Semiclassical Transport Theory

  • Christoph Jungemann
  • Bernd Meinerzhagen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


Here, the classical theory of a kinetic gas is applied to the electron and hole ensembles in semiconductors with two quantum mechanical extensions. The particle kinetics are based on a position-dependent band structure calculated with the nonlocal empirical pseudopotential method [2.1–2.3] and scattering rates determined by Fermi’s Golden Rule [2.4, 2.5]. In this theoretical framework the particle motion consists of a series of scattering events and accelerations by external forces, which is described by the semiclassical Boltzmann transport equation (BTE) [2.4–2.10].


Brillouin Zone Conditional Probability Density Pauli Exclusion Principle Microscopic Quantity Langevin Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [2.1]
    M. L. Cohen and J. R. Cheilkowsky, Electronic Structure and Optical Properties of Semiconductors, Springer, New York, 2nd edition, 1989.Google Scholar
  2. [2.2]
    M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Sii_sGex alloys on Sii_yGey substrates”,Phys. Rev. B, vol. 48, pp. 14276–14287, 1993.CrossRefGoogle Scholar
  3. [2.3]
    M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Sii_xGex alloys on Sii_9Gey substrates”, Phys. Rev. B, vol. 50, pp. 8138, 1994, Erratum.CrossRefGoogle Scholar
  4. [2.4]
    ]Madelung, Introduction to Solid State Theory, Springer, Berlin, 1978.CrossRefGoogle Scholar
  5. [2.5]
    K. Hess, Ed., Monte Carlo Device Simulation: Full Band and Beyond, Kluwer, Boston, 1991.MATHGoogle Scholar
  6. [2.6]
    ] W. Shockley, Electrons and Holes in Semiconductors, van Nostrand, Princeton, New Jersey, 1950.Google Scholar
  7. [2.7]
    J.M. Ziman, Electrons and Phonons, Clarendon Press, Oxford, 1960.MATHGoogle Scholar
  8. [2.8]
    W. Brauer and H. W. Streitwolf, Theoretische Grundlagen der Halbleiterphysik, Vieweg, Braunschweig, 2nd edition, 1977.Google Scholar
  9. [2.9]
    C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, Wien, 1989.CrossRefGoogle Scholar
  10. [2.10]
    M. Lundstrom, Fundamentals of Carrier Transport, vol. 10 of Modular Series on Solid State Devices, Addison-Wesley, New York, 1990.Google Scholar
  11. [2.11]
    A. H. Marshak and K. M. van Vliet, “Electrical current in solids with position—dependent band structure”, Solid—State Electron., vol. 21, pp. 417–427, 1978.CrossRefGoogle Scholar
  12. [2.12]
    N. G. van Kampen, Stochastic Process in Physics and Chemistry, North-Holland Publishing, Amsterdam, 1981.Google Scholar
  13. [2.13]
    G. Röpke, Statistische Mechanik für das Nichtgleichgewicht, Physik-Verlag, Weinheim, 1987.Google Scholar
  14. [2.14]
    P. J. Price, “Monte Carlo calculation of electron transport in solids”, Semiconductors and Semimetals, vol. 14, pp. 249–309, 1979.CrossRefGoogle Scholar
  15. [2.15]
    D. Schroeder, Modelling of Interface Carrier Transport for Device Simulation, Springer, Wien, 1994.MATHGoogle Scholar
  16. [2.16]
    C. W. Gardiner, Handbook of Stochastic Methods, Springer, Berlin, 1985.Google Scholar
  17. [2.17]
    H.-J. Peifer, “Monte—Carlo Simulation des Hochenergietransports von Elektronen in submikron MOS—Strukturen”, Doctor thesis, RWTH Aachen, Aachen, 1992, Augustinus Buchhandlung.Google Scholar
  18. [2.18]
    ] A. Papoulis, Probability,Random Variables and Stochastic Processes, Mc GrawHill, 3rd edition, 1991.Google Scholar
  19. [2.19]
    R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers”, Phys. Rev., vol. 126, pp. 2002–2013, 1962.CrossRefGoogle Scholar
