. To this end the RS is discretized with a tensor-product grid as described in the first section of this chapter. The material parameters, like the germanium concentration, doping, etc, are defined on this grid together with the boundary conditions. The germanium-dependent band edges are given in the next section. The discrete Poisson equation is presented next and in the fourth section the self-consistent solution of the BTE and Poisson is discussed. The extension to a nonlinear Poisson equation based on the zero-current approximation for one carrier type is given in the following section. Nonself-consistent MC simulations, where the electric field is calculated with a momentum-based method, are introduced in the sixth section. A method for the enhancement of rare events (e.g. impact ionization) is discussed in the next section. In the following two sections methods for the evaluation of terminal currents and inclusion of contact resistances are presented. Finally, the normalization of physical quantities is discussed in the last section of this chapter.


Device Simulation IEEE Electron Device Germanium Content Microscopic Quantity Time Step Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [6.1]
    R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles Institute of Physics Publishing, Bristol, Philadelphia, 1988.CrossRefGoogle Scholar
  2. [6.2]
    J. D. Cressler, “Re-engineering silicon: Si-Ge heterojunction bipolar technology”, IEEE Spectrum vol. 3, pp. 49–55, 1995.CrossRefGoogle Scholar
  3. [6.3]
    A. Schuppen, “SiGe-HBTs for mobile communication”, Solid-State Electron. vol. 43, pp. 1373–1381, 1999.CrossRefGoogle Scholar
  4. [6.4]
    C. K. Maiti and G. A. Armstrong, Applications of Silicon-Germanium Heterostructure Devices Series in Optics and Optoelectronics. Institute of Physics Publishing, Bristol, Philadelphia, 2001.CrossRefGoogle Scholar
  5. [6.5]
    L. Risch, H. Schäfer, B. Lustig, F. Hofmann, U. Scheler, M. Franosch, W. Roesner, T. Aeugle, and H. Fischer, “Channel engineering using RP-CVD epitaxy for high performance CMOS transistors”, in Proc. ESSDERC Bologna, 1996, vol. 26, pp. 321–324.Google Scholar
  6. [6.6]
    P. Bouillon, T. Skotnicki, S. Bodnar, C. Morin, J.-L. Regolini, P. Gouagout, and P. Dollfus, “Experiments with 0.18µm SiGe channel pMOSFETs and p+ polySiGe gate”, in Proc. ESSDERC Bologna, 1996, vol. 26, pp. 473–476.Google Scholar
  7. [6.7]
    T. Takagi, A. Inoue, Y. Hara, Y. Kanzawa, and M. Kubo, “A novel high performance SiGe channel heterostructure dynamic threshold pMOSFET (HDTMOS)”IEEE Electron Device Lett. vol. 22, no. 5, pp. 206–208, 2001.CrossRefGoogle Scholar
  8. [6.8]
    J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “Strained silicon MOSFET technology”, IEDM Tech. Dig. pp. 23–26, 2002.Google Scholar
  9. [6.9]
    K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and analysis of deep sub-micron strained-Si N-MOSFET’s”, IEEE Trans. Electron Devices vol. 47, no. 7, pp. 1406–1415, 2000.CrossRefGoogle Scholar
  10. [6.10]
    C. Jungemann, S. Keith, and B. Meinerzhagen, “Full-band Monte Carlo device simulation of a Si/SiGe-HBT with a realistic Ge profile”IEICE Trans. on Electronics vol. E83-C, no. 8, pp. 1228–1234, 2000.Google Scholar
  11. [6.11]
    H.-J. Peifer, “Monte-Carlo Simulation des Hochenergietransports von Elektronen in submikron MOS-Strukturen”, Doctor thesis, RWTH Aachen, Aachen, 1992, Augustinus Buchhandlung.Google Scholar
  12. [6.12]
    F. Schäffier, “High-mobility Si and Ge structures”Semicond. Sci. Technol. vol. 12, pp. 1515–1549, 1997.CrossRefGoogle Scholar
  13. [6.13]
    D.Nuernbergk,“Simulation des Transportverhaltens in Si/Sir-Gex/Si-Heterobipolartransistoren”,Dissertation, Technische Universität Ilmenau, Ilmenau,1999,(H. Utz Verlag Wissenschaft,München: 1999).Google Scholar
  14. [6.14]
    J. W. Slotboom and H. C. de Graaf, “Measurements of bandgap narrowing in Si bipolar transistors”, Solid-State Electron. vol. 19, pp. 857–862, 1976.CrossRefGoogle Scholar
  15. [6.15]
    D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaf, “Unified apparent bandgap narrowing in n-and p-type silicon”Solid-State Electron vol. 35, pp. 125–129, 1992.CrossRefGoogle Scholar
  16. [6.16]
    R. J. E. Hueting, J. W. Slotboom, A. Pruijmboom, W. B. de Boer, C E Timmering, and N. E. B. Cowern, “On the optimization of SiGe-base bipolar transistors”IEEE Trans. Electron Devices vol. 43, no. 9, pp. 1518–1524, 1996.CrossRefGoogle Scholar
  17. [6.17]
    M. A. Green, “Intrinsic concentration, effective densities of states, and effective mass in silicon”J. Appl. Phys. vol. 67, pp. 2944–2954, 1990.CrossRefGoogle Scholar
  18. [6.18]
    H. K. Dirks, “Kapazitätskoeffizienten nichtlinearer dissipativer Systeme”, Habilitationsschrift, RWTH Aachen, 1988.Google Scholar
  19. [6.19]
    J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 2nd edition, 1975.MATHGoogle Scholar
  20. [6.20]
    S. M. Sze, Physics of Semiconductors Devices, Wiley, New York, 1981.Google Scholar
  21. [6.21]
    R. S. Varga, Matrix Iterative Analysis, Series in Automatic Computation. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.Google Scholar
  22. [6.22]
    M. V. Fischetti and S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects”Phys. Rev. B vol. 38, pp. 9721–9745, 1988.CrossRefGoogle Scholar
  23. [6.23]
    M. Saraniti, A. Rein, G. Zandler, P. Vogl, and P. Lugli, “An efficient multigrid poisson solver for device simulations”IEEE Trans. Computer-Aided Des. vol. 15, pp. 141–150, 1996.CrossRefGoogle Scholar
  24. [6.24]
    J. Stoer and R. Bulirsch, Einführung in die Numerische Mathematik, vol. 2, Springer, Berlin Heidelberg New York, 2nd edition, 1978.MATHGoogle Scholar
  25. [6.25]
    P. W. Rambo and J. Denavit, “Time stability of Monte Carlo device simulation”IEEE Trans. Computer-Aided Des. vol. 12, pp. 1734–1741, 1993.CrossRefGoogle Scholar
  26. [6.26]
    A. Ghetti, X. Wang, F. Venturi, and F. A. Leon, “Stability issues in self-consistent Monte Carlo simulations”, in Proc. SISDEP, Erlangen, 1995, vol. 6, pp. 388–391.Google Scholar
  27. [6.27]
    P.W. Rambo and J. Denavit, “Time-step stability for self-consistent Monte Carlo device simulations”, inProc. IWCE, Portland, Oregon (USA), May 1994, pp. 33–36.Google Scholar
  28. [6.28]
    F. Liebig, A. Abou Elnour, and K. Schünemann, “An implicit coupling scheme for the use of long time steps in stable self-consistent particle simulation of semiconductor devices with high doping levels”, in Proc. SISPAD Tokyo, 1996, pp. 45–46.Google Scholar
  29. [6.29]
    A. Papoulis, Probability,Random Variables and Stochastic Processes Mc GrawHill, 3rd edition, 1991.Google Scholar
  30. [6.30]
    S. E. Laux, “On particle-mesh coupling in Monte Carlo semiconductor device simulation”IEEE Trans. Computer-Aided Des. vol. 15, pp. 1266–1277, 1996.CrossRefGoogle Scholar
  31. [6.31]
    S. Selberherr, Analysis and Simulation of Semiconductor Devices Springer, Wien,1984CrossRefGoogle Scholar
  32. [6.32]
    J. Stoer, Einführung in die Numerische Mathematik, vol. 1, Springer, Berlin Heidelberg New York, 2nd edition, 1978.MATHGoogle Scholar
  33. [6.33]
    E. Sangiorgi, B. Riccó, and F. Venturi, “MOS2: An efficient Monte Carlo simulator for MOS devices”IEEE Trans. Computer-Aided Des. vol. 7, no. 2, pp. 259–271, 1988.CrossRefGoogle Scholar
  34. [6.34]
    J. M. Higman, K. Hess, C. G. Hwang, and R. W. Dutton, “Coupled Monte Carlo-drift diffusion analysis of hot-electron effects in MOSFET’s”IEEE Trans. Electron Devices vol. 36, no. 5, pp. 930–937, 1989.CrossRefGoogle Scholar
  35. [6.35]
    D. Y. Cheng, C. G. Hwang, and R. W. Dutton, “PISCES-MC: A multiwindow and multimethod 2-D device simulator”IEEE Trans. Computer-Aided Des. vol. 7, pp. 1017–1026, 1988.CrossRefGoogle Scholar
  36. [6.36]
    J. D. Bude and M. Mastrapasqua, “Impact ionization and distribution functions in sub-micron nMOSFET technologies” IEEE Electron Device Lett. vol. 16, no. 10, pp. 439–441, 1995.CrossRefGoogle Scholar
  37. [6.37]
    C. Jungemann, S. Yamaguchi, and H. Goto, “On the accuracy and efficiency of substrate current calculations for sub-pm n-MOSFET’s”IEEE Electron Device Lett. vol. 17, no. 10, pp. 464–466, 1996.CrossRefGoogle Scholar
  38. [6.38]
    J. D. Bude,“Monte Carlo simulation of impact ionization feedback in sub-micron MOSFET technologies”, in Este. Abst. of the 1995 kite. Conf. on Solid State Devices and Materials, Osaka1995.Google Scholar
  39. [6.39]
    J. Bude, T. Iizuka, and Y. Kamakura, “Determination of threshold energy for hot electron interface state generation”IEDM Tech. Dig. pp. 865–868, 1996.Google Scholar
  40. [6.40]
    C. Jungemann, S. Yamaguchi, and H. Goto, “Accurate prediction of hot-carrier effects for a deep sub-pm CMOS technology based on inverse modeling and full band Monte Carlo device simulation”, in Proc. SISPAD 1996, vol. 1, pp. 59–60.Google Scholar
  41. [6.41]
    C. Jungemann, S. Yamaguchi, and H. Goto, “Investigation of the influence of impact ionization feedback on the spatial distribution of hot carriers in an NMOSFET”,in Proc. ESSDERC, Stuttgart, 1997, vol. 27, pp. 336–339.Google Scholar
  42. [6.42]
    R. Y. Rubinstein, Simulation and the Monte Carlo method Wiley series in probability and mathematical statistics. John Wiley & Sons, New York, 1981.Google Scholar
  43. [6.43]
    H.-J. Schlebusch, “Importance Sampling Techniken zur effizienten Simulation von Kommunikationssystemen”, Doctor thesis, RWTH Aachen, 1991.Google Scholar
  44. [6.44]
    C. Jungemann, S. Decker, R. Thoma, W.-L. Engl, and H. Goto “Phase space multiple refresh: A general purpose statistical enhancement technique for Monte Carlo device simulation”IEEE J. Tech. Comp. Aided Designno 2, 1997.Google Scholar
  45. [6.45]
    M. G. Gray, T. E. Booth, T. J. T. Kwan, and C. M. Snell, “A multi-comb variance reduction scheme for Monte Carlo semiconductor simulators”, IEEETrans. Electron Devices vol. 45, no. 4, pp. 918–924, 1998.CrossRefGoogle Scholar
  46. [6.46]
    A. M. Kriman and R. P. Joshi, “Scaled ensemble Monte Carlo studies of impact ionization”, in Proc. IWCE Portland, Oregon, May 1994, pp. 57–60.Google Scholar
  47. [6.47]
    A. Phillips Jr. and P. J. Price, “Monte Carlo calculations on hot electron energy tails”, Appl. Phys. Lett vol. 30, pp. 528–530, 1977.CrossRefGoogle Scholar
  48. [6.48]
    S. E. Laux, M. V. Fischetti, and D. J. Frank, “Monte Carlo analysis of semiconductor devices: The DAMOCLES program ”IBM J. Res. Develop. vol. 34, pp. 466–494, 1990.CrossRefGoogle Scholar
  49. [6.49]
    F. Venturi, R. K. Smith, E. C. Sangiorgi, M. R. Pinto, and B. RiccÒ, “A general purpose device simulation coupling Poisson and Monte Carlo transport with application to deep submicron MOSFET’s” IEEE Trans. Computer-Aided Des. vol. 8, no. 4, pp. 360–369, 1989.CrossRefGoogle Scholar
  50. [6.50]
    R. Thoma, H. J. Peifer, W. L. Engl, W. Quade, R. Brunetti, and C. Jacoboni, “An improved impact-ionization model for high-energy electron transport in Si with Monte Carlo simulation”J. Appl. Phys. vol. 69, pp. 2300–2311, 1991.CrossRefGoogle Scholar
  51. [6.51]
    A. Pacelli and U. Ravaioli, “Analysis of variance-reduction schemes for ensemble Monte-Carlo simulation of semiconductor devices”Solid-State Electron. vol. 41, pp. 599–605, 1997.CrossRefGoogle Scholar
  52. [6.52]
    P. Graf, S. Keith, and B. Meinerzhagen, “Evaluation of solenoidal and statistically enhanced total current densities”Proc. SISPADCambridge, MA (USA), 1997.Google Scholar
  53. [6.53]
    P. D. Yoder, K. Gärtner, and W. Fichtner, “A generalized Ramo-Shockley theorem for classical to quantum transport at arbitrary frequencies”J. Appl. Phys. vol. 79, pp. 1951–1954, 1996.CrossRefGoogle Scholar
  54. [6.54]
    H. Kim, H. S. Min, T. W. Tang, and Y. J. Park, “An extended proof of the Ramo-Shockley theorem” Solid-State Electron. vol. 34, pp. 1251–1253, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Christoph Jungemann
    • 1
  • Bernd Meinerzhagen
    • 1
  1. 1.Institut für Theoretische Elektrotechnik und MikroelektronikUniversität BremenBremenGermany

Personalised recommendations