Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 312 Accesses

Abstract

The complicated dependence of the energy on the wave vector makes it impossible to capture all details of the band structure by analytical approximations and the full details of the band structure (full-band) are included in the MC model based on a numerical representation of the band structure [5.1]. The basic properties and symmetries of the band structure of RSi are discussed in the first section of this chapter. The more general case of strained SiGe follows in the next section. The grid and the interpolation method for the energy in the KS are developed in the third section. Based on this grid efficient methods for the calculation of the density of states are discussed in the fourth section and a formulation of the mass tensor consistent with an unstructured tetrahedral grid is given in the fifth section. Methods for the motion of particles in the KS are presented in the sixth section and CPU efficient methods for the selection of the final state are given in the seventh section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Hess, Ed., Monte Carlo Device Simulation: Full Band and Beyond, Kluwer, Boston, 1991.

    MATH  Google Scholar 

  2. S. M. Sze, Physics of Semiconductors Devices, Wiley, New York, 1981.

    Google Scholar 

  3. O. Madelung, Introduction to Solid State Theory, Springer, Berlin, 1978.

    Book  Google Scholar 

  4. E. Klingbeil, Tensorrechnung für Ingenieure, vol. 197 of Hochschultaschenbücher, Bibliographisches Institut, Mannheim, 1966.

    Google Scholar 

  5. M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1_xGex alloys on Si1_yGey substrates”, Phys. Rev. B, vol. 48, pp. 14276–14287, 1993.

    Article  Google Scholar 

  6. M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1_xGex alloys on Sil_yGey substrates”, Phys. Rev. B, vol. 50, pp. 8138, 1994, Erratum.

    Article  Google Scholar 

  7. M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer, New York, 2nd edition, 1989.

    Book  Google Scholar 

  8. G. Lehmann and M. Taut, “On the numerical calculation of the density of states and related properties”, Phys. Status Solidi B, vol. 54, pp. 469–477, 1972.

    Article  Google Scholar 

  9. J. Y. Tang, H. Shichijo, K. Hess, and G. J. Iafrate, “Band-structure dependent impact ionization in silicon and gallium arsenide”, Journal de Physique, vol. 42, pp. 63–69, 1981.

    Article  Google Scholar 

  10. M. V. Fischetti and S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band—structure and space—charge effects”, Phys. Rev. B, vol. 38, pp. 9721–9745, 1988.

    Article  Google Scholar 

  11. G. Wiesenekker and E. J. Baerends, “Quadratic integration over the three-dimensional Brillouin zone”, J. Phys.: Condens. Matter, vol. 3, pp. 6721–6742, 1991.

    Article  Google Scholar 

  12. R. K. Smith and J. Bude, “Highly efficient full band Monte Carlo simulations”, in Proceedings of the International Workshop on Computational Electronics, Leeds, Aug. 1993, pp. 224–230.

    Google Scholar 

  13. J. Bude and R. K. Smith, “Phase-space simplex Monte Carlo for semiconductor transport”, Semicond. Sci. Technol., vol. 9, pp. 840–843, 1994.

    Article  Google Scholar 

  14. T. Kunikiyo, M. Takenaka, Y. Kamakura, M. Yamaji, H. Mizuno, M. Morifuji, K. Taniguchi, and C. Hamaguchi, “A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact—ionization model”, J. Appl. Phys., vol. 75, pp. 297–312, 1994.

    Article  Google Scholar 

  15. E. X. Wang, M. D. Giles, S. Yu, F. A. Leon, A. Hiroki, and S. Odanaka, “Recursive M—tree method for 3—D adaptive tetrahedral mesh refinement and its application to Brillouin zone discretization”, in Proc. SISPAD, Tokyo, Sept. 1996, pp. 67–68.

    Google Scholar 

  16. M. Yamaji, K. Taniguchi, and C. Hamaguchi, “Multi-band Monte Carlo method using anisotropic-analytical multi-band model”, in Proc. SISPAD, Tokyo, Sept. 1996, pp. 63–64.

    Google Scholar 

  17. C. Jungemann, M. Bartels, S. Keith, and B. Meinerzhagen, “Efficient methods for Hall factor and transport coefficient evaluation for electrons and holes in Si and SiGe based on a full-band structure”, in Proc. IWCE, Osaka (Japan), 1998, pp. 104–107.

    Google Scholar 

  18. B. Fischer and K. R. Hofmann, “Discretization of the Brillouin zone by an Octree/Delaunay method with application to full-band Monte Carlo transport simulation”, in Proc. SISPAD, Leuven (Belgium), 1998, pp. 181–184.

    Google Scholar 

  19. C. Jungemann, S. Keith, M. Bartels, and B. Meinerzhagen, “Efficient full-band Monte Carlo simulation of silicon devices”, IEICE Trans. on Electronics, vol. E82-C, no. 6, pp. 870–879, 1999.

    Google Scholar 

  20. B. Fischer, “A full-band Monte Carlo charge transport model for nanoscale silicon devices including strain”, Doctor thesis, University Hannover, Hannover, 1999.

    Google Scholar 

  21. C. Jungemann, S. Keith, and B. Meinerzhagen, “Full-band Monte Carlo device simulation of a Si/SiGe-HBT with a realistic Ge profile”, IEICE Trans. on Elec¬tronics, vol. E83-C, no. 8, pp. 1228–1234, 2000.

    Google Scholar 

  22. G. Gilat and L. J. Raubenheimer, “Accurate numerical method for calculation frequency-distribution functions in solids”, Phys. Rev., vol. 144, pp. 390–395, 1966.

    Article  Google Scholar 

  23. I. N. Bronstein and K. A. Semendjajew, Taschenbuch der Mathematik, B. G. Teubner, Stuttgart, 1991.

    Google Scholar 

  24. C. Jungemann, S. Keith, and B. Meinerzhagen, “Full-band Monte Carlo simulation of a 0.12µm-Si-PMOSFET with and without a strained SiGe-channel”, in IEDM Tech. Dig., San Francisco (USA), 1998, pp. 897–900.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Jungemann, C., Meinerzhagen, B. (2003). Full-Band Structure. In: Hierarchical Device Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6086-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6086-2_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7226-1

  • Online ISBN: 978-3-7091-6086-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics