Scattering Mechanisms

  • Christoph Jungemann
  • Bernd Meinerzhagen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In a semiconductor the charge carriers are scattered by various mechanisms [4.1–4.6]. They are scattered by phonons, which are the quasiparticles of the lattice vibrations (Sec. 4.1), alloy disorder in composites (Sec. 4.2), ionized dopants (Sec. 4.3), impact ionization (Sec. 4.4), or microscopically roughness of interfaces between different materials (Sec. 4.5).


Transition Rate Molecular Beam Epitaxy Impact Ionization Inversion Layer Drift Mobility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [4.1]
    W. Shockley, Electrons and Holes in Semiconductors, van Nostrand, Princeton, New Jersey, 1950.Google Scholar
  2. [4.2]
    J.M. Ziman, Electrons and Phonons, Clarendon Press, Oxford, 1960.MATHGoogle Scholar
  3. [4.3]
    O. Madelung, Introduction to Solid State Theory, Springer, Berlin, 1978.CrossRefGoogle Scholar
  4. [4.4]
    C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, Wien, 1989.CrossRefGoogle Scholar
  5. [4.5]
    K. Hess, Ed., Monte Carlo Device Simulation: Full Band and Beyond, Kluwer, Boston, 1991.MATHGoogle Scholar
  6. [4.6]
    C. Moglestue, Monte Carlo Simulation of Semiconductor Devices, Chapman & Hall, London, 1993.Google Scholar
  7. [4.7]
    C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials”, Rev. Mod. Phys., vol. 55, pp. 645–705, 1983.CrossRefGoogle Scholar
  8. [4.8]
    M. V. Fischetti and S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects”, Phys. Rev. B, vol. 38, pp. 9721–9745, 1988.CrossRefGoogle Scholar
  9. [4.9]
    A. Abramo, L. Baudry, R. Brunetti, R. Castagne, M. Charef, F. Dessenne, P. Dollfus, R. Dutton, W. L. Engl, R. Fauquembergue, C. Fiegna, M. V. Fischetti, S. Galdin, N. Goldsman, M. Hackel, C. Hamaguchi, K. Hess, K. Hennacy, P. Hesto, J. M. Higman, T. Iizuka, C. Jungemann, Y. Kamakura, H. Kosina, T. Kunukiyo, S. E. Laux, H. Lin, C. Maziar, H. Mizuno, H. J. Peifer, S. Ramaswamy, N. Sano, P. G. Scrobohaci, S. Selberherr, M. Takenaka, T. Tang, J. L. Thobel, R. Thoma, K. Tomizawa, M. Tomizawa, T. Vogelsang, S. Wang, X. Wang, C. Yao, P. D. Yoder, and A. Yoshii, “A comparison of numerical solutions of the Boltzmann transport equation for high-energy electron transport silicon”, IEEE Trans. Electron Devices, vol. 41, no. 9, pp. 1646–1654, 1994.CrossRefGoogle Scholar
  10. [4.10]
    M. V. Fischetti, S. E. Laux, and E. Crabbe, “Understanding hot-electron transport in silicon devices: Is there a shortcut?”, J. Appl. Phys., vol. 78, pp. 1058–1087, 1995.CrossRefGoogle Scholar
  11. [4.11]
    R. Brunetti, C. Jacoboni, F. Nava, L. Reggiani, G. Bosman, and R. J. J. Zijlstra, “Diffusion coefficient of electrons in silicon”, J. Appl. Phys., vol. 52, pp. 6713–6722, 1981.CrossRefGoogle Scholar
  12. [4.12]
    J. Y. Tang and K. Hess, “Impact ionization of electrons in silicon (steady state)”, J. Appl. Phys., vol. 54, pp. 5139–5144, 1983.CrossRefGoogle Scholar
  13. [4.13]
    P. D. Yoder, V. D. Natoli, and R. M. Martin, “Ab initio analysis of the electron phonon interaction in silicon”, J. Appl. Phys., vol. 73, pp. 4378–4383, 1993.CrossRefGoogle Scholar
