The Monte-Carlo Method

  • Christoph Jungemann
  • Bernd Meinerzhagen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


The MC method is a stochastic method for the solution of integrals [3.1–3.4]. By formal integration the BTE is transformed into an integral equation, which can be solved with the MC method [3.5–3.12].


Statistical Weight Correlation Time Convergence Estimation Velocity Autocorrelation Function Rejection Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [3.1]
    J. M. Hammarsley and D. C. HandscombMonte Carlo MethodsMethuen/Chapman and Hall, London, 1964.CrossRefGoogle Scholar
  2. [3.2]
    F. James, “Monte Carlo theory and practice”Rep. Prog. Phys. vol. 43, pp. 1144–1189, 1980.CrossRefGoogle Scholar
  3. [3.3]
    R. Y. Rubinstein, Simulation and the Monte Carlo method Wiley series in probability and mathematical statistics. John Wiley & Sons, New York, 1981.Google Scholar
  4. [3.4]
    M. H. Kalos and P. A. WhitlockMonte Carlo Methods, Basics vol. 1, John Wiley & Sons, New York, 1986.CrossRefGoogle Scholar
  5. [3.5]
    T. Kurosawa, “Monte Carlo calculation of hot electron problems”J. Phys. Soc. Jap. vol. 21, pp. 424–426, 1966.Google Scholar
  6. [3.6]
    W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in gallium arsenide”, J. Phys. Chem. Solids vol. 31, pp. 1963–1990, 1970.CrossRefGoogle Scholar
  7. [3.7]
    A. Reklaitis, “The calculation of electron transient response in semiconductors by the Monte Carlo technique”, Phys. Lett. vol. 13, pp. 367–370, 1982.Google Scholar
  8. [3.8]
    L. ReggianiHot-Electron Transport in Semiconductors Springer, Berlin, 1985.CrossRefGoogle Scholar
  9. [3.9]
    C. Jacoboni and P. LugliThe Monte Carlo Method for Semiconductor Device Simulation Springer, Wien, 1989.CrossRefGoogle Scholar
  10. [3.10]
    M. Nedjalkov and P. Vitanov, “Iteration approach for solving the Boltzmann equation with the Monte Carlo method”Solid-State Electron. vol. 32, pp. 893896, 1989.Google Scholar
  11. [3.11]
    H.-J. Peifer, “Monte-Carlo Simulation des Hochenergietransports von Elektronen in submikron MOS-Strukturen”, Doctor thesis, RWTH Aachen, Aachen, 1992, Augustinus Buchhandlung.Google Scholar
  12. [3.12]
    C. MoglestueMonte Carlo Simulation of Semiconductor Devices Chapman & Hall, London, 1993.Google Scholar
  13. [3.13]
    S. K. Park and K. W. Miller, “Random number generators: Good ones are hard to find”Transactions of the ACM Nov. 1988.Google Scholar
  14. [3.14]
    S. BrandtDatenanalyse BI Wissenschaftsverlag, 1992.Google Scholar
  15. [3.15]
    P. J. Price, “Monte Carlo calculation of electron transport in solids”Semiconductors and Semimetals vol. 14, pp. 249–309, 1979.CrossRefGoogle Scholar
  16. [3.16]
    C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials”Rev. Mod. Phys. vol. 55, pp. 645–705, 1983.CrossRefGoogle Scholar
  17. [3.17]
    A. PapoulisProbability,Random Variables and Stochastic Processes Mc GrawHill, 3rd edition, 1991.Google Scholar
  18. [3.18]
    H. D. Rees, “Calculation of steady state distribution functions by exploiting stabiblity”Phys. Lett. A vol. 26, pp. 416–417, 1968.CrossRefGoogle Scholar
  19. [3.19]
    H. Kosina, M. Nedjalkov, and S. Selberherr, “Theory of the Monte Carlo method for semiconductor device simulation”IEEE Trans. Electron Devices vol. 47, no. 10, pp. 1898–1908, 2000.CrossRefGoogle Scholar
  20. [3.20]
    C. Jacoboni, P. Poli, and L. Rota, “A new Monte Carlo technique for the solution of the Boltzmann transport equation”Solid-State Electron. vol. 31, pp. 523–526, 1988.CrossRefGoogle Scholar
  21. [3.21]
    M. Nedjalkov and P. Vitanov, “Application of the iteration approach to the ensemble Monte Carlo technique”Solid-State Electron. vol. 33, pp. 407–410, 1990.CrossRefGoogle Scholar
  22. [3.22]
    E. Sangiorgi, B. Riccò, and F. Venturi, “MOS2: An efficient Monte Carlo simulator for MOS devices”IEEE Trans. Computer-Aided Des. vol. 7, no. 2, pp. 259–271, 1988.CrossRefGoogle Scholar
  23. [3.23]
    R. Brunetti, C. Jacoboni, A. Matulionis, and V. Dienys, “Effect of interparticle collisions on energy relaxation of carriers in semiconductors”Physica vol. 134B, pp. 369–373, 1985.Google Scholar
  24. [3.24]
    P. Konijn, T. G. van de Roer, and F. P. Widdershoven, “An efficient Monte Carlo device simulation code based on rigorous application of internal scattering”Solid-State Electron. vol. 36, pp. 1579–1581, 1993.CrossRefGoogle Scholar
  25. [3.25]
    W. Shockley, John A. Copeland, and R. P. James “The impedance field method of noise calculation in active semiconductor devices”, in Quantum theory of atoms, molecules and solid state P. O. Lowdin, Ed., pp. 537–563. Academic Press, 1966.Google Scholar
  26. [3.26]
    S. M. ErmakowDie Monte-Carlo-Methode und verwandte Fragen R. Oldenbourg, München, Wien, 1975.Google Scholar
  27. [3.27]
    C. Jungemann, S Yamaguchi, and H. Goto, “Convergence estimation for stationary ensemble Monte Carlo simulations”IEEE J. Tech. Comp. Aided Design no. 10, 1998.Google Scholar
  28. [3.28]
    R.W. Hockney and J.W. EastwoodComputer Simulation Using Particles Institute of Physics Publishing, Bristol, Philadelphia, 1988.CrossRefGoogle Scholar
  29. [3.29]
    M. V. Fischetti and S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects”Phys. Rev. B vol. 38, pp. 9721–9745, 1988.CrossRefGoogle Scholar
  30. [3.30]
    C. Jungemann, S. Decker, R. Thoma, W.-L. Engl, and H. Goto “Phase space multiple refresh: A general purpose statistical enhancement technique for Monte Carlo device simulation”IEEE J. Tech. Comp. Aided Design no. 2, 1997.Google Scholar
  31. [3.31]
    A. Pacelli and U. Ravaioli, “Analysis of variance-reduction schemes for ensemble Monte-Carlo simulation of semiconductor devices”Solid-State Electron. vol. 41, pp. 599–605, 1997.CrossRefGoogle Scholar
  32. [3.32]
    M. G. Gray, T. E. Booth, T. J. T. Kwan, and C. M. Snell, “A multi-comb variance reduction scheme for Monte Carlo semiconductor simulators”IEEE Trans. Electron Devices vol. 45, no. 4, pp. 918–924, 1998.CrossRefGoogle Scholar
  33. [3.33]
    N. G. van KampenStochastic Process in Physics and Chemistry North-Holland Publishing, Amsterdam, 1981.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Christoph Jungemann
    • 1
  • Bernd Meinerzhagen
    • 1
  1. 1.Institut für Theoretische Elektrotechnik und MikroelektronikUniversität BremenBremenGermany

Personalised recommendations