  20. [2.20]
    K. Blötekjær, “Transport equations for electrons in two-valley semiconductors”, IEEE Trans. Electron Devices, vol. 17, no. 1, pp. 38–47, 1970.CrossRefGoogle Scholar
  21. [2.21]
    R. Thoma, “Entwicklung eines hydrodynamischen Gleichungssystems zur Beschreibung von Halbleiterbauelementen”, Doktorarbeit, RWTH Aachen, 1991, Aachen.Google Scholar
  22. [2.22]
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, vol. 10 of Courses of Theoretical Physics, Butterworth—Heinemann, Oxford, UK, 1981.Google Scholar
  23. [2.23]
    K. Hess, Advanced Theory of Semiconductor Devices, IEEE Press, Piscataway, NJ, USA, 2000.Google Scholar
  24. [2.24]
    T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems”, Rev. Mod. Phys., vol. 54, pp. 437–672, 1982.CrossRefGoogle Scholar
  25. [2.25]
    Sh. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press, Cambridge, New York, Melbourne, 1996.Google Scholar
  26. [2.26]
    F. Bonani and G. Ghione, Noise in Semiconductor Devices, Modeling and Simulation, Advanced Microelectronics. Springer, Berlin, Heidelberg, New York, 2001.Google Scholar
  27. [2.27]
    C. E. Korman and I. D. Mayergoyz, “Semiconductor noise in the framework of semiclassical transport”, Phys. Rev. B, vol. 54, pp. 17620–17627, 1996.CrossRefGoogle Scholar
  28. [2.28]
    S. M. Kogan, “Equations for the correlation functions using a generalized Keldysh technique”, Phys. Rev. A, vol. 44, pp. 8072–8082, 1991.CrossRefGoogle Scholar
  29. [2.29]
    H. S. Min and D. Ahn, “Langevin noise sources for the Boltzmann transport equations with the relaxation-time approximation in nondegenerate semiconductors”, J. Appl. Phys., vol. 58, pp. 2262–2265, 1985.CrossRefGoogle Scholar
  30. [2.30]
    H. S. Min, “A unified theory of noise in nondegenerate semiconductors”, J. Appl. Phys., vol. 61, pp. 4549–4565, 1987.CrossRefGoogle Scholar
  31. [2.31]
    H. S. Min, “Steady-state Nyquist theorem for nondegenerate semiconductors”, J. Appl. Phys., vol. 64, pp. 6339–6344, 1988.CrossRefGoogle Scholar
  32. [2.32]
    C. Jungemann and B. Meinerzhagen, “Analysis of the stochastic error of stationary Monte Carlo device simulations”, IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 985–992, 2001.CrossRefGoogle Scholar
  33. [2.33]
    J.-P. Nougier, “Fluctuations and noise of hot carriers in semiconducor materials and devices”, IEEE Trans. Electron Devices, vol. ED-41, no. 11, pp. 2034–2049, 1994.CrossRefGoogle Scholar
  34. [2.34]
    W. Shockley, John A. Copeland, and R. P. James, “The impedance field method of noise calculation in active semiconductor devices”, in Quantum theory of atoms, molecules and solid state, P. 0. Lowdin, Ed., pp. 537–563. Academic Press, 1966.Google Scholar
  35. [2.35]
    L. Reggiani, E. Starikov, P. Shiktorov, V. Gruzinskis, and L. Varani, “Modelling of small-signal response and electronic noise in semiconductor high-field transport”, Semicond. Sci. Technol., vol. 12, pp. 141–156, 1997.CrossRefGoogle Scholar
  36. [2.36]
    P. Shiktorov, E. Starikov, V. Gruzinskis, T. Gonzalez, J. Mateos, D. Pardo, L. Reggiani, L. Varani, and J. C. Vaissere, “Langevin forces and generalized transfer fields for noise modeling in deep submicron devices”, IEEE Trans.Electron Devices, vol. 47, no. 10, pp. 1992–1998, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Christoph Jungemann
    • 1
  • Bernd Meinerzhagen
    • 1
  1. 1.Institut für Theoretische Elektrotechnik und MikroelektronikUniversität BremenBremenGermany

Personalised recommendations