  14. [4.14]
    T. Kunikiyo, M. Takenaka, Y. Kamakura, M. Yamaji, H. Mizuno, M. Morifuji, K. Taniguchi, and C. Hamaguchi, “A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact-ionization model”, J. Appl. Phys., vol. 75, pp. 297–312, 1994.CrossRefGoogle Scholar
  15. [4.15]
    M. V. Fischetti and S. E. Laux, “Monte Carlo simulation of electron transport in Si: The first 20 years”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 813–820.Google Scholar
  16. [4.16]
    C. Jungemann, S. Keith, F. M. Bufler, and B. Meinerzhagen, “Effects of band structure and phonon models on hot electron transport in silicon”, Electrical Engineering, vol. 79, pp. 99–101, 1996.CrossRefGoogle Scholar
  17. [4.17]
    P. J. Price, “Monte Carlo calculation of electron transport in solids”, Semiconductors and Seinimetals, vol. 14, pp. 249–309, 1979.CrossRefGoogle Scholar
  18. [4.18]
    C. Jungemann, S. Yamaguchi, and H. Coto, “Efficient full band Monte Carlo hot carrier simulation for silicon devices”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 821–824.Google Scholar
  19. [4.19]
    C. Jungemann, S. Keith, M. Bartels, and B. Meinerzhagen, “Efficient full-band Monte Carlo simulation of silicon devices”, IEICE Trans. on Electronics, vol. E82-C, no. 6, pp. 870–879, 1999.Google Scholar
  20. [4.20]
    F. M. Bufler, “Full—band Monte Carlo simulation of electrons and holes in strained Si and SiGe”, Dissertation, Universitat Bremen, Bremen, 1997, (H. Utz Verlag Wissenschaft, Munchen: 1998).Google Scholar
  21. [4.21]
    C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta, “Elec trop drift velocity in silicon”, Phys. Rev. B, vol. 12, pp. 2265–2284, 1975.CrossRefGoogle Scholar
  22. [4.22]
    G. Ottaviani, L. Reggiani, C. Canali, F. Nava, and A. Alberigi-Quaranta, “Hole drift velocity in silicon”, Phys. Rev. B, vol. 12, pp. 3318–3329, 1975.CrossRefGoogle Scholar
  23. [4.23]
    M. A. Green, “Intrinsic concentration, effective densities of states, and effective mass in silicon”, J. Appl. Phys., vol. 67, pp. 2944–2954, 1990.CrossRefGoogle Scholar
  24. [4.24]
    C. Jacoboni, 1998, private communication.Google Scholar
  25. [4.25]
    C. Canali, G. Ottaviani, and A. Alberigi-Quaranta, “Drift velocity of electrons and holes and associated anisotropic effects in silicon”, J. Phys. Chem. Solids, vol. 32, pp. 1707–1720, 1971.CrossRefGoogle Scholar
  26. [4.26]
    P. M. Smith, M. Inoue, and J. Frey, “Electron velocity in Si and GaAs at very high electric fields”, Appl. Phys. Lett., vol. 37, pp. 797–798, 1980.CrossRefGoogle Scholar
  27. [4.27]
    P. M. Smith and J. Frey, “High-field transport of holes in silicon”, Appl. Phys. Lett., vol. 39, pp. 332–333, 1981.CrossRefGoogle Scholar
  28. [4.28]
    J. W. Harrison and J. R. Hauser, “Alloy scattering in ternary III-V compounds”, Phys. Rev. B, vol. 13, pp. 5347–5350, 1976.CrossRefGoogle Scholar
  29. [4.29]
    M. M. Rieger, “Elektronische Bandparameter in Si1_xGex-Legierungen”, Diplomarbeit, TU Miinchen, 1997.Google Scholar
  30. [4.30]
    M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1_xGex-alloys on Si1_yGey substrates”, Phys. Rev. B, vol. 48, pp. 14276–14287, 1993.CrossRefGoogle Scholar
  31. [4.31]
    M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1_xGex alloys on Si1_yGey substrates”, Phys. Rev. B, vol. 50, pp. 8138, 1994, Erratum.CrossRefGoogle Scholar
  32. [4.32]
    H. Brooks, “Scattering by ionized impurities in semiconductors”, Phys. Rev., vol. 83, pp. 879, 1951.Google Scholar
  33. [4.33]
    F. M. Buffer, P. Graf, and B. Meinerzhagen, Abschlu Bbericht zum BMBF-Forderungsvorhaben 01 M 2416 A: Monte-Carlo-Bauelementsimulator fiir Si/SiGe-Heterobipolartransistoren.Google Scholar
  34. [4.34]
    S. Jallepalli, M. Rashed, W.-K. Shih, C. M. Maziar, and A. F. Tasch, Jr., “A full-band Monte Carlo model for hole transport in silicon”, J. Appl. Phys., vol. 81, pp. 2250–2255, 1997.CrossRefGoogle Scholar
  35. [4.35]
    P. Graf, F. M. Buffer, B. Meinerzhagen, and C. Jungemann, “A comprehensive SiGe Monte Carlo model for transient 2D simulations of HBTs”, in IEDM Tech. Dig., 1997, pp. 881–884.Google Scholar
  36. [4.36]
    H. Kosina, “A method to reduce small-angle scattering in Monte Carlo deviceanalysis”, IEEE Trans. Electron Devices, vol. 46, no. 6, pp. 1196–1200, 1999.CrossRefGoogle Scholar
  37. [4.37]
    D. Chattopadhyay and H. J. Queisser, “Electron scattering by ionized impurities in semiconductors”, Rev. Mod. Phys., vol. 53, pp. 745–768, 1981.CrossRefGoogle Scholar
  38. [4.38]
    M. V. Fischetti, “Effect of the electron-plasmon interaction on the electron mobility in silicon”, Phys. Rev. B, vol. 44, pp. 5527–5534, 1991.CrossRefGoogle Scholar
  39. [4.39]
    H. Kosina and G. Kaiblinger-Grujin, “Ionized-impurity scattering of majority electrons in silicon”, Solid-State Electron., vol. 42, pp. 331–338, 1998.CrossRefGoogle Scholar
  40. [4.40]
    D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field”, Proc. IEEE, vol. 55, pp. 2192–2193, 1967.CrossRefGoogle Scholar
  41. [4.41]
    J. Dziewior and D. Silber, “Minority-carrier diffusion coefficients in highly doped silicon”, Appl. Phys. Lett., vol. 35, pp. 170–172, 1979.CrossRefGoogle Scholar
  42. [4.42]
    W. R. Thurber and B. S. Carpenter, “Boron determination in silicon by the nuclear track technique”, J. Electrochem. Soc., vol. 125, pp. 654–657, 1978.CrossRefGoogle Scholar
  43. [4.43]
    W. R. Thurber, R. L. Mattis, and Y. M. Liu, “Resistivity-dopant density rela tionship for boron-doped silicon”, J. Electrochem. Soc., vol. 127, pp. 2291–2294, 1980.CrossRefGoogle Scholar
  44. [4.44]
    W. R. Thurber, R. L. Mattis, and Y. M Liu, “Resistivity-dopant density relationship for phosphorus-doped silicon”, J. Electrochem. Soc., vol. 127, pp. 1807–1812, 1980.CrossRefGoogle Scholar
  45. [4.45]
    S. E. Swirhun, Y.-H. Kwark, and R. M. Swanson, “Measurement of electron lifetime and electron mobility, band-gap narrowing in heavily doped p-type silicon”, in IEDM Tech. Dig., 1986, pp. 24–27.Google Scholar
  46. [4.46]
    S. E. Swirhun, J. A. del Alamo, and R. M. Swanson, “Measurement of hole mobility in heavily doped n-type silicon”, IEEE Electron Device Lett., vol. 7, no. 3, pp. 168–171, 1986.CrossRefGoogle Scholar
  47. [4.47]
    A. B. Sproul, M. A. Green, and A. W. Stephens, “Accurate determination of minority carrier-and lattice scattering-mobility in silicon from photoconductance decay”, J. Appl. Phys., vol. 72, pp. 4161–4171, 1992.CrossRefGoogle Scholar
  48. [4.48]
    C. Jungemann, B. Heinemann, K. Tittelbach-Helmrich, and B. Meinerzhagen, “An accurate, experimentally verified electron minority carrier mobility model for Si and SiGe”, in IEDM Tech. Dig., San Francisco (USA), 2000, pp. 101–104.Google Scholar
  49. [4.49]
    F. M. Buffer, P. Graf, B. Meinerzhagen, B. Adeline, M. M. Rieger, H. Kibbel, and G. Fischer, “Low— and high—field electron—transport parameters for unstrained and strained Si], Ge”, IEEE Electron Device Lett., vol. 18, no. 6, pp. 264–266, 1997.CrossRefGoogle Scholar
  50. [4.50]
    K. Tittelbach-Helmrich and P. Gaworzewski, unpublished, 1997.Google Scholar
  51. [4.51]
    F. M Buffer, P. Graf, B. Meinerzhagen, G. Fischer, and H. Kibbel, “Hole transport investigation in unstrained and strained SiGe”, J. Vac. Sci. Technol. B, vol. 16, pp. 1667–1669, 1998.CrossRefGoogle Scholar
  52. [4.52]
    P. Gaworzewski, K. Tittelbach-Helmrich, U. Penner, and N. V. Abrosimov, “Electrical properties of lightly doped p-type silicon-germanium single crystals”, J. Appl. Phys., vol. 83, pp. 5258–5263, 1998.CrossRefGoogle Scholar
  53. [4.53]
    E. O. Kane, “Electron scattering by pair production in silicon”, Phys. Rev., vol. 159, pp. 624–631, 1967.CrossRefGoogle Scholar
  54. [4.54]
    D. J. Robbins, “Aspects of the theory of impact ionization (1)” Phys. Status Solidi B, vol. 97, pp. 9–50, 1980.CrossRefGoogle Scholar
  55. [4.55]
    D. J. Robbins, “Aspects of the theory of impact ionization (2)”, Phys. Status Solidi B, vol. 97, pp. 387–406, 1980.CrossRefGoogle Scholar
  56. [4.56]
    R. Thoma, H. J. Peifer, W. L. Engl, W. Quade, R. Brunetti, and C. Jacoboni, “An improved impact-ionization model for high-energy electron transport in Si with Monte Carlo simulation”, J. Appl. Phys., vol. 69, pp. 2300–2311, 1991.CrossRefGoogle Scholar
  57. [4.57]
    J. Bude and K. Hess, “Impact ionization in semiconductors: Effects of high electric fields and high scattering rates”, Phys. Rev. B, vol. 45, pp. 10958–10964, 1992.CrossRefGoogle Scholar
  58. [4.58]
    N. Sano and A. Yoshii, “Impact ionization theory consistent with a realistic band structure of silicon”, Phys. Rev. B, vol. 45, pp. 4171–4179, 1992.CrossRefGoogle Scholar
  59. [4.59]
    M. V. Fischetti, N. Sano, S. E. Laux, and K. Natori, “Full-band-structure theory of high-field transport and impact ionization of electrons and holes in Ge, Si, and GaAs”, IEEE J. Tech. Comp. Aided Design, no. 3, 1997.Google Scholar
  60. [4.60]
    E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in silicon”, Appl. Phys. Lett., vol. 62, pp. 3339–3341, 1993.CrossRefGoogle Scholar
  61. [4.61]
    J. W. Slotboom, G. Streutker, G. J. T. Davids, and P. B. Hartog, “Surface impact ionization in Silicon devices”, in IEDM, 1987, pp. 494–497.Google Scholar
  62. [4.62]
    W. Maes, K. de Meyer, and R. Van Overstraeten, “Impact ionization in silicon: A review and update”, Solid-State Electron., vol. 33, pp. 705–718, 1990.CrossRefGoogle Scholar
  63. [4.63]
    R. van Overstraeten and H. de Man, “Measurement of the ionization rates in diffused silicon p-n junctions”, Solid-State Electron., vol. 13, pp. 583–608, 1970.CrossRefGoogle Scholar
  64. [4.64]
    D. J. DiMaria, T. N. Theis, J. R. Kirtley, F. L. Pesavento, and D. W. Dong, “Electron heating in silicon dioxide and off-stoichiometric silicon dioxide films”, J. Appl. Phys., vol. 57, pp. 1214–1238, 1985.CrossRefGoogle Scholar
  65. [4.65]
    Y. C. Cheng, “Electron mobility in an MOS inversion layer”, in Proceedings of the 3rd Conference on Solid State Devices, Tokyo, 1971, pp. 173–180.Google Scholar
  66. [4.66]
    T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems”, Rev. Mod. Phys., vol. 54, pp. 437–672, 1982.CrossRefGoogle Scholar
  67. [4.67]
    M. V. Fischetti and S. E. Laux, “Monte Carlo study of electron transport in silicon inversion layers”, Phys. Rev. B, vol. 48, pp. 2244–2274, 1993.CrossRefGoogle Scholar
  68. [4.68]
    C. Jungemann, A. Emunds, and W. L. Engl, “Simulation of linear and nonlinear electron transport in homogeneous silicon inversion layers”, Solid-State Electron., vol. 36, pp. 1529–1540, 1993.CrossRefGoogle Scholar
  69. [4.69]
    K. Fuchs and H. H. Wills, “The conductivity of thin metallic films according to the electron theory of metals”, Proc. Comb. Phil. Soc., vol. 34, pp. 100–108, 1938.CrossRefGoogle Scholar
  70. [4.70]
    H.-J. Peifer, “Monte-Carlo Simulation des Hochenergietransports von Elektronen in submikron MOS-Strukturen”, Doctor thesis, RWTH Aachen, Aachen, 1992, Augustinus Buchhandlung.Google Scholar
  71. [4.71]
    E. Sangiorgi and M. R. Pinto, “A semi-empirical model of surface scattering for Monte Carlo simulation of silicon n-MOSFET’s”, IEEE Trans. Electron Devices, vol. 39, no. 2, pp. 356–361, 1992.CrossRefGoogle Scholar
  72. [4.72]
    C. Jungemann, S. Keith, and B. Meinerzhagen, “Full-band Monte Carlo simulation of a 0.1211m-Si-PMOSFET with and without a strained SiGe-channel”, in IEDM Tech. Dig., San Francisco (USA), 1998, pp. 897–900.Google Scholar
  73. [4.73]
    S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: Part I-Effects of substrate impurity concentration”, IEEE Trans. Electron Devices, vol. 41, pp. 2357–2362, 1994.CrossRefGoogle Scholar
  74. [4.74]
    A. G. Sabnis and J. T. Clemens, “Characterization of the electron mobility in the inverted (100) Si surface”, in IEDM Tech. Dig., 1979, pp. 18–22.Google Scholar
  75. [4.75]
    N. D. Arora and G. SH. Gildenblat, “A semi-empirical model of the MOSFET inversion layer mobility for low-temperature operation”, IEEE Trans. Electron Devices, vol. 34, no. 1, pp. 89–93, 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Christoph Jungemann
    • 1
  • Bernd Meinerzhagen
    • 1
  1. 1.Institut für Theoretische Elektrotechnik und MikroelektronikUniversität BremenBremenGermany

Personalised recommendations