Full-Band Structure

  • Christoph Jungemann
  • Bernd Meinerzhagen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


The complicated dependence of the energy on the wave vector makes it impossible to capture all details of the band structure by analytical approximations and the full details of the band structure (full-band) are included in the MC model based on a numerical representation of the band structure [5.1]. The basic properties and symmetries of the band structure of RSi are discussed in the first section of this chapter. The more general case of strained SiGe follows in the next section. The grid and the interpolation method for the energy in the KS are developed in the third section. Based on this grid efficient methods for the calculation of the density of states are discussed in the fourth section and a formulation of the mass tensor consistent with an unstructured tetrahedral grid is given in the fifth section. Methods for the motion of particles in the KS are presented in the sixth section and CPU efficient methods for the selection of the final state are given in the seventh section.


Band Structure Band Energy Grid Node Final Energy Reciprocal Lattice Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [5.1]
    K. Hess, Ed., Monte Carlo Device Simulation: Full Band and Beyond, Kluwer, Boston, 1991.MATHGoogle Scholar
  2. [5.2]
    S. M. Sze, Physics of Semiconductors Devices, Wiley, New York, 1981.Google Scholar
  3. [5.3]
    O. Madelung, Introduction to Solid State Theory, Springer, Berlin, 1978.CrossRefGoogle Scholar
  4. [5.4]
    E. Klingbeil, Tensorrechnung für Ingenieure, vol. 197 of Hochschultaschenbücher, Bibliographisches Institut, Mannheim, 1966.Google Scholar
  5. [5.5]
    M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1_xGex alloys on Si1_yGey substrates”, Phys. Rev. B, vol. 48, pp. 14276–14287, 1993.CrossRefGoogle Scholar
  6. [5.6]
    M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1_xGex alloys on Sil_yGey substrates”, Phys. Rev. B, vol. 50, pp. 8138, 1994, Erratum.CrossRefGoogle Scholar
  7. [5.7]
    M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer, New York, 2nd edition, 1989.CrossRefGoogle Scholar
  8. [5.8]
    G. Lehmann and M. Taut, “On the numerical calculation of the density of states and related properties”, Phys. Status Solidi B, vol. 54, pp. 469–477, 1972.CrossRefGoogle Scholar
  9. [5.9]
    J. Y. Tang, H. Shichijo, K. Hess, and G. J. Iafrate, “Band-structure dependent impact ionization in silicon and gallium arsenide”, Journal de Physique, vol. 42, pp. 63–69, 1981.CrossRefGoogle Scholar
  10. [5.10]
    M. V. Fischetti and S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band—structure and space—charge effects”, Phys. Rev. B, vol. 38, pp. 9721–9745, 1988.CrossRefGoogle Scholar
  11. [5.11]
    G. Wiesenekker and E. J. Baerends, “Quadratic integration over the three-dimensional Brillouin zone”, J. Phys.: Condens. Matter, vol. 3, pp. 6721–6742, 1991.CrossRefGoogle Scholar
  12. [5.12]
    R. K. Smith and J. Bude, “Highly efficient full band Monte Carlo simulations”, in Proceedings of the International Workshop on Computational Electronics, Leeds, Aug. 1993, pp. 224–230.Google Scholar
  13. [5.13]
    J. Bude and R. K. Smith, “Phase-space simplex Monte Carlo for semiconductor transport”, Semicond. Sci. Technol., vol. 9, pp. 840–843, 1994.CrossRefGoogle Scholar
  14. [5.14]
    T. Kunikiyo, M. Takenaka, Y. Kamakura, M. Yamaji, H. Mizuno, M. Morifuji, K. Taniguchi, and C. Hamaguchi, “A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact—ionization model”, J. Appl. Phys., vol. 75, pp. 297–312, 1994.CrossRefGoogle Scholar
  15. [5.15]
    E. X. Wang, M. D. Giles, S. Yu, F. A. Leon, A. Hiroki, and S. Odanaka, “Recursive M—tree method for 3—D adaptive tetrahedral mesh refinement and its application to Brillouin zone discretization”, in Proc. SISPAD, Tokyo, Sept. 1996, pp. 67–68.Google Scholar
  16. [5.16]
    M. Yamaji, K. Taniguchi, and C. Hamaguchi, “Multi-band Monte Carlo method using anisotropic-analytical multi-band model”, in Proc. SISPAD, Tokyo, Sept. 1996, pp. 63–64.Google Scholar
  17. [5.17]
    C. Jungemann, M. Bartels, S. Keith, and B. Meinerzhagen, “Efficient methods for Hall factor and transport coefficient evaluation for electrons and holes in Si and SiGe based on a full-band structure”, in Proc. IWCE, Osaka (Japan), 1998, pp. 104–107.Google Scholar
  18. [5.18]
    B. Fischer and K. R. Hofmann, “Discretization of the Brillouin zone by an Octree/Delaunay method with application to full-band Monte Carlo transport simulation”, in Proc. SISPAD, Leuven (Belgium), 1998, pp. 181–184.Google Scholar
  19. [5.19]
    C. Jungemann, S. Keith, M. Bartels, and B. Meinerzhagen, “Efficient full-band Monte Carlo simulation of silicon devices”, IEICE Trans. on Electronics, vol. E82-C, no. 6, pp. 870–879, 1999.Google Scholar
  20. [5.20]
    B. Fischer, “A full-band Monte Carlo charge transport model for nanoscale silicon devices including strain”, Doctor thesis, University Hannover, Hannover, 1999.Google Scholar
  21. [5.21]
    C. Jungemann, S. Keith, and B. Meinerzhagen, “Full-band Monte Carlo device simulation of a Si/SiGe-HBT with a realistic Ge profile”, IEICE Trans. on Elec¬tronics, vol. E83-C, no. 8, pp. 1228–1234, 2000.Google Scholar
  22. [5.22]
    G. Gilat and L. J. Raubenheimer, “Accurate numerical method for calculation frequency-distribution functions in solids”, Phys. Rev., vol. 144, pp. 390–395, 1966.CrossRefGoogle Scholar
  23. [5.23]
    I. N. Bronstein and K. A. Semendjajew, Taschenbuch der Mathematik, B. G. Teubner, Stuttgart, 1991.Google Scholar
  24. [5.24]
    C. Jungemann, S. Keith, and B. Meinerzhagen, “Full-band Monte Carlo simulation of a 0.12µm-Si-PMOSFET with and without a strained SiGe-channel”, in IEDM Tech. Dig., San Francisco (USA), 1998, pp. 897–900.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Christoph Jungemann
    • 1
  • Bernd Meinerzhagen
    • 1
  1. 1.Institut für Theoretische Elektrotechnik und MikroelektronikUniversität BremenBremenGermany

Personalised recommendations