Skip to main content

Semiclassical Transport Theory

  • Chapter
Hierarchical Device Simulation

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 336 Accesses

Abstract

Here, the classical theory of a kinetic gas is applied to the electron and hole ensembles in semiconductors with two quantum mechanical extensions. The particle kinetics are based on a position-dependent band structure calculated with the nonlocal empirical pseudopotential method [2.1–2.3] and scattering rates determined by Fermi’s Golden Rule [2.4, 2.5]. In this theoretical framework the particle motion consists of a series of scattering events and accelerations by external forces, which is described by the semiclassical Boltzmann transport equation (BTE) [2.4–2.10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. L. Cohen and J. R. Cheilkowsky, Electronic Structure and Optical Properties of Semiconductors, Springer, New York, 2nd edition, 1989.

    Google Scholar 

  2. M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Sii_sGex alloys on Sii_yGey substrates”,Phys. Rev. B, vol. 48, pp. 14276–14287, 1993.

    Article  Google Scholar 

  3. M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Sii_xGex alloys on Sii_9Gey substrates”, Phys. Rev. B, vol. 50, pp. 8138, 1994, Erratum.

    Article  Google Scholar 

  4. ]Madelung, Introduction to Solid State Theory, Springer, Berlin, 1978.

    Book  Google Scholar 

  5. K. Hess, Ed., Monte Carlo Device Simulation: Full Band and Beyond, Kluwer, Boston, 1991.

    MATH  Google Scholar 

  6. ] W. Shockley, Electrons and Holes in Semiconductors, van Nostrand, Princeton, New Jersey, 1950.

    Google Scholar 

  7. J.M. Ziman, Electrons and Phonons, Clarendon Press, Oxford, 1960.

    MATH  Google Scholar 

  8. W. Brauer and H. W. Streitwolf, Theoretische Grundlagen der Halbleiterphysik, Vieweg, Braunschweig, 2nd edition, 1977.

    Google Scholar 

  9. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, Wien, 1989.

    Book  Google Scholar 

  10. M. Lundstrom, Fundamentals of Carrier Transport, vol. 10 of Modular Series on Solid State Devices, Addison-Wesley, New York, 1990.

    Google Scholar 

  11. A. H. Marshak and K. M. van Vliet, “Electrical current in solids with position—dependent band structure”, Solid—State Electron., vol. 21, pp. 417–427, 1978.

    Article  Google Scholar 

  12. N. G. van Kampen, Stochastic Process in Physics and Chemistry, North-Holland Publishing, Amsterdam, 1981.

    Google Scholar 

  13. G. Röpke, Statistische Mechanik für das Nichtgleichgewicht, Physik-Verlag, Weinheim, 1987.

    Google Scholar 

  14. P. J. Price, “Monte Carlo calculation of electron transport in solids”, Semiconductors and Semimetals, vol. 14, pp. 249–309, 1979.

    Article  Google Scholar 

  15. D. Schroeder, Modelling of Interface Carrier Transport for Device Simulation, Springer, Wien, 1994.

    MATH  Google Scholar 

  16. C. W. Gardiner, Handbook of Stochastic Methods, Springer, Berlin, 1985.

    Google Scholar 

  17. H.-J. Peifer, “Monte—Carlo Simulation des Hochenergietransports von Elektronen in submikron MOS—Strukturen”, Doctor thesis, RWTH Aachen, Aachen, 1992, Augustinus Buchhandlung.

    Google Scholar 

  18. ] A. Papoulis, Probability,Random Variables and Stochastic Processes, Mc GrawHill, 3rd edition, 1991.

    Google Scholar 

  19. R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers”, Phys. Rev., vol. 126, pp. 2002–2013, 1962.

    Article  Google Scholar 

  20. K. Blötekjær, “Transport equations for electrons in two-valley semiconductors”, IEEE Trans. Electron Devices, vol. 17, no. 1, pp. 38–47, 1970.

    Article  Google Scholar 

  21. R. Thoma, “Entwicklung eines hydrodynamischen Gleichungssystems zur Beschreibung von Halbleiterbauelementen”, Doktorarbeit, RWTH Aachen, 1991, Aachen.

    Google Scholar 

  22. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, vol. 10 of Courses of Theoretical Physics, Butterworth—Heinemann, Oxford, UK, 1981.

    Google Scholar 

  23. K. Hess, Advanced Theory of Semiconductor Devices, IEEE Press, Piscataway, NJ, USA, 2000.

    Google Scholar 

  24. T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems”, Rev. Mod. Phys., vol. 54, pp. 437–672, 1982.

    Article  Google Scholar 

  25. Sh. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press, Cambridge, New York, Melbourne, 1996.

    Google Scholar 

  26. F. Bonani and G. Ghione, Noise in Semiconductor Devices, Modeling and Simulation, Advanced Microelectronics. Springer, Berlin, Heidelberg, New York, 2001.

    Google Scholar 

  27. C. E. Korman and I. D. Mayergoyz, “Semiconductor noise in the framework of semiclassical transport”, Phys. Rev. B, vol. 54, pp. 17620–17627, 1996.

    Article  Google Scholar 

  28. S. M. Kogan, “Equations for the correlation functions using a generalized Keldysh technique”, Phys. Rev. A, vol. 44, pp. 8072–8082, 1991.

    Article  Google Scholar 

  29. H. S. Min and D. Ahn, “Langevin noise sources for the Boltzmann transport equations with the relaxation-time approximation in nondegenerate semiconductors”, J. Appl. Phys., vol. 58, pp. 2262–2265, 1985.

    Article  Google Scholar 

  30. H. S. Min, “A unified theory of noise in nondegenerate semiconductors”, J. Appl. Phys., vol. 61, pp. 4549–4565, 1987.

    Article  Google Scholar 

  31. H. S. Min, “Steady-state Nyquist theorem for nondegenerate semiconductors”, J. Appl. Phys., vol. 64, pp. 6339–6344, 1988.

    Article  Google Scholar 

  32. C. Jungemann and B. Meinerzhagen, “Analysis of the stochastic error of stationary Monte Carlo device simulations”, IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 985–992, 2001.

    Article  Google Scholar 

  33. J.-P. Nougier, “Fluctuations and noise of hot carriers in semiconducor materials and devices”, IEEE Trans. Electron Devices, vol. ED-41, no. 11, pp. 2034–2049, 1994.

    Article  Google Scholar 

  34. W. Shockley, John A. Copeland, and R. P. James, “The impedance field method of noise calculation in active semiconductor devices”, in Quantum theory of atoms, molecules and solid state, P. 0. Lowdin, Ed., pp. 537–563. Academic Press, 1966.

    Google Scholar 

  35. L. Reggiani, E. Starikov, P. Shiktorov, V. Gruzinskis, and L. Varani, “Modelling of small-signal response and electronic noise in semiconductor high-field transport”, Semicond. Sci. Technol., vol. 12, pp. 141–156, 1997.

    Article  Google Scholar 

  36. P. Shiktorov, E. Starikov, V. Gruzinskis, T. Gonzalez, J. Mateos, D. Pardo, L. Reggiani, L. Varani, and J. C. Vaissere, “Langevin forces and generalized transfer fields for noise modeling in deep submicron devices”, IEEE Trans.Electron Devices, vol. 47, no. 10, pp. 1992–1998, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Jungemann, C., Meinerzhagen, B. (2003). Semiclassical Transport Theory. In: Hierarchical Device Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6086-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6086-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7226-1

  • Online ISBN: 978-3-7091-6086-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics