• Christoph Jungemann
  • Bernd Meinerzhagen
Part of the Computational Microelectronics book series (COMPUTATIONAL)


The ongoing advance of CMOS based microelectronics is mainly due to the continuous reduction of the device feature size which is expected to decrease for at least another decade [1.1–1.4]. State of the art are gate lengths of 0.13µm, volume production of devices with about 0.10µm gate length is now beginning, and technologies with much shorter gate lengths are under development [1.5]. Additional performance improvements beyond device scaling are obtained by using improved device structures, such as SOI (e.g. [1.6]) or FinFETs (e.g. [1.7]). The introduction of the SiGe technology has opened up new possibilities previously only available in expensive III-V technologies like band-gap engineering and enhancement of carrier mobility by strain [1.8–1.11]. By using strained Si layers pseudomorphically grown on relaxed SiGe layers in the channel region of CMOS devices the performance of MOSFETs has considerably been improved [1.12–1.15]. The performance of Si BJTs has been enhanced by fabricating the base with strained SiGe pseudomorphically grown on the Si bulk [1.16–1.18].


Gate Length Device Simulation IEEE Electron Device Boltzmann Transport Equation IEDM Tech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1.1]
    SEMATECH, “The international technology roadmap for semiconductors”,, 2001.
  2. [1.2]
    A. W. Wieder, “Status, trends and challenges in microelectronics for the next 10 to 15 years”, Electrical Engineering, vol. 79, pp. 79–84, 1996.CrossRefGoogle Scholar
  3. [1.3]
    Y. Taur and E. J. Nowak, “CMOS devices below 0.1pm: How high will perfor mance go?”, IEDM Tech. Dig., pp. 215–218, 1997.Google Scholar
  4. [1.4]
    Y. Taur, C. H. Wann, and D. J. Frank, “25 nm CMOS design considerations”, IEDM Tech. Dig., pp. 789–792, 1998.Google Scholar
  5. [1.5]
    IEEE, “International Electron Devices meeeting”, Technical Digest, 2002.Google Scholar
  6. [1.6]
    H.-S. P. Wong, D. J. Frank, and P. M. Solomon, “Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation”, IEDM Tech. Dig., pp. 407–410, 1998.Google Scholar
  7. [1.7]
    D. Hisamoto, W-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo,and E. Anderson, T-J. King, J. Bokor C. Hu,“FinFET-a self-aligned double-gate MOSFET scalable to 20 nm”, IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325,2000CrossRefGoogle Scholar
  8. [1.8]
    U. König, “Electronic Si/SiGe devices: Basics, technology, performance”, in Advances in Solid State Physics (Festkörperprobleme), vol. 32, pp. 199–220. Vieweg, Braunschweig, 1992.Google Scholar
  9. [1.9]
    J. D. Cressler, “Re-engineering silicon: Si-Ge heterojunction bipolar technology”, IEEE Spectrum, vol. 3, pp. 49–55, 1995.CrossRefGoogle Scholar
  10. [1.10]
    F. Schäffier, “High-mobility Si and Ge structures”, Semicond. Sci. Technol., vol. 12, pp. 1515–1549, 1997.CrossRefGoogle Scholar
  11. [1.11]
    C. K. Maiti and G. A. Armstrong, Applications of Silicon-Germanium Heterostructure Devices, Series in Optics and Optoelectronics. Institute of Physics Publishing, Bristol, Philadelphia, 2001.Google Scholar
  12. [1.12]
    U. König, M. Glück, and G. Höck, “Si/SiGe field-effect transistors”, J. Vac. Sci. Tech. B, vol. 16, no. 5, pp. 2609–2614, 1998.CrossRefGoogle Scholar
  13. [1.13]
    J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “Strained silicon MOSFET technology”, IEDM Tech. Dig., pp. 23–26, 2002.Google Scholar
  14. [1.14]
    K. Rim, S. Koester, M. Hargrove, J. Chu, P. M. Mooney, J. Ott, T. Kanarsky, P. Ronsheim, M. Ieong, A. Grill, and H.-S. P. Wong, “Strained Si NMOSFETs for high performance CMOS technology”, Symposium on VLSI Technology Digest of Technical Papers, pp. 59–60, 2001.Google Scholar
  15. [1.15]
    S. Thompson, N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi, P. Bai, J. Bielefeld, R. Bigwood, J. Brandenburg, M. Buehler, S. Cea, V. Chikarmane, C. Choi, R. Frankovic, T. Ghani, G. Glass, W. Han, T. Hoffmann, M. Hussein, P. Jacob A. Jain, C. Jan, S. Joshi, C. Kenyon, J. Klaus, S. Klopic, J. Luce, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, P. Nguyen, H. Pearson, T. Sandford, R. Schweinfurth, R. Shaheed, S. Sivakumar, M. Taylor, B. Tufts, C. Wallace, P. Wang, C. Weber, and M. Bohr, “A 90nm logic technology featuring 50nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and lum2 SRAM cell”, IEDM Tech. Dig., pp. 61–64, 2002.Google Scholar
  16. [1.16]
    S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, “Heterojunction bipolar transistors using Si-Ge alloys”, IEEE Trans. Electron Devices, vol. 36, no. 10, pp. 2043–2064, 1989.CrossRefGoogle Scholar
  17. [1.17]
    A. Schüppen, “SiGe-HBTs for mobile communication”, Solid-State Electron., vol. 43, pp. 1373–1381, 1999.Google Scholar
  18. [1.18]
    I. M. Anteney, G. Lippert, P. Ashburn, H. J. Osten, B. Heinemann, G. J. Parker, and D. Knoll, “Characterization of the effectiveness of carbon incorporation in SiGe for the elimination of parasitic energy barriers in SiGe HBTs”, IEEE Electron Device Lett., vol. 20, no. 3, pp. 116–118, 1999.CrossRefGoogle Scholar
  19. [1.19]
    W. L. Engl, H. K. Dirks, and B. Meinerzhagen, “Device modeling”, Proc. IEEE, vol. 71, pp. 10–33, 1983.CrossRefGoogle Scholar
  20. [1.20]
    S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer, Wien, 1984.CrossRefGoogle Scholar
  21. [1.21]
    R. Dutton, “TCAD-Yesterday, today and tomorrow”, IEICE Trans. on Electronics, vol. E82-C, no. 6, pp. 791–799, 1999.Google Scholar
  22. [1.22]
    S. M. Sze, Physics of Semiconductors Devices, Wiley, New York, 1981.Google Scholar
  23. [1.23]
    C.-T. Sah, Fundamentals of Solid-State Electronics, World Scientific, Singapore, 1991.Google Scholar
  24. [1.24]
    T. H. Ning, P. W. Cook, R. H. Dennard, C. M. Osburn, S. E. Schuster, and H.-N. Yu, “1 µm MOSFET VLSI technology: Part iv—Hot-electron design constrains”, IEEE Trans. Electron Devices, vol. 26, no. 4, pp. 346–353, 1979.CrossRefGoogle Scholar
  25. [1.25]
    N. Arora, MOSFET Models for VLSI Circuit Simulation. Theory and Practice, Springer, Wien, 1993.CrossRefGoogle Scholar
  26. [1.26]
    H. C. de Graaff and F. M. Klaassen, Compact Transistor Modelling for Circuit Design, Springer, Wien, 1990.MATHCrossRefGoogle Scholar
  27. [1.27]
    W. L. Engl, R. Laur, and H. K. Dirks, “Medusa A simulator for modular circuits”, IEEE Trans. Computer-Aided Des., vol. 1, pp. 85–93, 1982.CrossRefGoogle Scholar
  28. [1.28]
    M. Lundstrom, Fundamentals of Carrier Transport, vol. 10 of Modular Series on Solid State Devices, Addison-Wesley, New York, 1990.Google Scholar
  29. [1.29]
    W. Hänsch, The Drift Diffusion Equation and Its Application in MOSFET Modeling, Springer, Wien, 1991.CrossRefGoogle Scholar
  30. [1.30]
    A. Schenk, Advanced Physical Models for Silicon Device Simulation, Springer, Wien, 1998.MATHCrossRefGoogle Scholar
  31. [1.31]
    W. V. Roosbroeck, “Theory of the flow of electrons and holes in germanium and other semiconductors”, Bell System Technical Journal, pp. 561–607, 1950Google Scholar
  32. [1.32]
    W. Shockley, Electrons and Holes in Semiconductors van Nostrand, Princeton, New Jersey, 1950Google Scholar
  33. [1.33]
    K. Blotekjeer, “Transport equations for electrons in two-valley semiconductors”, IEEE Trans. Electron Devices, vol. 17, no. 1, pp. 38–47, 1970.CrossRefGoogle Scholar
  34. [1.34]
    B. Meinerzhagen, R. Thoma, H. J. Peifer, and W. L. Engl, “On the consistency of the hydrodynamic and the Monte Carlo models”, in Proc. IWCE, Illinois, 1992, Urbana-Champaign, pp. 7–12.Google Scholar
  35. [1.35]
    I. Bork, C. Jungemann, B. Meinerzhagen, and W. L. Engl, “Influence of heat flux on the accuracy of hydrodynamic models for ultrashort Si MOSFETs”, in NUPAD Tech. Dig., Honolulu, 1994, vol. 5.Google Scholar
  36. [1.36]
    H. D. Rees, “Calculation of steady state distribution functions by exploiting stabiblity”, Phys. Lett. A, vol. 26, pp. 416–417, 1968.CrossRefGoogle Scholar
  37. [1.37]
    K. A. Hennacy and Neil Goldsman, “A generalized Legendre polynimial/sparse matrix approach for determining the distribution function in non-polar semiconductors”, Solid-State Electron., vol. 36, pp. 869–877, 1993.CrossRefGoogle Scholar
  38. [1.38]
    C. Jungemann, P. Graf, G. Zylka, R. Thoma, and W. L. Engl, “New highly efficient method for the analysis of correlation functions based on a spherical harmonics expansion of the BTE’s Green’s function”, in Proc. IWCE, Portland, Oregon, May 1994, pp. 45–48.Google Scholar
  39. [1.39]
    M. C. Vecchi and M. Rudan, “Modeling electron and hole transport with full-band structure effects by means of the spherical-harmonics expansion of the BTE”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 230–238, 1998.CrossRefGoogle Scholar
  40. [1.40]
    J. M. Hammarsley and D. C. Handscomb, Monte Carlo Methods, Methuen/Chapman and Hall, London, 1964.CrossRefGoogle Scholar
  41. [1.41]
    S. M. Ermakow, Die Monte-Carlo-Methode und verwandte Fragen, R. Oldenbourg, München, Wien, 1975.Google Scholar
  42. [1.42]
    R. Y. Rubinstein, Simulation and the Monte Carlo method, Wiley series in probability and mathematical statistics. John Wiley & Sons, New York, 1981. [43] T. Kurosawa, “Monte Carlo calculation of hot electron problems”, J. Phys. Soc. Jap., vol. 21, pp. 424–426, 1966.Google Scholar
  43. [1.43]
    T. Kurosawa, “Monte Carlo calculation of hot electron properties”, J. Phys. Soc. Jap, vol. 21, pp. 424–426, 1966.Google Scholar
  44. [1.44]
    W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in gallium arsenide”, J. Phys. Chem. Solids, vol. 31, pp. 1963–1990, 1970.CrossRefGoogle Scholar
  45. [1.45]
    P. J. Price, “Monte Carlo calculation of electron transport in solids”, Semiconductors and Semimetals, vol. 14, pp. 249–309, 1979.CrossRefGoogle Scholar
  46. [1.46]
    J. Y. Tang, H. Shichijo, K. Hess, and G. J. Iafrate, “Band-structure dependent impact ionization in silicon and gallium arsenide”, Journal de Physique, vol. 42, pp. 63–69, 1981.CrossRefGoogle Scholar
  47. [1.47]
    M. V. Fischetti and S. E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects”, Phys. Rev. B, vol. 38, pp. 9721–9745, 1988.CrossRefGoogle Scholar
  48. [1.48]
    H. J. Peifer, R. Thoma, A. Emunds, and W. L. Engl, “Hot carriers in a LDDMOSFET investigated with a Monte Carlo simulator”, in VLSI Process/Device Modeling Workshop, Tokyo, Aug. 1988.Google Scholar
  49. [1.49]
    E. Sangiorgi, B. Riccb, and F. Venturi, “MOS2: An efficient Monte Carlo simulator for MOS devices”, IEEE Trans. Computer-Aided Des., vol. 7, no. 2, pp. 259–271, 1988.CrossRefGoogle Scholar
  50. [1.50]
    C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, Wien, 1989.CrossRefGoogle Scholar
  51. [1.51]
    K. Kometer, G. Zandler, and P. Vogl, “Lattice-gas cellular-automaton method for semiclassical transport in semiconductors”, Phys. Rev. B, vol. 46, pp. 1382–1394, 1992.CrossRefGoogle Scholar
  52. [1.52]
    C. Moglestue, Monte Carlo Simulation of Semiconductor Devices, Chapman & Hall, London, 1993.Google Scholar
  53. [1.53]
    K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices, Artech House, Boston, 1993.Google Scholar
  54. [1.54]
    A. Abramo, L. Baudry, R. Brunetti, R. Castagne, M. Charef, F. Dessenne, P. Dollfus, R. Dutton, W. L. Engl, R. Fauquembergue, C. Fiegna, M. V. Fischetti, S. Galdin, N. Goldsman, M. Hackel, C. Hamaguchi, K. Hess, K. Hennacy, P. Hesto, J. M. Higman, T. Iizuka, C. Jungemann, Y. Kamakura, H. Kosina, T. Kunukiyo, S. E. Laux, H. Lin, C. Maziar, H. Mizuno, H. J. Peifer, S. Ramaswamy, N. Sano, P. G. Scrobohaci, S. Selberherr, M. Takenaka, T. Tang, L. Thobel, R. Thoma, K. Tomizawa, M. Tomizawa, T. Vogelsang, S. Wang, X. Wang, C. Yao, P. D. Yoder, and A. Yoshii, “A comparison of numerical solutions of the Boltzmann transport equation for high-energy electron transport silicon”, IEEE Trans. Electron Devices, vol. 41, no. 9, pp. 1646–1654, 1994.CrossRefGoogle Scholar
  55. [1.55]
    J. J. Ellis-Monaghan, K. W. Kim, and M. A. Littlejohn, “A Monte Carlo study of hot electron injection and interface state generation model for silicon metaloxide-semiconductor field-effect transistors”, J. Appl. Phys., vol. 75, pp. 5087–5094, 1994.CrossRefGoogle Scholar
  56. [1.56]
    T. Kunikiyo, M. Takenaka, Y. Kamakura, M. Yamaji, H. Mizuno, M. Morifuji, K. Taniguchi, and C. Hamaguchi, “A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact-ionization model”, J. Appl. Phys., vol. 75, pp. 297–312, 1994.CrossRefGoogle Scholar
  57. [1.57]
    P. D. Yoder and K. Hess, “First-principles Monte Carlo simulation of transport in Si ”, Semicond. Sci. Technol., vol. 9, pp. 852–854, 1994.CrossRefGoogle Scholar
  58. [1.58]
    K. Hess, Ed., Monte Carlo Device Simulation: Full Band and Beyond, Kluwer, Boston, 1991.MATHGoogle Scholar
  59. [1.59]
    J. R. Barker and D. K. Ferry, “On the physics and modeling of small semiconductor devices -I”, Solid-State Electron., vol. 23, pp. 519–530, 1980.CrossRefGoogle Scholar
  60. [1.60]
    F. Rossi, C. Jacoboni, and M. Nedjalkov, “A Monte Carlo solution of the Wigner transport equation”, Semicond. Sci. Technol., vol. 9, pp. 934–936, 1994.CrossRefGoogle Scholar
  61. [1.61]
    C. Schulz-Mirbach, “The path integral Monte Carlo method for quantum transport on a parallel computer”, in Proc. SISDEP, Erlangen, 1995, vol. 6, pp. 392–395.Google Scholar
  62. [1.62]
    M. V. Fischetti, “Theory of electron transport in small semiconductor devicesusing the Pauli master equation”, J. Appl. Phys., vol. 83 (1), pp. 270–291, 1998.CrossRefGoogle Scholar
  63. [1.63]
    S. Datta, “The non-equilibrium green’s function (NEGF) formalism: An ele-mentary introduction”, IEDM Tech. Dig., pp. 701–704, 2002.Google Scholar
  64. [1.64]
    A. Pacelli and U. Ravaioli, “Analysis of variance-reduction schemes for ensemble Monte-Carlo simulation of semiconductor devices”, Solid-State Electron., vol. 41, pp. 599–605, 1997.CrossRefGoogle Scholar
  65. [1.65]
    R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles, Institute of Physics Publishing, Bristol, Philadelphia, 1988.CrossRefGoogle Scholar
  66. [1.66]
    P. Lugli and D. K. Ferry, “Electron-electron interaction and high field transport in Si”, Appl. Phys. Lett., vol. 46, pp. 594–596, 1985.CrossRefGoogle Scholar
  67. [1.67]
    M. V. Fischetti, S. E. Laux, and E. Crabbe, “Understanding hot-electron transport in silicon devices: Is there a shortcut?”, J. Appl. Phys., vol. 78, pp. 1058–1087, 1995.CrossRefGoogle Scholar
  68. [1.68]
    M. Y. Chang, D. W. Dyke, C. C. C. Leung, and P. A. Childs, “Modelling of gate currents in MOSFETs operating at low drain voltages”, in Proc. ESSDERC, Bologna, 1996, vol. 26, pp. 263–266.Google Scholar
  69. [1.69]
    J. D. Bude and M. Mastrapasqua, “Impact ionization and distribution functions in sub-micron nMOSFET technologies”, IEEE Electron Device Lett., vol. 16, no. 10, pp. 439–441, 1995.CrossRefGoogle Scholar
  70. [1.70]
    R. Brunetti and C. Jacoboni, “Transient and stationary properties of hot-carrier diffusivity in semiconductors”, in Semiconductors Probed by Ultrafast Laser Spectroscopy, vol. 1, pp. 367–412. Academic Press, New York, 1984.Google Scholar
  71. [1.71]
    S. E. Laux and M. V. Fischetti, “Monte-Carlo Simulation of Submicrometer Si n-MOSFET’s at 77 and 300 K”, IEEE Electron Device Lett., vol. 9, no. 9, pp. 467–469, 1988.CrossRefGoogle Scholar
  72. [1.72]
    J. Bude and K. Hess, “Impact ionization in semiconductors: Effects of high electric fields and high scattering rates”, Phys. Rev. B, vol. 45, pp. 10958–10964, 1992.CrossRefGoogle Scholar
  73. [1.73]
    J. D. Bude, “Gate current by impact ionization feedback in sub-micron MOSFET technologies”, in 1995 Symposium on VLSI technology, AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, 1995.Google Scholar
  74. [1.74]
    M. V. Fischetti and S. E. Laux, “Monte Carlo study of sub-band-gap impact ionization in small silicon field-effect transistors”, in IEDM, 1995, pp. 305–308.Google Scholar
  75. [1.75]
    R. B. Hulfachor, K. W. Kim, M. A. Littlejohn, and C. M. Osburn, “Comparative analysis of hot electron injection and induced device degradation in scaled 0.1 pm SOI n-MOSFET’s using Monte Carlo simulation”, IEEE Electron Device Lett., vol. 17, no. 2, pp. 53–55, 1996.CrossRefGoogle Scholar
  76. [1.76]
    S. E. Laux, “Techniques for small-signal analysis of semiconductor devices”, IEEE Trans. Electron Devices, vol. 32, no. 10, pp. 2028–2037, Oct. 1985.CrossRefGoogle Scholar
  77. [1.77]
    F. Bonani and G. Ghione, Noise in Semiconductor Devices, Modeling and Simulation, Advanced Microelectronics. Springer, Berlin, Heidelberg, New York, 2001.Google Scholar
  78. [1.78]
    R. Thoma, A. Emunds, B. Meinerzhagen, H. J. Peifer, and W. L. Engl, “Hydrodynamic equations for semiconductors with nonparabolic bandstructures”, IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1343–1352, 1991.CrossRefGoogle Scholar
  79. [1.79]
    B. Neinhüs, S. Decker, P. Graf, F. M. Buffer, and B. Meinerzhagen, “Consistent hydrodynamic and Monte-Carlo simulation of SiGe HBTs based on table models for the relaxation times”, VLSI Design, vol. 8, pp. 387–391, 1998.CrossRefGoogle Scholar
  80. [1.80]
    P. Shiktorov, E. Starikov, V. Gruzinskis, T. Gonzalez, J. Mateos, D. Pardo, L. Reggiani, L. Varani, and J. C. Vaissere, “Langevin forces and generalized transfer fields for noise modeling in deep submicron devices”, IEEE Trans. Electron Devices, vol. 47, no. 10, pp. 1992–1998, 2000.CrossRefGoogle Scholar
  81. [1.81]
    C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Comparative study of electron transit times evaluated by DD, HD, and MC device simulation for a SiGe HBT”, IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2216–2220, 2001.CrossRefGoogle Scholar
  82. [1.82]
    C. Jungemann, B. Neinhüs, and B. Meinerzhagen, “Hierarchical 2-D DD and HD noise simulations of Si and SiGe devices: Part I—Theory”, IEEE Trans. Electron Devices, vol. 49, no. 7, pp. 1250–1257, 2002.CrossRefGoogle Scholar
  83. [1.83]
    H. J. Peifer, B. Meinerzhagen, R. Thoma, and W. L. Engl, “Evaluation of impact ionization modeling in the framework of hydrodynamic equations”, in IEDM Tech. Dig., 1991, pp. 131–134.Google Scholar
  84. [1.84]
    C. Jungemann, B. Neinhüs, S. Decker, and B. Meinerzhagen, “Hierarchical 2-D DD and HD noise simulations of Si and SiGe devices: Part II Results”, IEEE Trans. Electron Devices, vol. 49, no. 7, pp. 1258–1264, 2002.CrossRefGoogle Scholar
  85. [1.85]
    G. J. L. Ouwerling, “Physical parameter extraction by inverse device modelling: Application to one-and two-dimensional doping profiling”, Solid-State Electron., vol. 33, pp. 757–771, 1990.CrossRefGoogle Scholar
  86. [1.86]
    N. Khalil, J. Faricelli, D. Bell, and S. Selberherr, “The extraction of two-dimensional MOS transistor doping via inverse modeling”, IEEE Electron Device Lett., vol. 16, no. 1, pp. 17–19, 1995.CrossRefGoogle Scholar
  87. [1.87]
    H. Goto, S. Yamaguchi, and C. Jungemann, “Inverse modeling as a basis for predictive device simulation of deep submicron metal-oxide-semiconductor field effect transistors”, Jpn. J. Appl. Phys., vol. 37, pp. 5437–5443, 1998.CrossRefGoogle Scholar
  88. [1.88]
    Z. K. Lee, M. B. Mcllrath, and D. A. Antoniadis, “Two-dimensional doping profile characterization of MOSFET’s by inverse modeling using I-V characteristics in the subthreshold region”, IEEE Trans. Electron Devices, vol. 46, no. 8, pp. 1640–1649, 1999.CrossRefGoogle Scholar
  89. [1.89]
    B. Meinerzhagen, J. M. J. Krücken, K. H. Bach, F. M. Stecher, and W. L. Engl, “A modular approach to parallel mixed level device/circuit simulation”, in VLSI Process/Device Modeling Workshop, Kawasaki, Aug. 1990, pp. 170–172.Google Scholar
  90. [1.90]
    T. Kobori and T. Wada, “Efficient device simulation for small scale circuit level analysis”, IEICE Trans. on Electronics, vol. 74, pp. 1634–1640, 1991.Google Scholar
  91. [1.91]
    K. Mayaram and D. O. Pederson, “Coupling algorithms for mixed-level circuit and device simulation”, IEEE Trans. Computer-Aided Des., vol. 11, pp. 1003–1012, 1992.CrossRefGoogle Scholar
  92. [1.92]
    T. Grasser and S. Selberherr, “Fully coupled electrothermal mixed-mode device simulation of SiGe HBT circuits”, IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1421–1427, 2001.CrossRefGoogle Scholar
  93. [1.93]
    J. M. Higman, K. Hess, C. G. Hwang, and R. W. Dutton, “Coupled Monte Carlo-drift diffusion analysis of hot-electron effects in MOSFET’s”, IEEE Trans. Electron Devices, vol. 36, no. 5, pp. 930–937, 1989.CrossRefGoogle Scholar
  94. [1.94]
    C. Jungemann and B. Meinerzhagen, “On the applicability of nonself-consistent Monte Carlo device simulations”, IEEE Trans. Electron Devices, vol. 49, no. 6, pp. 1072–1074, 2002.CrossRefGoogle Scholar
  95. [1.95]
    C. Jungemann and B. Meinerzhagen, “In-advance CPU time analysis for Monte Carlo device simulations”, Proc. SISPAD, Kobe (Japan), 2002.Google Scholar
  96. [1.96]
    O. Madelung, Introduction to Solid State Theory, Springer, Berlin, 1978.CrossRefGoogle Scholar
  97. [1.97]
    A. Reklaitis, “The calculation of electron transient response in semiconductors by the Monte Carlo technique”, Phys. Lett., vol. 13, pp. 367–370, 1982.Google Scholar
  98. [1.98]
    H.-J. Peifer, “Monte-Carlo Simulation des Hochenergietransports von Elektro-nen in submikron MOS-Strukturen”, Doctor thesis, RWTH Aachen, Aachen, 1992, Augustinus Buchhandlung.Google Scholar
  99. [1.99]
    W. Brauer and H. W. Streitwolf, Theoretische Grundlagen der Halbleiterphysik, Vieweg, Braunschweig, 2nd edition, 1977.Google Scholar
  100. [1.100]
    R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers”, Phys. Rev., vol. 126, pp. 2002–2013, 1962.CrossRefGoogle Scholar
  101. [1.101]
    H. Nakagawa and S. Zukotynski, “Drift mobility and Hall coefficient factor of holes in germanium and silicon”, Can. J. Phys., vol. 56, pp. 364–372, 1978.CrossRefGoogle Scholar
  102. [1.102]
    Sh. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press, Cambridge, New York, Melbourne, 1996.Google Scholar
  103. [1.103]
    E. V. Sukhorukov and D. Loss, “Noise in multiterminal diffuse conductors: Universality, nonlocality, and exchange effects”, Phys. Rev. B, vol. 59, pp. 13054–13066, 1999.CrossRefGoogle Scholar
  104. [1.104]
    C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials”, Rev. Mod. Phys., vol. 55, pp. 645–705, 1983.CrossRefGoogle Scholar
  105. [1.105]
    M. Nedjalkov and P. Vitanov, “Iteration approach for solving the Boltzmann equation with the Monte Carlo method”, Solid-State Electron., vol. 32, pp. 893–896, 1989.CrossRefGoogle Scholar
  106. [1.106]
    R. Brunetti, C. Jacoboni, A. Matulionis, and V. Dienys, “Effect of interparticle collisions on energy relaxation of carriers in semiconductors”, Physica, vol. 134B, pp. 369–373, 1985.Google Scholar
  107. [1.107]
    R. Brunetti, C. Jacoboni, F. Nava, L. Reggiani, G. Bosman, and R. J. J. Zijlstra, “Diffusion coefficient of electrons in silicon”, J. Appl. Phys., vol. 52, pp. 6713–6722, 1981.CrossRefGoogle Scholar
  108. [1.108]
    E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact ionization in silicon”, Appl. Phys. Lett., vol. 62, pp. 3339–3341, 1993.CrossRefGoogle Scholar
  109. [1.109]
    M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, Springer, New York, 2nd edition, 1989.CrossRefGoogle Scholar
  110. [1.110]
    R. K. Smith and J. Bude, “Highly efficient full band Monte Carlo simulations”, in Proceedings of the International Workshop on Computational Electronics, Leeds, Aug. 1993, pp. 224–230.Google Scholar
  111. [1.111]
    E. X. Wang, M. D. Giles, S. Yu, F. A. Leon, A. Hiroki, and S. Odanaka, “Recursive M-tree method for 3-D adaptive tetrahedral mesh refinement and its application to Brillouin zone discretization”, in Proc. SISPAD, Tokyo, Sept. 1996, pp. 67–68.Google Scholar
  112. [1.112]
    P. W. Rambo and J. Denavit, “Time stability of Monte Carlo device simulation”, IEEE Trans. Computer-Aided Des., vol. 12, pp. 1734–1741, 1993.CrossRefGoogle Scholar
  113. [1.113]
    S. E. Laux, “On particle-mesh coupling in Monte Carlo semiconductor device simulation”, IEEE Trans. Computer-Aided Des., vol. 15, pp. 1266–1277, 1996.CrossRefGoogle Scholar
  114. [1.114]
    M. G. Gray, T. E. Booth, T. J. T. Kwan, and C. M. Snell, “A multi-comb variance reduction scheme for Monte Carlo semiconductor simulators”, IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 918–924, 1998.CrossRefGoogle Scholar
  115. [1.115]
    H. Kim, H. S. Min, T. W. Tang, and Y. J. Park, “An extended proof of the Ramo-Shockley theorem”, Solid-State Electron., vol. 34, pp. 1251–1253, 1991.CrossRefGoogle Scholar
  116. [1.116]
    P. D. Yoder, K. Gärtner, U. Krumbein, and W. Fichtner, “Optimized terminal current calculation for Monte Carlo device simulation”, IEEE Trans. Computer-Aided Des., vol. 16, pp. 1082–1087, 1997.CrossRefGoogle Scholar
  117. [1.117]
    J. W. Slotboom, G. Streutker, G. J. T. Davids, and P. B. Hartog, “Surface impact ionization in Silicon devices”, in IEDM, 1987, pp. 494–497.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Christoph Jungemann
    • 1
  • Bernd Meinerzhagen
    • 1
  1. 1.Institut für Theoretische Elektrotechnik und MikroelektronikUniversität BremenBremenGermany

Personalised recommendations