Advertisement

Abstract

A large number of proteins and lipids in biological systems are glycosylated. Comparisons of well characterized protein sequence data base entries indicate that more than half of all proteins in nature will eventually be identified as glycoproteins. Only recently, the importance of carbohydrates in biology has been more fully appreciated. With the introduction of molecular genetics, simplification of expression methods, and improvement of analytical techniques, a rapid expansion of the field of glycobiology has taken place, particularly in the domain of eukaryotic organisms. For an in-depth review of the structure, function and molecular biology of eukaryotic glycoproteins, the reader is referred to a number of recent reviews and monographs (1-9).

Keywords

Glycan Structure Clostridium Thermocellum Major Outer Membrane Protein Glycan Chain Geobacillus Stearothermophilus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen HJ, Kisailus EC (eds) (1992) Glycoconjugates: Composition, Structure and Function. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Varki A (1993) Biological Roles of Oligosaccharides: All of the Theories are Correct. Glycobiology 3: 97CrossRefGoogle Scholar
  3. 3.
    Fukuda M, Kobata A (eds) (1993) Glycobiology. A Practical Approach. IRL Press, OxfordGoogle Scholar
  4. 4.
    Fukuda M, Hindsgaul O (eds) (1994) Molecular Glycobiology. IRL Press, OxfordGoogle Scholar
  5. 5.
    Montreuil J, Vliegenthart JFG, Schachter H (eds) (1995) Glycoproteins. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Rudd PM, Dwek RA (1997) Glycosylation: Heterogeneity and the 3D Structure of Proteins. Crit Rev Biochem Mol Biol 32: 1CrossRefGoogle Scholar
  7. 7.
    Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and Principles of O-Linked Glycosylation. Crit Rev Biochem Mol Biol 33: 151CrossRefGoogle Scholar
  8. 8.
    Apweiler R, Hermjakob H, Sharon N (1999) On the Frequency of Protein Glycosylation, as Deduced from Analysis of the SWISS-PROT Database. Biochim Biophys Acta 1473: 4CrossRefGoogle Scholar
  9. 9.
    Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (eds) (1999) Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  10. 10.
    Lechner J, Wieland F (1989) Structure and Biosynthesis of Prokaryotic Glycoproteins. Annu Rev Biochem 58: 173CrossRefGoogle Scholar
  11. 11.
    Messner P, Sleytr UB (1991) Bacterial Surface Layer Glycoproteins. Glycobiology 1: 545CrossRefGoogle Scholar
  12. 12.
    Erickson PR, Herzberg MC (1993) Evidence for the Covalent Linkage of Carbohydrate Polymers to a Glycoprotein from Streptococcus sanguis. J Biol Chem 268: 23780Google Scholar
  13. 13.
    Sandercock LE, MacLeod AM, Ong E, Warren RAJ (1994) Non-S-layer Glycoproteins in Eubacteria. FEMS Microbiol Lett 118: 1CrossRefGoogle Scholar
  14. 14.
    Sumper M, Wieland FT (1995) Bacterial Glycoproteins. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins. Elsevier, Amsterdam, p 455CrossRefGoogle Scholar
  15. 15.
    Messner P (1996) Chemical Composition and Biosynthesis of S-Layers. In: Sleytr UB, Messner P, Pum D, Sára M (eds) Crystalline Bacterial Cell Surface Proteins. RG Landes/Academic Press, Austin, TX, p 35Google Scholar
  16. 16.
    Messner P (1997) Bacterial Glycoproteins. Glycoconjugate J 14: 3CrossRefGoogle Scholar
  17. 17.
    Moens S, Vanderleyden J (1997) Glycoproteins in Prokaryotes. Arch Microbiol 168: 169CrossRefGoogle Scholar
  18. 18.
    Moens S (2000) Non-S-Layer Glycoproteins. A Review. In: Doyle RJ (ed) Glycomicrobiology. Kluwer Academic/Plenum Publishers, New York, p 1Google Scholar
  19. 19.
    Messner P, Schäffer C (2000) Surface Layer Glycoproteins of Bacteria and Archaea. In: Doyle RJ (ed) Glycomicrobiology. Kluwer Academic/Plenum Publishers, New York, p 93Google Scholar
  20. 19a.
    Schäffer C, Messner P (2001) Glycobiology of Surface Layer Proteins. Biochimie 83: 591CrossRefGoogle Scholar
  21. 20.
    Schäffer C, Graninger M, Messner P (2001) Prokaryotic Glycosylation. Proteomics 1: 248CrossRefGoogle Scholar
  22. 21.
    Tuomanen EI (1996) Surprise? Bacteria Glycosylate Proteins Too. J Clin Invest 98: 2659CrossRefGoogle Scholar
  23. 22.
    Vliegenthart JFG, Casset F (1998) Novel Forms of Protein Glycosylation. Curr Opin Struct Biol 8: 565CrossRefGoogle Scholar
  24. 23.
    Taylor CM (1998) Glycopeptides and Glycoproteins: Focus on the Glycosidic Linkage. Tetrahedron 54: 11317CrossRefGoogle Scholar
  25. 24.
    Sleytr UB, Beveridge TJ (1999) Bacterial S-Layers. Trends Microbiol 7: 253CrossRefGoogle Scholar
  26. 25.
    Mescher MF, Strominger JL (1976) Structural (Shape-Maintaining) Role of the Cell Surface Glycoprotein of Halobacterium salinarium. Proc Natl Acad Sci USA 73: 2687CrossRefGoogle Scholar
  27. 26.
    Sleytr UB, Thorne KJI (1976) Chemical Characterization of the Regularly Arranged Surface Layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum. J Bacteriol 126: 377Google Scholar
  28. 27.
    Sumper M (1987) Halobacterial Glycoprotein Biosynthesis. Biochim Biophys Acta 906: 69CrossRefGoogle Scholar
  29. 28.
    Sleytr UB, Messner P, Pum D, Sára M (eds) (1996) Crystalline Bacterial Cell Surface Proteins. RG Landes/Academic Press, Austin TXGoogle Scholar
  30. 29.
    Sára M, Sleytr UB (2000) S-Layer Proteins. J Bacteriol 182: 859CrossRefGoogle Scholar
  31. 30.
    Beveridge TJ, Pouwels PH, Sára M, Kotiranta A, Lounatmaa K, Kari K, Kerosuo E, Haapasalo M, Egelseer EM, Schocher I, Sleytr UB, Morelli L, Callegari M-L, Nomellini JF, Bingle WH, Smit J, Leibovitz E, Lemaire M, Miras I, Salamitou S, Béguin P, Ohayon H, Gounon P, Matuschek M, Sahm K, Bahl H, Grogono-Thomas R, Dworkin J, Blaser MJ, Woodland RM, Newell DG, Kessel M, Koval SF (1997) Functions of S-Layers. FEMS Microbiol Rev 20: 99CrossRefGoogle Scholar
  32. 31.
    Sleytr UB, Messner P, Pum D, Sára M (1999) Crystalline Bacterial Cell Surface Layers (S-layers): From Supramolecular Cell Structure to Biomimetics and Nano-technology. Angew Chemie, Int Ed, 38: 1034CrossRefGoogle Scholar
  33. 32.
    Sleytr UB, Sára M, Pum D (2000) Crystalline Bacterial Cell Surface Layers (S-Layers): A Versatile Self-Assembly System. In: Ciferri A (ed) Supramolecular Polymerization. Marcel Dekker, New York, p 177Google Scholar
  34. 33.
    Kuen B, Sleytr UB, Lubitz W (1994) Sequence Analysis of the sbsA Gene Encoding the 130-kDa Surface-Layer Protein of Bacillus stearothermophilus Strain PV72. Gene 145: 115Google Scholar
  35. 34.
    Kuen B, Koch A, Asenbauer E, Sára M, Lubitz W (1997) Molecular Characterization of the Bacillus stearothermophilus PV72 S-Layer Gene sbsB Induced by Oxidative Stress. J Bacteriol 179: 1664Google Scholar
  36. 35.
    Jarosch M, Egelseer EM, Mattanovich D, Sleytr UB, Sára M (2000) S-Layer Gene sbsC of Bacillus stearothermophilus ATCC 12980: Molecular Characterization and Heterologous Expression in Escherichia tali. Microbiology 146: 273Google Scholar
  37. 35a.
    Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, lvanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic Study of Aerobic Thermophilic Bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from Petrol Reservoirs and Transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as New Combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. therrcodenitrificans. Int J Syst Evol Microbiol 51: 433Google Scholar
  38. 36.
    Sára M, Egelseer EM, Dekitsch C, Sleytr UB (1998) Identification of Two Binding Domains, One for Peptidoglycan and Another for a Secondary Cell Wall Polymer, on the N-Terminal Part of the S-Layer Protein SbsB from Bacillus stearotherrüophilus PV72/p2. J Bacteriol 180: 6780Google Scholar
  39. 36a.
    Sára M (2001) Conserved Anchoring Mechanisms Between Crystalline Cell Surface S-Layer Proteins and Secondary Cell Wall Polymers in Gram-Positive Bacteria. Trends Microbiol 9: 47CrossRefGoogle Scholar
  40. 37.
    Brechtel E, Matuschek M, Hellberg A, Egelseer EM, Schmid R, Bahl H (1999) Cell Wall of Thermoanaerobacterium thermosulfurigenes EMI: Isolation of Its Components and Attachment of the Xylanase XynA. Arch Microbiol 171: 159CrossRefGoogle Scholar
  41. 38.
    Fujino T, Béguin P, Aubert JP (1993) Organization of a Clostridium thermocellum Gene Cluster Encoding the Cellulosomal Scaffolding Protein CipA and a Protein Possibly Involved in Attachment of the Cellulosome to the Cell Surface. J Bacteriol 175: 1891Google Scholar
  42. 39.
    Lupas A, Engelhardt H, Peters J, Santarius U, Volker S, Baumeister W (1994) Domain Structure of the Acetogenium kivui Surface Layer Revealed by Electron Crystallography and Sequence Analysis. J Bacteriol 176: 1224Google Scholar
  43. 40.
    Ries W, Hotzy C, Schocher I, Sleytr UB, Sára M (1997) Evidence that the N-Terminal Part of the S-Layer Protein from Bacillus stearothermophilus PV72/p2 Recognizes a Secondary Cell Wall Polymer. J Bacteriol 179: 3892Google Scholar
  44. 41.
    Egelseer EM, Leitner K, Jarosch M, Hotzy C, Zayni S, Sleytr UB, Sára M (1998) The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition. J Bacteriol 180: 1488Google Scholar
  45. 42.
    Schäffer C, Kählig H, Christian R, Schulz G, Zayni S, Messner P (1999) The Diacetamidodideoxyuronic-Acid-Containing Glycan Chain of Bacillus stearothermophilus NRS 2004/3a Represents the Secondary Cell Wall Polymer of Wild-Type B. stearothermophilus Strains. Microbiology 145: 1575CrossRefGoogle Scholar
  46. 43.
    Schneewind O, Mihaylova-Petkov D, Model P (1993) Cell Wall Sorting Signals in Surface Proteins of Gram-Positive Bacteria. EMBO J 12: 4803Google Scholar
  47. 44.
    Messner P, Sleytr UB, Christian R, Schulz G, Unger FM (1987) Isolation and Structure Determination of a Diacetamidodideoxyuronic Acid-Containing Glycan Chain from the S-Layer Glycoprotein of Bacillus stearothermophilus NRS 2004/3a. Carbohydr Res 168: 211CrossRefGoogle Scholar
  48. 45.
    Schäffer C, Müller N, Mandai PK, Christian R, Zayni S, Messner P (2000) A Pyrophosphate Bridge Links the Pyruvate-Containing Secondary Cell Wall Polymer of Paenibacillus alvei CCM 2051 to Muramic Acid. Glycoconjugate J 17: 681CrossRefGoogle Scholar
  49. 46.
    Ilk N, Kosma P, Puchberger M, Egelseer EM, Mayer H, Sleytr UB, Sára M (1999) Structural and Functional Analyses of the Secondary Cell Wall Polymer of Bacillus sphaericus CCM 2177 That Serves as an S-Layer-Specific Anchor. J Bacteriol 181: 7643Google Scholar
  50. 47.
    Marquis RE (1973) Immersion Refractometry of Isolated Bacterial Cell Walls. J Bacteriol 116: 1273Google Scholar
  51. 48.
    Altman E, Schäffer C, Brisson J-R, Messner P (1996) Isolation and Characterization of an Amino Sugar-Rich Glycopeptide from the Surface Layer Glycoprotein of Therrnoanaerobacterium thermosaccharolyticum E207–71. Carbohydr Res 295: 245Google Scholar
  52. 48a.
    Steindl C, Schäffer C, Wugeditsch T, Graninger M, Müller N, Messner P, The First Biantennary Secondary Cell Wall Polymer of the Domain Bacteria, Isolated from Aneurinibacillus thermoaerophilus DSM 10155, and its Influence on the Assembly of the S-Layer Glycoprotein. Biochem J, submittedGoogle Scholar
  53. 49.
    Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH Domain Proteins Are Non-Covalently Anchored to the Cell Surface via a Conserved Mechanism Involving Wall Polysaccharide Pyruvylation. EMBO J 19: 4473CrossRefGoogle Scholar
  54. 50.
    Masuda K, Kawata T (1985) Reassembly of a Regularly Arranged Protein in the Cell Wall of Lactobacillus buchneri and Its Reattachment to Cell Walls: Chemical Modification Studies. Microbiol Immunol 29: 927Google Scholar
  55. 51.
    Lis H, Sharon N (1993) Protein Glycosylation. Structural and Functional Aspects. Eur J Biochem 218: 1CrossRefGoogle Scholar
  56. 52.
    Navarre WW, Schneewind O (1999) Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope. Microbiol Mol Biol Rev 63: 174Google Scholar
  57. 53.
    Kärcher U, Schröder H, Haslinger E, Allmaier G, Schreiner R, Wieland F, Haselbeck A, König H (1993) Primary Structure of the Heterosaccharide of the Surface Glycoprotein of Methanothermus fervidus. J Biol Chem 268: 26821Google Scholar
  58. 54.
    Wieland F, Heitzer R, Schaefer W (1983) Asparaginyl-Glucose: Novel Type of Carbohydrate Linkage. Proc Natl Acad Sci USA 80: 5470CrossRefGoogle Scholar
  59. 55.
    Pellerin P, Fournet B, Debeire P (1990) Evidence for the Glycoprotein Nature of the Cell Sheath of Methanosaeta-Like Cells in the Culture of Methanothrix soehngenii Strain FE. Can J Microbial 36: 631CrossRefGoogle Scholar
  60. 56.
    Mengele R, Sumper M (1992) Drastic Differences in Glycosylation of Related S-Layer Glycoproteins from Moderate and Extreme Halophiles. J Biol Chem 267: 8182Google Scholar
  61. 57.
    Wieland F, Lechner J, Bernhardt G, Sumper M (1981) Sulphation of a Repetitive Saccharide in Halobacterial Cell Wall Glycoprotein. Occurrence of a Sulphated Lipid-Linked Precursor. FEBS Lett 132: 319CrossRefGoogle Scholar
  62. 58.
    Wieland F, Lechner J, Sumper M (1982) The Cell Wall Glycoprotein of Halobacteria: Structural, Functional and Biosynthetic Aspects. Zbl Bakt Hyg, I Abt Orig C 3: 178Google Scholar
  63. 59.
    Sumper M (1993) S-Layer Glycoproteins from Moderately and Extremely Halophilic Archaeobacteria. In: Beveridge TJ, Koval SF (eds) Advances in Bacterial Paracrystalline Surface Layers. Plenum, New York, p 109Google Scholar
  64. 60.
    Trachtenberg S, Pinnick B, Kessel M (2000) The Cell Surface Glycoprotein Layer of the Extreme Halophile Halobacterium salinarium and Its Relation to Haloferax volcanii: Cryo-Electron Tomography of Freeze-Substituted Cells and Projection Studies of Negatively Stained Envelopes. J Struct Biol 130: 10CrossRefGoogle Scholar
  65. 61.
    Kessel M, Wildhaber I, Cohen S, Baumeister W (1988) Three-Dimensional Structure of the Regular Surface Glycoprotein Layer of Halobacterium volcanii from the Dead Sea. EMBO J 7: 1549Google Scholar
  66. 62.
    Baumeister W, Lembcke G (1992) Structural Features of Archaebacterial Cell Envelopes. J Bioenerg Biomembr 24: 567CrossRefGoogle Scholar
  67. 63.
    Messner P, Pum D, Sára M, Stetter KO, Sleytr UB (1986) Ultrastructure of the Cell Envelope of the Archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J Bacteriol 166: 1046Google Scholar
  68. 64.
    Wildhaber I, Baumeister W (1987) The Cell Envelope of Thermoproteus tenax: Three-Dimensional Structure of the Surface Layer and its Role in Shape Maintenance. EMBO J 6: 1475Google Scholar
  69. 65.
    Eichler J (2000) Novel Glycoproteins of the Halophilic Archaeon Haloferax volcanii. Arch Microbiol 173: 445CrossRefGoogle Scholar
  70. 65a.
    Eichler J (2001) Post-Translational Modification of the S-Layer Glycoprotein Occurs Following Translocation Across the Plasma Membrane of the Haloarchaeon Haloferax volcanii. Eur J Biochem 268: 4366CrossRefGoogle Scholar
  71. 66.
    Zellner G, Messner P, Winter J, Stackebrandt E (1998) Methanoculleus palmolei sp. nov., an Irregularly Coccoid Methanogen from an Anaerobic Digester Treating Wastewater of a Palmoil Plant in North-Sumatra, Indonesia. Int J Syst Bacteriol 48: 1111CrossRefGoogle Scholar
  72. 67.
    Zabel HP, König H, Winter J (1985) Emended Description of Methanogenium thermophilicumRivard and Smith, and Assignment of New Isolates to This Species. System Appl Microbiol 6: 72CrossRefGoogle Scholar
  73. 68.
    Zellner G, Sleytr UB, Messner P, Kneifel H, Winter J (1990) Methanogenium liminatans spec. nov., a New Coccoid, Mesophilic Methanogen Able to Oxidize Secondary Alcohols. Arch Microbiol 153: 287CrossRefGoogle Scholar
  74. 69.
    Evrard C, Declerq JP, Debaerdemaeker T, König H (1999). The First Successful Crystallization of a Prokaryotic Extremely Thermophilic Outer Surface Layer Glycoprotein. Z. Kristallogr 214: 427CrossRefGoogle Scholar
  75. 70.
    Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG, Suzina NE, Trotsenko YA, Gottschalk G (1999) Osmoadaptation in Halophilic and Alkaliphilic Methanotrophs. Arch Microbiol 172: 321CrossRefGoogle Scholar
  76. 71.
    Knirel YA, Kochetkov NK (1994) The Structure of Lipopolysaccharides of Gram-Negative Bacteria. III. The Structure of 0-Antigens. Biochemistry (Moscow) 59: 1325Google Scholar
  77. 72.
    Rocchetta HL, Burrows LL, Lam JS (1999) Genetics of 0-Antigen Biosynthesis in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 63: 523Google Scholar
  78. 73.
    Altman E, Schäffer C, Brisson J-R, Messner P (1995) Characterization of the Glycan Structure of a Major Glycopeptide from the Surface Layer Glycoprotein of Clostridium thermosaccharolyticum E207–71. Eur J Biochem 229: 308CrossRefGoogle Scholar
  79. 74.
    Kosma P, Neuninger C, Christian R, Schulz G, Messner P (1995) Glycan Structure of the S-Layer Glycoprotein of Bacillus sp. L420–91. Glycoconjugate J 12: 99CrossRefGoogle Scholar
  80. 75.
    Schäffer C, Müller N, Christian R, Graninger M, Wugeditsch T, Scheberl A, Messner P (1999) Complete Glycan Structure of the S-Layer Glycoprotein of Aneurinibacillus thermoaerophilus GS4–97. Glycobiology 9: 407CrossRefGoogle Scholar
  81. 76.
    Kosma P, Wugeditsch T, Christian R, Zayni S, Messner P (1995) Glycan Structure of a Heptose-Containing S-Layer Glycoprotein of Bacillus thermoaerophilus. Glycobiology 5: 791; Erratum: Glycobiology (1996) 6: 5Google Scholar
  82. 77.
    Vliegenthart JFG, Montreuil J (1995) Primary Structure of Glycoprotein Glycans. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins. Elsevier, Amsterdam, p 13CrossRefGoogle Scholar
  83. 78.
    Bock K, Schuster-Kolbe J, Altman E, Allmaier G, Stahl B, Christian R, Sleytr UB, Messner P (1994) Primary Structure of the 0-Glycosidically Linked Glycan Chain of the Crystalline Surface Layer Glycoprotein of Thermoanaerobacter thermohydrosulfuricus L111–69. Galactosyl Tyrosine as a Novel Linkage Unit. J Biol Chem 269: 7137Google Scholar
  84. 79.
    Gerwig GJ, Kamerling JP, Vliegenthart JFG, Morag (Morgenstern) E, Lamed R, Bayer EA (1991) Primary Structure of 0-Linked Carbohydrate Chains in the Cellulosome of Different Clostridium thermocellum Strains. Eur J Biochem 196: 115Google Scholar
  85. 80.
    Messner P, Christian R, Neuninger C, Schulz G (1995) Similarity of “Core” Structures in Two Different Glycans of Tyrosine-Linked Eubacterial S-Layer Glycoproteins. J Bacteriol 177: 2188Google Scholar
  86. 81.
    Messner P, Christian R, Kolbe J, Schulz G, Sleytr UB (1992) Analysis of a Novel Linkage Unit of 0-Linked Carbohydrates from the Crystalline Surface Layer Glycoprotein of Clostridium thermohydrosulfuricum S102–70. J Bacteriol 174: 2236Google Scholar
  87. 82.
    Schäffer C, Dietrich K, Unger B, Scheberl A, Rainey FA, Kählig H, Messner P (2000) A Novel Type of Carbohydrate-Protein Linkage Region in the Tyrosine-Bound S-Layer Glycan of Thermoanaerobacterium thermosaccharolyticum D120–70. Eur J Biochem 267: 5482CrossRefGoogle Scholar
  88. 83.
    Meier-Stauffer K, Busse H-J, Rainey FA, Burghardt J, Scheberl A, Hollaus F, Kuen B, Makristathis A, Sleytr UB, Messner P (1996) Description of Bacillus thermoaerophilus sp. nov., to Include Sugar Beet Isolates and Bacillus brevis ATCC 12990. Int J Syst Bacteriol 46: 532CrossRefGoogle Scholar
  89. 84.
    Lan R, Reeves PR (1996) Gene Transfer is a Major Factor in Bacterial Evolution. Mol Biol Evol 13: 47CrossRefGoogle Scholar
  90. 85.
    Lan R, Reeves PR (2000) Intraspecies Variation in Bacterial Genomes: The Need for a Species Genome Concept. Trends Microbiol 8: 396CrossRefGoogle Scholar
  91. 86.
    Wugeditsch T, Zachara NE, Puchberger M, Kosma P, Gooley AA, Messner P (1999) Structural Heterogeneity in the Core Oligosaccharide of the S-Layer Glycoprotein from Aneurinibacillus thermoaerophilus DSM 10155. Glycobiology 9: 787CrossRefGoogle Scholar
  92. 87.
    Zachara NE, Gooley AA (2000) Identification of Glycosylation Sites in Mucin Peptides. In: Corfield AP (ed) Glycoprotein Methods and Protocols. The Mucins. Methods in Molecular Biology, vol 125. Humana Press, Totowa, NJ, p 121CrossRefGoogle Scholar
  93. 88.
    Kadurugamuwa JL, Mayer A, Messner P, Sára M, Sleytr UB, Beveridge TJ (1998) S-Layered Aneurinibacillus and Bacillus spp. are Susceptible to the Lytic Action of Pseudomonas aeruginosa Membrane Vesicles. J Bacteriol 180: 2306Google Scholar
  94. 89.
    Allmaier G, Schäffer C, Messner P, Rapp U, Mayer-Posner FJ (1995) Accurate Determination of the Molecular Weight of the Major Surface Layer Protein Isolated from Clostridium thermosaccharolyticum by Time-of-Flight Mass Spectrometry. J Bacteriol 177: 1402Google Scholar
  95. 90.
    Altman E, Brisson J-R, Messner P, Sleytr UB (1990) Chemical Characterization of the Regularly Arranged Surface Layer Glycoprotein of Clostridium thermosaccharolyticum D120–70. Eur J Biochem 188: 73CrossRefGoogle Scholar
  96. 91.
    Sadovskaya I, Brisson J-R, Thibault P, Richards JC, Lam JS, Altman E (2000) Structural Characterization of the Outer Core and the 0-Chain Linkage Region of Lipopolysaccharide from Pseudomonas aeruginosa Serotype 05. Eur J Biochem 267: 1640CrossRefGoogle Scholar
  97. 92.
    Olsthoorn MMA, Petersen BO, Duus J, Haverkamp J, Thomas-Oates JE, Bock K, Holst O (2000) The Structure of the Linkage Between the 0-Specific Polysaccharide and the Core Region of the Lipopolysaccharide from Salmonella enterica Serovar Typhimurium Revisited. Eur J Biochem 267: 2014CrossRefGoogle Scholar
  98. 93.
    Cerquetti M, Molinari A, Sebastianelli A, Diociaiuti M, Petruzelli R, Capo C, Mastrantonio P (2000) Characterization of Surface Layer Proteins from Different Clostridium difficile Clinical Isolates. Microb Pathog 28: 363CrossRefGoogle Scholar
  99. 93a.
    Karjalainen T, Waligora-Dupriet AJ, Cerquetti M, Spigaglia P, Maggioni A, Mauri P, Mastrantonio P (2001) Molecular and Genomic Analysis of Genes Encoding Surface-Anchored Proteins from Clostridium difficile. Infect Immun 69: 3442CrossRefGoogle Scholar
  100. 93b.
    Calabi E, Ward S, Wren B, Parton T, Panico M, Morris H, Dell A, Dougan G, Fairweather N (2001) Molecular Characterization of the Surface Layer Proteins from Clostridium difficile. Mol Microbiol 40: 1187CrossRefGoogle Scholar
  101. 94.
    Mauri PL, Pietta PG, Maggioni A, Cerquetti M, Sebastianelli A, Mastrantonio P (1999) Characterization of Surface Layer Proteins from Clostridium difficile by Liquid Chromatography/Electrospray Ionization Mass Spectometry. Rapid Commun Mass Spectrom 13: 695CrossRefGoogle Scholar
  102. 95.
    Schäffer C, Wugeditsch T, Neuninger C, Messner P (1996) Are S-Layer Glycoproteins and Lipopolysaccharides Related? Microb Drug Resist 2: 17Google Scholar
  103. 96.
    Messner P, Sleytr UB (1988) Asparaginyl-Rhamnose: A Novel Type of Protein-Carbohydrate Linkage in a Eubacterial Surface-Layer Glycoprotein. FEBS Lett 228: 317CrossRefGoogle Scholar
  104. 97.
    Möschl A, Schäffer C, Sleytr UB, Messner P, Christian R, Schulz G (1993) Characterization of the S-Layer Glycoproteins of Two Lactobacilli. In: Beveridge TJ, Koval SF (eds) Advances in Bacterial Paracrystalline Surface Layers. Plenum, New York, p 281Google Scholar
  105. 98.
    Christian R, Schulz G, Schuster-Kolbe J, Allmaier G, Schmid ER, Sleytr UB, Messner P (1993) Complete Structure of the Tyrosine-Linked Saccharide Moiety from the Surface Layer Glycoprotein of Clostridium the rmohydrosulfuricum S102–70. J Bacteriol 175: 1250Google Scholar
  106. 99.
    Kornfeld R, Kornfeld S (1985) Assembly of Asparagine-Linked Oligosaccharides. Annu Rev Biochem 54: 631CrossRefGoogle Scholar
  107. 100.
    Lechner J, Wieland F, Sumper M (1985) Biosynthesis of Sulfated Saccharides N-Glycosidically Linked to the Protein via Glucose. Purification and Identification of Sulfated Dolichyl Monophosphoryl Tetrasaccharides from Halobacteria. J Biol Chem 260: 860Google Scholar
  108. 101.
    Kuntz C, Sonnenbichler J, Sonnenbichler I, Sumper M, Zeitler R (1997) Isolation and Characterization of Dolichol-Linked Oligosaccharides from Haloferax volcanii. Glycobiology 7: 897CrossRefGoogle Scholar
  109. 102.
    Zeitler R, Hochmuth E, Deutzmann R, Sumper M (1998) Exchange of Ser-4 for Val, Leu or Asn in the Sequon Asn-Ala-Ser Does Not Prevent N-Glycosylation of the Cell Surface Glycoprotein from Halobacterium halobium. Glycobiology 8: 1157CrossRefGoogle Scholar
  110. 103.
    Hartmann E, König H (1989) Uridine and Dolichyl Diphosphate Activated Oligosaccharides are Intermediates in the Biosynthesis of the S-Layer Glycoprotein of Methanothermus fervidus. Arch Microbial 151: 274CrossRefGoogle Scholar
  111. 104.
    Zhu BCR, Laine RA (1996) Dolichyl-Phosphomannose Synthase from the Archae Thermoplasma acidophilum. Glycobiology 6: 811CrossRefGoogle Scholar
  112. 105.
    Burda P, Aebi M (1999) The Dolichol Pathway of N-Linked Glycosylation. Biochim Biophys Acta 1426: 239CrossRefGoogle Scholar
  113. 106.
    Altman E, Brisson J-R, Messner P, Sleytr UB (1991) Chemical Characterization of the Regularly Arranged Surface Layer Glycoprotein of Bacillus alvei CCM 2051. Biochem Cell Biol 69: 72CrossRefGoogle Scholar
  114. 107.
    Hartmann E, Messner P, Allmeier G, König H (1993) Proposed Pathway for Biosynthesis of the S-Layer Glycoprotein of Bacillus alvei. J Bacteriol 175: 4515Google Scholar
  115. 108.
    Reeves PR (1994) Biosynthesis and Assembly of Lipopolysaccharide. New Comp Biochem 27: 281CrossRefGoogle Scholar
  116. 109.
    Whitfield C (1995) Biosynthesis of Lipopolysaccharide 0-Antigens. Trends Microbiol 3: 178CrossRefGoogle Scholar
  117. 110.
    Raetz CRH (1996) Bacterial Lipopolysaccharides: A Remarkable Family of Bioactive Macroamphiphiles. In: Neidhart FC, Curtis III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella enterica. Cellular and Molecular Microbiology, 2nd ed, vol 1. ASM Press, Washington, DC, p 1035Google Scholar
  118. 111.
    Heinrichs DE, Yethon JA, Whitfield C (1998) Molecular Basis for Structural Diversity in the Core Regions of the Lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbial 30: 221CrossRefGoogle Scholar
  119. 112.
    Kneidinger B, Graninger M, Adam G, Puchberger M, Kosma P, Zayni S, Messner P. (2001) Identification of Two GDP-6-Deoxy-D-Lyxo-4-Hexulose Reductases Sythesizing GDP-o-Rhamnose in Aneurinibacillus thermoaerophilus L420–91T. J Biol Chem 276: 5577.CrossRefGoogle Scholar
  120. 113.
    Kornfeld S, Glaser L (1961) The Enzymatic Synthesis of Thymidine-Linked Sugars. I. Thymidine Diphosphate Glucose. J Biol Chem 236: 1791Google Scholar
  121. 114.
    Glaser L, Kornfeld S (1961) The Enzymatic Synthesis of Thymidine-Linked Sugars. II. Thymidine Diphosphate L-Rhamnose. J Biol Chem 236: 1795Google Scholar
  122. 115.
    Lindquist L, Kaiser R, Reeves PR, Lindberg AA (1993) Purification, Characterization and HPLC Assay of Salmonella Glucose-l-Phosphate Thymidylyl-Transferase from the Cloned rfbA Gene. Eur J Biochem 211: 763CrossRefGoogle Scholar
  123. 116.
    Stein A, Kula M-R, Elling L (1998) Combined Preparative Enzymatic Synthesis of dTDP-6-Deoxy-4-keto-D-Glucose from dTDP and Sucrose. Glycoconjugate J 15: 139CrossRefGoogle Scholar
  124. 117.
    Graninger M, Nidetzky B, Heinrichs DE, Whitfield C, Messner P (1999) Characterization of dTDP-4-Dehydrorhamnose 3,5-Epimerase and dTDP-4-Dehydrorhamnose Reductase, Required for dTDP-L-Rhamnose Biosynthesis in Salmonella enterica Serovar Typhimurium LT2. J Biol Chem 274: 25069CrossRefGoogle Scholar
  125. 117a.
    Kneidinger B, Graninger M, Puchberger M, Kosma P, Messner P (2001) Biosynthesis of Nucleotide-Activated D-glycero-D-mana-Heptose. J Biol Chem 276: 20935CrossRefGoogle Scholar
  126. 118.
    Messner P, Sleytr UB (1992) Crystalline Bacterial Cell-Surface Layers. Adv Microb Physiol 33: 213CrossRefGoogle Scholar
  127. 119.
    Kuen B, Lubitz W, Barton GJ (1993) Structural and Functional Analysis of the S-Layer Protein from Bacillus stearothermophilus. In: Beveridge TJ, Koval SF (eds) Advances in Bacterial Paracrystalline Surface Layers. Plenum, New York, p 143Google Scholar
  128. 119a.
    Sleytr UB, Sára M, Pum D, Schuster B, Messner P, Schäffer C. Self Assembly Protein Systems: Microbial S-Layers. In: Steinbüchel A (ed) Biopolymers, vol. 3, Polyamides and Complex Proteinaceous Matrices (Part A). Wiley-VCH, Weinheim, in pressGoogle Scholar
  129. 120.
    Lechner J, Sumper M (1987) The Primary Structure of a Procaryotic Glycoprotein. Cloning and Sequencing of the Cell Surface Glycoprotein Gene of Halobacteria. J Biol Chem 262: 9724Google Scholar
  130. 121.
    Sumper M, Berg E, Mengele R, Strobl I (1990) Primary Structure and Glycosylation of the S-Layer Protein of Haloferax volcanii. J Bacteriol 172: 7111Google Scholar
  131. 122.
    Bröckl G, Behr M, Fabry S, Hensel R, Kaudewitz H, Biendl E, König H (1991) Analysis and Nucleotide Sequence of the Genes Encoding the Surface-Layer Glycoprotein of the Hyperthermophilic Methanogens Methanothermus fervidus and Methanothermus sociabilis. Eur J Biochem 199: 147CrossRefGoogle Scholar
  132. 123.
    Wakai H, Nakamura S, Kawasaki H, Takada K, Mizutani S, Aono R, Horikoshi K (1997) Cloning and Sequencing of the Gene Encoding the Cell Surface Glycoprotein of Haloarcula japonica Strain TR-1. Extremophiles 1: 29CrossRefGoogle Scholar
  133. 123a.
    Egelseer EM, Danhorn T, Pleschberger M, Hotzy C, Sleytr UB, Sára M (2001) Characterization of an S-Layer Glycoprotein Produced in the Course of S-Layer Variation of Bacillus stearothermophilus ATCC 12980 and Sequencing and Cloning of the sbsD Gene Encoding the Protein Moiety. Arch Microbiol 177: 70CrossRefGoogle Scholar
  134. 124.
    Schäffer C, Wugeditsch T, Kählig H, Scheberl A, Zayni S, Messner P (2002) The Surface Layer (S-Layer) Glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of Its Glycosylation. J Biol Chem 277: 6230CrossRefGoogle Scholar
  135. 125.
    Stingele F, Neeser J-R, Mollet B (1996) Identification and Characterization of the eps (Exopolysaccharide) Gene Cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178: 1680Google Scholar
  136. 126.
    Stingele F, Vincent SJF, Faber EJ, Newell JW, Kamerling JP, Neeser J-R (1999) Introduction of the Exopolysaccharide Gene Cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MGI363: Production and Characterization of an Altered Polysaccharide. Mol Microbiol 32: 1287CrossRefGoogle Scholar
  137. 127.
    Gilbert C, Robinson K, Le Page RWF, Wells JM (2000) Heterologous Expression of an Immunogenic Pneumococcal Type 3 Capsular Polysaccharide in Lactococcus lactis. Infect Immun 68: 3251CrossRefGoogle Scholar
  138. 128.
    Messner P, Scheberl A, Schweigkofler W, Hollaus F, Rainey FA, Burghardt J, Prillinger H (1997) Taxonomic Comparison of Different Thermophilic Sugar Beet Isolates with Glycosylated Surface Layer (S-Layer) Proteins and Their Affiliation to Bacillus smithii. System Appl Microbiol 20: 559CrossRefGoogle Scholar
  139. 129.
    Küpcü Z, März L, Messner P, Sleytr UB (1984) Evidence for the Glycoprotein Nature of the Crystalline Cell Wall Surface Layer of Bacillus stearothermophilus Strain NRS 2004/3a. FEBS Lett 173: 185CrossRefGoogle Scholar
  140. 130.
    Christian R, Schulz G, Unger FM, Messner P, Küpcü Z, Sleytr UB (1986) Structure of a Rhamnan from the Surface-Layer Glycoprotein of Bacillus stearothermophilus Strain NRS 2004/3a. Carbohydr Res 150: 265CrossRefGoogle Scholar
  141. 131.
    Sleytr UB, Sára M, Küpcü Z, Messner P (1986) Structural and Chemical Characterization of S-Layers of Selected Strains of Bacillus stearothermophilus and Desulfotomaculum nigrificans. Arch Microbiol 146: 19CrossRefGoogle Scholar
  142. 132.
    Karnauchow TM, Koval SF, Jarrell KF (1992) Isolation and Characterization of Three Thermophilic Aerobes from a St. Lucia Hot Spring. System Appl Microbiol 15: 296CrossRefGoogle Scholar
  143. 133.
    Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Shechter E, Leblon G (1993) Characterization of the cspB Gene Encoding PS2, an Ordered Surface-Layer Protein in Corynebacterium glutamicum. Mol Microbiol 9: 97CrossRefGoogle Scholar
  144. 134.
    Peters J, Peters M, Lottspeich F, Schäfer W, Baumeister W (1987) Nucleotide Sequence Analysis of the Gene Encoding the Deinococcus radiodurans Surface Protein, Derived Amino Acid Sequence, and Complementary Protein Chemical Studies. J Bacteriol 169: 5216Google Scholar
  145. 135.
    Severina LO, Senyushkin AA, Karavaiko GI (1993) Ultrastructure and Chemical Composition of the S-Layer of Sulfolobus thermosulfidooxidans. Dokl Akad Nauk 328: 633Google Scholar
  146. 136.
    Peters J, Rudolf S, Oschkinat H, Mengele R, Sumper M, Kellermann J, Lottspeich F, Baumeister W (1992) Evidence for Tyrosine-Linked Glycosaminoglycan in a Bacterial Surface Protein. Biol Chem Hoppe-Seyler 373: 171CrossRefGoogle Scholar
  147. 137.
    Messner P, Schuster-Kolbe J, Schäffer C, Sleytr UB, Christian R (1993) Glycoprotein Nature of Select Bacterial S-Layers. In: Beveridge TJ, Koval SF (eds) Advances in Bacterial Paracrystalline Surface Layers. Plenum, New York, p 95Google Scholar
  148. 138.
    Altman E, Brisson J-R, Gagné SM, Kolbe J, Messner P, Sleytr UB (1992) Structure of the Glycan Chain from the Surface Layer Glycoprotein of Clostridium thermohydrosulfuricum L77–66. Biochim Biophys Acta 1117: 71CrossRefGoogle Scholar
  149. 149.
    Christian R, Messner P, Weiner C, Sleytr UB, Schulz G (1988) Structure of a Glycan from the Surface-Layer Glycoprotein of Clostridium thermohydrosulfuricum L11169. Carbohydr Res 176: 160CrossRefGoogle Scholar
  150. 140.
    Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H-P, Stetter KO, Winter J (1989) Isolation and Characterization of a Thermophilic, Sulfate Reducing Archaebacterium, Archaeoglobus fulgidus Strain Z. System Appl Microbiol 11: 151CrossRefGoogle Scholar
  151. 141.
    Nishiyama Y, Takashina T, Grant WD, Horikoshi K (1992) Ultrastructure of the Cell Wall of the Triangular Halophilic Archaebacterium Haloarcula japonica Strain TR-1. FEMS Microbiol Lett 99: 43CrossRefGoogle Scholar
  152. 142.
    Nakamura S, Mizutani S, Wakai H, Kawasaki H, Aono R, Horikoshi K (1995) Purification and Partial Characterization of the Cell Surface Glycoprotein from Extremely Halophilic Archaeon Haloarcula japonica Strain TR-1. Biotechnol Lett 17: 705CrossRefGoogle Scholar
  153. 143.
    Mescher MF, Strominger JL (1976) Purification and Characterization of a Prokaryotic Glycoprotein from the Cell Envelope of Halobacterium salinarium. J Biol Chem 251: 2005Google Scholar
  154. 144.
    Paul G, Lottspeich F, Wieland F (1986) Asparaginyl-N-Acetylgalactosamine. Linkage Unit of Halobacterial Glycosaminoglycan. J Biol Chem 261: 1020Google Scholar
  155. 145.
    Zhu BCR, Drake RR, Schweingruber H, Laine RA (1995) Inhibition of Glycosylation by Amphomycin and Sugar Nucleotide Analogs PP36 and PP55 Indicates that Haloferax volcanii ß-Glycosylates Both Glycoproteins and Glycolipids Through Lipid-Linked Intermediates: Evidence for Three Novel Glycoproteins and Novel Sulfated Dihexosyl-Archaeol Glycolipid. Arch Biochem Biophys 319: 355CrossRefGoogle Scholar
  156. 146.
    Shen N, Weiner RM (1998) Isolation and Characterization of S-Layer Proteins from a Vent Prosthecate Bacterium. Microbios 93: 7Google Scholar
  157. 147.
    Zellner G, Stackebrandt E, Messner P, Tindall BJ, Conway de Macario E, Kneifel H, Sleytr UB, Winter J (1989) Methanocorpusculaceae fam. nov., Represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov. Arch Microbiol 151: 381CrossRefGoogle Scholar
  158. 148.
    Bayley DP, Koval SF (1994) Membrane Association and Isolation of the S-Layer Protein of Methanoculleus marisnigri. Can J Microbiol 40: 237CrossRefGoogle Scholar
  159. 149.
    Zellner G, Messner P, Kneifel H, Tindall BJ, Winter J, Stackebrandt E (1989) Methanolacinia gen. nov., Incorporating Methanomicrobium paynteri as Methanolacinia paynteri comb. nov. J Gen Appl Microbiol 35: 185CrossRefGoogle Scholar
  160. 150.
    Cheong G-W, Cejka Z, Peters J, Stetter KO, Baumeister W (1991) The Surface Protein Layer of Methanoplanus limicola: Three-Dimensional Structure and Chemical Characterization. System Appl Microbiol 14: 209CrossRefGoogle Scholar
  161. 151.
    Pley U, Schipka J, Gambacorta A, Jannasch HW, Fricke H, Rachel R, Stetter KO (1991) Pyrodictium abyssi sp. nov. Represents a Novel Heterotrophic Marine Archaeal Hyperthermophile Growing at 110¡ãC. System Appl Microbiol 14: 245CrossRefGoogle Scholar
  162. 152.
    Peters J, Nitsch M, Kühlmorgen B, Golbik R, Lupas A, Kellermann J, Engelhardt H, Pfander J-P, Müller S, Goldie K, Engel A, Stetter K-O, Baumeister W (1995) Tetrabrachion: A Filamentous Archaebacterial Surface Protein Assembly of Unusual Structure and Extreme Stability. J Mol Biol 245: 385CrossRefGoogle Scholar
  163. 153.
    Grogan DW (1996) Organization and Interactions of Cell Envelope Proteins of the Extreme Thermoacidophile Sulfolobus acidocaldarius. Can J Microbiol 42: 1163CrossRefGoogle Scholar
  164. 154.
    Bashkatova NA, Severina LO, Golovacheva RS, Mityushina LL (1991) Surface Layers of Extremely Thermoacidophilic Archaebacteria of the Genus Sulfolobus. Mikrobiologiya 60: 90Google Scholar
  165. 155.
    Gongadze GM, Kostyukova AS, Miroshnichenko ML, Bonch-Osmolovskaya EA (1993) Regular Proteinaceous Layers ofThermococcus.stetteri Cell Envelope. Curr Microbiol 27: 5CrossRefGoogle Scholar
  166. 156.
    Blattner FR, Plunkett III G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The Complete Genome Sequence of Escherichia coli K-12. Science 277: 1453CrossRefGoogle Scholar
  167. 157.
    Mihoc A, Kluepfel D (1990) Purification and Characterization of a ß-Glucosidase from Streptomyces lividans 66. Can J Microbiol 36: 53CrossRefGoogle Scholar
  168. 158.
    Stoll D, Stálbrand H, Warren RAJ (1999) Mannan-Degrading Enzymes from Cellulomonas fimi. Appl Environ Microbiol 65: 2598Google Scholar
  169. 159.
    Swanson AF, Kuo C-C (1991) Evidence That the Major Outer Membrane Protein of Chlamydia trachomatis is Glycosylated. Infect Immun 59: 2120Google Scholar
  170. 160.
    Swanson AF, Kuo C-C (1994) Binding of the Glycan of the Major Outer Membrane Protein of Chlamydia trachomatis to HeLa Cells. Infect Immun 62: 24Google Scholar
  171. 161.
    Kuo C-C, Takahashi N, Swanson AF, Ozeki Y, Hakomori S-I (1996) An N-linked High-Mannose Type Oligosaccharide, Expressed at the Major Outer Membrane Protein of Chlamydia trachomatis Mediates Attachment and Infectivity of the Microorganism to HeLa Cells. J Clin Invest 98: 2813CrossRefGoogle Scholar
  172. 162.
    Taylor ME, Conary JT, Lennartz MR, Stahl PD, Drickamer K (1990) Primary Structure of the Mannose Receptor Contains Multiple Motifs Resembling Carbohydrate-Recognition Domains. J Biol Chem 265: 12156Google Scholar
  173. 163.
    Zaidi SIA, Singh KP, Raisuddin S, Jafri A, Saxena AK, Choudhary S, Ray PK (1995) Modulation of Primary Antibody Response by Protein A in Tumor-Bearing Mice. Immunopharmacol Immunotoxicol 17: 759CrossRefGoogle Scholar
  174. 164.
    Kumar NS, Venkateswerlu G (1998) Analysis of 66kDa Toxin from Bacillus thuringiensis subsp. kurstaki Reveals Differential Amino Terminal Processing of Protoxin by Endogenous Protease(s). Biochem Mol Biol lnt 45: 769Google Scholar
  175. 165.
    Kumar NS, Reddy ST, Venkateswerlu G (1998) Effect of Sodium Dodecyl Sulfate on Concanavalin A-Sepharose During Affinity Chromatography of High-Affinity Binding Toxin Protein of Bacillus thuringensis subsp. kurstaki. Anal Lett 31: 1677CrossRefGoogle Scholar
  176. 166.
    Ogata S, Muramatsu T, Kobata A (1975) Fractionation of Glycopeptides by Affinity Column Chromatography on Concanavalin A-Sepharose. J Biochem 78: 687Google Scholar
  177. 167.
    Krusius T, Finne J, Rauvala H (1976) The Structural Basis of the Different Affinities of Two Types of Acidic N-Glycosidic Glycopeptides for Concanavalin A-Sepharose. FEBS Lett 71: 117CrossRefGoogle Scholar
  178. 168.
    Lindenthal C, Elsinghorst EA (1999) Identification of a Glycoprotein Produced by Enterotoxigenic Escherichia coli. Infect Immun 67: 4084Google Scholar
  179. 169.
    Rikihisa Y (1991) The Tribe Ehrlichieae and Ehrlichial Diseases. Clin Microbiol Rev 4: 286Google Scholar
  180. 170.
    Yu X-J, Crocquet-Valdes P, Cullman LC, Walker DH (1996) The Recombinant 120-Kilodalton Protein of Ehrlichia chaffeensis a Potential Diagnostic Tool. J Clin Microbiol 34: 2853Google Scholar
  181. 171.
    Yu X-J, McBride JW, Diaz CM, Walker DH (2000) Molecular Cloning and Characterization of the 120-Kilodalton Protein Gene of Ehrlichia canis and Application of the Recombinant 120-Kilodalton Protein for Serodiagnosis of Canine Ehrlichiosis. J Clin Microbiol 38: 369Google Scholar
  182. 172.
    Yu X-J, Crocquet-Valdes P, Walker DH (1997) Cloning and Sequencing of the Gene fora 120-Kilodalton Immunodominant Protein of Ehrlichia chaffeensis. Gene 184: 149CrossRefGoogle Scholar
  183. 173.
    McBride JW, Yu X-J, Walker DH (2000) Glycosylation of Homologous Immunodominant Proteins of Ehrlichia chaffeensis and Ehrlichia canis. Infect Immun 68: 13CrossRefGoogle Scholar
  184. 174.
    Nishimura H, Kawabata S, Kisiel W, Hase S, Ikenaka T, Takao T, Shimonishi Y, Iwanaga S (1989) Identification of a Disaccharide (Xyl-Glc) and a Trisaccharide (Xy12-Glc) 0-Glycosidically Linked to a Serine Residue in the First Epidermal Growth Factor-Like Domain of Human Factors VII and IX and Protein Z and Bovine Protein Z. J Biol Chem 264: 20320Google Scholar
  185. 175.
    Béguin P, Lemaire M (1996) The Cellulosome: An Exocellular, Multiprotein Complex Specialized in Cellulose Degradation. Crit Rev Biochem Mol Biol 31: 201CrossRefGoogle Scholar
  186. 176.
    Jarrell KF, Bayley DP, Kostyukova AS (1996) The Archaeal Flagellum: A Unique Motility Structure. J Bacteriol 178: 5057Google Scholar
  187. 177.
    Bedouet L, Arnold F, Robreau G, Batina P, Talbot F, Binet A (1998) Evidence for an Heterogeneous Glycosylation of the Clostridium tyrobutyricum ATCC 25755 Flagellin. Microbios 94: 183Google Scholar
  188. 178.
    Bedouet L, Arnold F, Robreau G, Batina P, Talbot F, Malcoste R (1998) Partial Analysis of the Flagellar Antigenic Determinant Recognized by a Monoclonal Antibody to Clostridium tyrobutyricum. Microbiol Immunol 42: 87Google Scholar
  189. 179.
    Arnold F, Bedouet L, Batina P, Robreau G, Talbot F, Lécher P, Malcoste R (1998) Biochemical and Immunological Analyses of the Flagellin of Clostridium tyrobutyricum ATCC 25755. Microbiol Immunol 42: 23Google Scholar
  190. 180.
    Arnold F, Bedouet L, Batina P, Robreau G (1999) Cloning and Sequencing of the Central Region of the Flagellin Gene from the Gram-Positive Bacterium Clostridium tyrobutyricum ATCC 25755. Microbiol Immunol 43: 1 Google Scholar
  191. 181.
    Riviere GR, Wagoner MA, Baker-Zander SA, Weisz KS, Adams DF, Simonson L, Lukehart SA (1991) Identification of Spirochetes Related to Treponema pallidum in Necrotizing Ulcerative Gingivitis and Chronic Periodontitis. N Engl J Med 325: 539CrossRefGoogle Scholar
  192. 182.
    Wyss C (1998) Flagellins, But Not Endoflagellar Sheath Proteins, of Treponema pallidum and of Related Pathogen-Related Oral Spirochetes are Glycosylated. Infect Immun 66: 5751Google Scholar
  193. 183.
    Haselbeck A, Hösel W (1993) Immunological Detection of Glycoproteins on Blots Based on Labeling with Digoxigenin. In: Hounsell EF (ed) Glycoprotein Analysis in Biomedicine. Humana Press, Totowa, NJ, p 161CrossRefGoogle Scholar
  194. 183a.
    Lévesque C, Vadeboncoeur C, Chandad F, Frenette M (2001) Streptococcus salivarius Fimbriae are Composed of a Glycoprotein Containing a Repeated Motif Assembled into a Filamenous Nondissociable Structure. J Bacteriol 183: 2724Google Scholar
  195. 184.
    Jarrell KF, Bayley DP, Florian V, Klein A (1996b) Isolation and Characterization of Insertional Mutations in Flagellin Genes in the Archaeon Methanococcus voltae. Mol Microbiol 20: 657CrossRefGoogle Scholar
  196. 185.
    Bayley DP, Jarrell KF (1999) Overexpression of Methanococcus voltae Flagellin Subunits in Escherichia coil and Pseudomonas aeruginosa: A Source of Archaeal Preflagellin. J Bacteriol 181: 4146Google Scholar
  197. 185a.
    Castric P, Cassels FJ, Carlson RW (2001) Structural Characterization of the Pseudomonas aeruginosa 1244 Pilin Glycan. J Biol Chem 276: 26479; Erratum: J Biol Chem 276: 36058CrossRefGoogle Scholar
  198. 185b.
    Thibault P, Logan SM, Kelly JF, Brisson JR, Ewing CP, Trust TJ, Guerry P (2001) Identification of the Carbohydrate Moieties and Glycosylation Motifs in Campylobacter jejuni Flagellin. J Biol Chem 276: 34862CrossRefGoogle Scholar
  199. 186.
    Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA (1995) Structure of the Fibre-Forming Protein Pilin at 2.6 A Resolution. Nature 378: 32CrossRefGoogle Scholar
  200. 187.
    Stimson E, Virji M, Makepeace K, Dell A, Morris HR, Payne G, Saunders JR, Jennings MP, Barker S, Panico M, Blench I, Moxon ER (1995) Meningococcal Pilin: A Glycoprotein Substituted with Digalactosyl 2,4-Diacetamido-2,4,6-Trideoxyhexose. Mol Microbiol 17: 1201Google Scholar
  201. 188.
    Marceau M, Forest K, Beretti J-L, Tainer J, Nassif X (1998) Consequences of the Loss of 0-Linked Glycosylation of Meningococcal Type IV Pilin on Piliation and Pilus-Mediated Adhesion. Mol Microbiol 27: 705CrossRefGoogle Scholar
  202. 189.
    Marceau M, Nassif X (1999) Role of Glycosylation at Ser63 in Production of Soluble Pilin in Pathogenic Neisseria. J Bacteriol 181: 656Google Scholar
  203. 190.
    Jennings MP, Virji M, Evans D, Foster V, Srikhanta YN, Steeghs L, van der Ley P, Moxon ER (1998) Identification of a Novel Gene Involved in Pilin Glycosylation in Neisseria meningitidis. Mol Microbiol 29: 975CrossRefGoogle Scholar
  204. 191.
    Power PM, Roddam LF, Dieckelmann M, Srikhanta YN, Tan YC, Berrington AW, Jennings MP (2000) Genetic Characterization of Pilin Glycosylation in Neisseria meningitidis. Microbiology 146: 967Google Scholar
  205. 191a.
    Kahler CM, Martin LE, Tzeng Y-L, Miller YK, Sharkey K, Stephens DS, Davies JK (2001) Polymorphisms in Pilin Glycosylation Locus of Neisseria meningitidis Expressing Class II Pili. Infect Immun 69: 3597CrossRefGoogle Scholar
  206. 191b.
    b. Cowlishaw DA, Smith MCM (2001) Glycosylation of a Streptomyces coelicolor A3(2) Cell Envelope Protein is Required for Infection by Bacteriophage OC31. Mol Microbiol 41: 601CrossRefGoogle Scholar
  207. 191c.
    c. Benz I, Schmidt MA (2001) Glycosylation with Heptose Residues Mediated by the aah Gene Product is Essential for Adherence of the AIDA-I Adhesin. Mol Microbiol 40: 1403CrossRefGoogle Scholar
  208. 192.
    Bailey SA, Ward B (1997) Emulsification of Crude Oil by Rhodococcus erythropolis Strain ST-2 via a Cell-Surface, Lysozyme-Sensitive Glycoprotein. System Appl Microbiol 20: 545CrossRefGoogle Scholar
  209. 193.
    Patel MN, Gopinathan KP (1986) Lysozyme-Sensitive Bioemulsifier for Immiscible Organophosphorus Pesticides. Appl Environ Microbiol 52: 1224Google Scholar
  210. 193a.
    Recht J, Kolter R (2001) Glycopeptidolipid Acetylation Affects Sliding Motility and Biofilm Formation in Mycobacterium smegmatis. J Bacteriol 183: 5718CrossRefGoogle Scholar
  211. 194.
    Kondo E, Kurata T, Naigowit P, Kanai K (1996) Evolution of Cell-Surface Acid Phosphatase of Burkholderia pseudomallei. Southeast Asian J Trop Med Public Health 27: 592Google Scholar
  212. 195.
    Kondo E, Wangroongsaub P, Kanai K (1994) Effects of Tunicamycin on the pH-Activity Pattern of Acid Phosphatase in Pseudomonas pseudomallei. Southeast Asian J Trop Med Public Health 25: 144Google Scholar
  213. 196.
    Shoham Y, Lamed R, Bayer EA (1999) The Cellulosome Concept as an Efficient Microbial Strategy for the Degradation of Insoluble Polysaccharides. Trends Microbiol 7: 275CrossRefGoogle Scholar
  214. 197.
    Bayer EA, Shoham Y, Lamed R (2000) The Cellulosome. An Extracellular Organelle for Degrading Plant Cell Wall Polysaccharides. In: Doyle RJ (ed) Glycomicrobiology. Kluwer Academic/Plenum Publishers, New York, p 387Google Scholar
  215. 198.
    Chen J-R, Lin J-H, Weng C-N, Lai S-S (1998) Identification of a Novel AdhesinLike Glycoprotein from Mycoplasmes hyopneumoniae. Vet Microbiol 62: 97CrossRefGoogle Scholar
  216. 199.
    Espitia C, Mancilla R (1989) Identification, Isolation and Partial Characterization of Mycobacterium tuberculosis Glycoprotein Antigens. Clin Exp Immunol 77: 378Google Scholar
  217. 200.
    Espitia C, Espinosa R, Saavedra R, Mancilla R, Romain F, Laqueyrerie A, Moreno C (1995) Antigenic and Structural Similarities Between Mycobacterium tuberculosis 50- to 55-Kilodalton and Mycobacterium bovis BCG 45- to 47-Kilodalton Antigens. Infect Immun 63: 580Google Scholar
  218. 201.
    Dobos KM, Khoo K-H, Swiderek K, Brennan PJ, Belisle JT (1996) Definition of the Full Extent of Glycosylation of the 45-Kilodalton Glycoprotein of Mycobacterium tuberculosis. J Bacteriol 178: 2498Google Scholar
  219. 202.
    Montaño LF, Massó F, Páez A, Sandoval S, Vázquez L, Sánchez L, Fournet B, Zenteno E (1994) Isolation of a 32 kDa Mycobacterium tuberculosis Protein by Lectin Affinity Chromatography. Comp Biochem Physiol 108B: 265Google Scholar
  220. 203.
    Massó F, Varela E, Páez A, Zenteno E, Montaño LF (1998) Identification of Major Glycoconjugates from Mycobacterium bovis Culture Filtrate by Biotin-Hydrazide Labeling. Glycoconjugate J 15: 843CrossRefGoogle Scholar
  221. 204.
    Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Specificity of Twelve Lectins Towards Oligosaccharides and Glycopeptides Related to N-Glycosylproteins. Eur J Biochem 117: 41CrossRefGoogle Scholar
  222. 205.
    Trimble RB, Tarentino AL (1991) Identification of Distinct Endoglycosidase (Endo) Activities in Flavobacterium meningosepticum: Endo Fl, Endo F2, and Endo F3. Endo F1 and Endo H Hydrolyze Only High Mannose and Hybrid Glycans. J Biol Chem 266: 1646Google Scholar
  223. 206.
    Bonato VLD, Lima VMF, Tascon RE, Lowrie DB, Silva CL (1998) Identification and Characterization of Protective T Cell in hsp65 DNA-Vaccinated and Mycobacterium tuberculosis-Infected Mice. Infect Immun 66: 169Google Scholar
  224. 207.
    Gonzáles-Amaro R, Portales-Pérez DP, Baranda L, Moncada B, Toro C, LópezBriones S, Espitia C, Mancilla R (2000) Co-Stimulatory Signals Increase the Reactivity of yb T Cells Towards Mycobacterial Antigens. Clin Exp Immunol 120: 468CrossRefGoogle Scholar
  225. 208.
    Zielinski GC, Ross RF (1993) Adherence of Mycoplasma hyopneumoniae to Porcine Ciliated Respiratory Tract Cells. Am J Vet Res 54: 1262Google Scholar
  226. 209.
    Zhang Q, Young TF, Ross RF (1995) Identification and Characterization of a Mycoplasma hyopneumoniae Adhesin. Infect Immun 63: 1013Google Scholar
  227. 210.
    Chen JW, Zhang L, Song J, Hwang F, Dong Q, Liu J, Qian Y (1992) Comparative Analysis of Glycoprotein and Glycolipid Composition of Virulent and Avirulent Strain Membranes of Mycoplasma hyopneumoniae. Curr Microbiol 24: 189CrossRefGoogle Scholar
  228. 211.
    Araki T, Tamaru Y, Morishita T (1992) 0–1,4-Mannanases from Marine Bacteria Vibrio spp. MA-129 and MA-138. J Gen Appl Microbiol 38: 343CrossRefGoogle Scholar
  229. 212.
    Tamaru Y, Araki T, Amagoi H, Mori H, Morishita T (1995) Purification and Characterization of an Extracellular 0–1,4-Mannanase from a Marine Bacterium, Vibrio sp. Strain MA-138. Appl Environ Microbiol 61: 4454Google Scholar
  230. 213.
    Arcand N, Kluepfel D, Paradis FW, Morosoli R, Shareck F (1993) ß-Mannanase of Streptomyces lividans 66: Cloning and DNA Sequence of the manA Gene and Characterization of the Enzyme. Biochem J 290: 857Google Scholar
  231. 214.
    Wimmer B, Lottspeich F, Ritter J, Bronnenmeier K (1997) A Novel Type of Thermostable a-o-Glucosidase from Thermoanaerobacter the rmohydrosulfuricus Exhibiting Maltodextrinohydrolase Activity. Biochem J 328: 581Google Scholar
  232. 215.
    Tani Y, Tani M, Kato I (1997) Extracellular 37-kDa Antigenic Protein from Actinobacillus actinomycetemcomitans Induces TNF-a, IL-10, and IL-6 in Murine Macrophages. J Dent Res 76: 1538CrossRefGoogle Scholar
  233. 216.
    Amano K, Nishihara T, Shibuya N, Noguchi T, Koga T (1989) Immunochemical and Structural Characterization of a Serotype-Specific Polysaccharide Antigen from Actinobacillus actinomycetemcomitans Y4 (Serotype b). Infect Immun 57: 2942Google Scholar
  234. 217.
    Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and Characterization of an Antifreeze Protein With Ice Nucleation Activity from the Plant Growth Promoting Rhizobacterium Pseudomonas putida GR12–2. Can J Microbiol 44: 64Google Scholar
  235. 218.
    DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and Physical Properties of Freezing Point-Depressing Glycoproteins from Antarctic Fishes. J Biol Chem 245: 2901Google Scholar
  236. 218a.
    a. de la Maza A, Parra JL, López O, Congregado F, Bozal N, Guinea J (1997) Assembly Properties of a Glycoprotein Produced by Pseudoalteromonas antarctica NF3. J Colloid Interface Sci 192: 286CrossRefGoogle Scholar
  237. 218b.
    b. Cócera M, López O, Coderch L, Mercadé ME, Parra JL, de la Maza A, Guinea J (2001) Partitioning of SDS in Liposomes Coated by the Exopolymer Excreted by Pseudoalteromonas antarctica NF3 as a Measure of Vesicle Protection Against this Surfactant. J. Biomat Sci, Polymer Ed 12: 255Google Scholar
  238. 219.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial Biofilms. Annu Rev Microbiol 49: 711CrossRefGoogle Scholar
  239. 220.
    Burchard RP, Sorongon ML (1998) A Gliding Bacterium Strain Inhibits Adhesion and Motility of Another Gliding Bacterium Strain in a Marine Biofilm. Appl Environ Microbiol 64: 4079Google Scholar
  240. 221.
    Yoshida J, Yoshimura M, Takamura S, Kobayashi S (1985) Purification and Characterization of an Antitumor Principle from Streptococcus hemolyticus Su Strain. Jpn J Cancer Res 76: 213Google Scholar
  241. 222.
    Kanaoka M, Fukita Y, Taya K, Kawanaka C, Negoro T, Agui H (1987) Antitumor Activity of Streptococcal Acid Glycoprotein Produced by Streptococcus pyogenes Su. Jpn J Cancer Res 78: 1409Google Scholar
  242. 223.
    Kanaoka M, Negoro T, Kawanaka C, Agui H, Nabeshima S (1991) Streptococcal Antitumor Protein: Expression in Escherichia coli Cells and Properties of the Recombinant Protein. Agric Biol Chem 55: 743CrossRefGoogle Scholar
  243. 224.
    Degnan BA, Palmer JM, Robson T, Jones CED, Fischer M, Glanville M, Mellor GD, Diamond AG, Kehoe MA, Goodacre JA (1998) Inhibition of Human Peripheral Blood Mononuclear Cell Proliferation by Streptococcus pyogenes Cell Extracts is Associated with Arginine Deiminase Activity. Infect Immun 66: 3050Google Scholar
  244. 225.
    Degnan BA, Fontaine MC, Doebereiner AH, Lee JJ, Mastroeni P, Dougan G, Goodacre JA, Kehoe MA (2000) Characterization of an Isogenic Mutant of Streptococcus pyogenes Manfredo Lacking the Ability to Make Streptococcal Acid Glycoprotein. Infect Immun 68: 2441CrossRefGoogle Scholar
  245. 226.
    Yoshida J, Takamura S, Nishio M (1998) Characterization of a Streptococcal Antitumor Glycoprotein (SAGP). Life Sci 62: 1043CrossRefGoogle Scholar
  246. 227.
    Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P (1999) Evidence for a System of General Protein Glycosylation in Campylobacter jejuni. Mol Microbiol 32: 1022CrossRefGoogle Scholar
  247. 228.
    Edge ASB, Faltynek CR, Hof L, Reichert Jr LE, Weber P (1981) Deglycosylation of Glycoproteins by Trifluoromethanesulfonic Acid. Anal Biochem 118: 131CrossRefGoogle Scholar
  248. 229.
    Guenounou M (1996) Mechanism of Action of the Immunmodulating Agent RU 41740. Curr Therap Res 57(Suppl A): 16CrossRefGoogle Scholar
  249. 230.
    Kol O, Montreuil J, Fournet B, Zalisz R, Smets P (1987) Purification of the Lipopolysaccharide Fraction from Klebsiella pneumoniae 01 K2 by High-Performance Liquid Chromatography. J Chromatogr 396: 281CrossRefGoogle Scholar
  250. 231.
    Kol O, Montreuil J, Fournet B, Zalisz R, Smets P (1989) Separation by High-Performance Liquid Chromatography of Oligosaccharides Obtained After Mild Acid Hydrolysis of Klebsiella pneumoniae 01 K2 (NCTC 5055) Lipopolysaccharides. J Chromatogr 474: 452CrossRefGoogle Scholar
  251. 232.
    Holt SC, Bramanti TE (1991) Factors in Virulence Expression and Their Role in Periodontal Disease Pathogenesis. Crit Rev Oral Biol Med 2: 177Google Scholar
  252. 233.
    Iki K, Kawahara K, Sawamura S, Arakaki R, Sakuta T, Sugiyama A, Tamura H, Sueda T, Hamada S, Takada H (1997) A Novel Component Different from Endotoxin Extracted from Prevotella intermedia ATCC 25611 Activates Lymphoid Cells from C3H/HeJ Mice and Gingival Fibroblasts from Humans. Infect Immun 65: 4531Google Scholar
  253. 234.
    Yamaguchi T, Kasamo K, Chuman M, Machigashira M, Inoue M, Sueda T (1998) Preparation and Characterization of an Actinomyces naeslundii Aggregation Factor that Mediates Coaggregation with Porphyromonas gingivalis. J Periodont Res 33: 460CrossRefGoogle Scholar
  254. 235.
    Moore LVH, Moore WEC, Cato EP, Smibert RM, Burmeister JA, Best AM, Ranney RR (1987) Bacteriology of Human Gingivitis. J Dent Res 66: 989CrossRefGoogle Scholar
  255. 236.
    Listgarten MA (1976) Structure of the Microbial Flora Associated with Periodontal Health and Disease in Man. J Periodont 47: 1CrossRefGoogle Scholar
  256. 237.
    Kolenbrander PE, Andersen RN (1990) Characterization of Streptococcus gordonii (S. sanguis) PK488 Adhesin-Mediated Coaggregation with Actinomyces naeslundii PK606. Infect Immun 58: 3064Google Scholar
  257. 238.
    Lemassu A, Ortalo-Magne A, Bardou F, Silve G, Laneelle M-A, Daffe M (1996) Extracellular and Surface-Exposed Polysaccharides of Non-Tuberculous Mycobacteria. Microbiology 142: 1513CrossRefGoogle Scholar
  258. 239.
    Tian X-X, Li A, Zhou W, Farrugia IV, Groves MJ (1999) Isolation and Biological Activities of an Antineoplastic Protein-Polysaccharide Complex (PS4A) Obtained from Mycobacterium vaccae. Anticancer Res 19: 237Google Scholar
  259. 240.
    Tian X-X, Li A, Farrugia IV, Mo X, Crich D, Groves MJ (2000) Isolation and Identification of Poly-a-(1¡ª>4)-Linked 3-O-Methyl-n-Mannopyranose from a Hot-Water Extract of Mycobacterium vaccae. Carbohydr Res 324: 38CrossRefGoogle Scholar
  260. 241.
    Bader JA, Klesius PH, Vinitnantharat S (1997) Comparison of Whole-Cell Antigens of Pressure-and Formalin-Killed Flexibacter columnaris from Channel Catfish (Ictalurus punctatus). Am J Vet Res 58: 985Google Scholar
  261. 242.
    Fujihara MP, Nakatani RE (1971) Antibody Production and Immune Responses of Rainbow Trout and Coho Salmon to Chondrococcus columnaris. J Fisher Res Board Can 28: 1253CrossRefGoogle Scholar
  262. 243.
    Cuezzo de Ginés S, Maldonado MC, Font de Valdez G (2000) Purification and Characterization of Invertase from Lactobacillus reuteri CRL 1100. Curr Microbiol 40: 181CrossRefGoogle Scholar
  263. 244.
    Koeller KM, Wong C-H (2000) Emerging Themes in Medicinal Glycoscience. Nature Biotechnol 18: 835CrossRefGoogle Scholar
  264. 245.
    Koeller KM, Wong C-H (2000) Complex Carbohydrate Synthesis Tools for Glycobiologists: Enzyme-Based Approach and Programmable One-Pot Strategies. Glycobiology 10: 1157CrossRefGoogle Scholar
  265. 246.
    Schreiner R, Schnabel E, Wieland F (1994) Novel N-Glycosylation in Eukaryotes: Laminin Contains the Linkage Unit ß-Glucosylasparagine. J Cell Biol 124: 1071CrossRefGoogle Scholar
  266. 247.
    Shibata S, Takeda T, Natori Y (1988) The Structure of Nephritogenoside. A Nephritogenic Glycopeptide with a-N-Glycosidic Linkage. J Biol Chem 263: 12483Google Scholar
  267. 248.
    Deras IL, Takegawa K, Kondo A, Kato I, Lee YC (1998) Synthesis of a HighMannose-Type Glycopeptide Analog Containing a Glucose-Asparagine Linkage. Bioorg Med Chem Lett 8: 1763CrossRefGoogle Scholar
  268. 249.
    Davis BG, Lloyd RC, Jones JB (2000) Controlled Site-Selective Protein Glycosylation for Precise Glycan Structure-Catalytic Activity Relationships. Bioorg Med Chem 8: 1527CrossRefGoogle Scholar
  269. 250.
    Stabile MR, Lai WG, DeSantis G, Gold M, Jones JB (1996) Probing the Specificity of the S1 Binding Site of M222 Mutants of Subtilisin B. lentus with Boronic Acid Inhibitors. Bioorg Med Chem Lett 6: 2501CrossRefGoogle Scholar
  270. 251.
    Lloyd RC, Davis BG, Jones JB (2000) Site-Selective Glycosylation of Subtilisin Bacillus lentus Causes Dramatic Increases in Esterase Activity. Bioorg Med Chem 8: 1537CrossRefGoogle Scholar
  271. 252.
    Hedenetz A, Schmid W, Unger FM (2000) A Short Synthesis of 2,3-Diacetamido2,3-Dideoxy-D-Mannuronic Acid-Derivatives. Proc Jahrestagung Osten Biochem Ges Innsbruck, Abstract P0–57Google Scholar
  272. 253.
    Gerwig GJ, Kamerling JP, Vliegenthart JFG, Morag E, Lamed R, Bayer EA (1992) Novel Oligosaccharide Constituents of the Cellulase Complex of Bacteroides cellulosolvens. Eur J Biochem 205: 799CrossRefGoogle Scholar
  273. 254.
    Gerwig GJ, Kamerling JP, Vliegenthart JFG, Morag E, Lamed R, Bayer EA (1993) The Nature of the Carbohydrate-Peptide Linkage Region in Glycoproteins from the Cellulosomes of Clostridium thermocellum and Bacteroides cellulosolvens. J Biol Chem 268: 26956Google Scholar
  274. 255.
    Emery, DL, Clark BL, Stewart DJ, O’Donnell IJ, Hewish DR (1984) Analysis of the Outer Membrane Proteins of Bacteroides nodosus the Causal Organism of Ovine Footrot. Vet Microbiol 9: 155CrossRefGoogle Scholar
  275. 256.
    Sambri V, Stefanelli C, Cevenini R (1992) Detection of Glycoproteins in Borrelia burgdovferi. Arch Microbiol 157: 205CrossRefGoogle Scholar
  276. 257.
    McManus JD, Brune DC, Han J, Sanders-Loehr J, Meyer TE, Cusanovich MA, Tollin G, Blankenship RE (1992) Isolation, Characterization, and Amino Acid Sequences of Auracyanins, Blue Copper Proteins from the Green Photosynthetic Bacterium Chlorofiexus aurantiacus. J Biol Chem 267: 6531Google Scholar
  277. 258.
    Gong J, Egbosimba EE, Forsberg CW (1996) Cellulose-Binding Proteins of Fibmbacter succinogenes and the Possible Role of a 180kDa Cellulose-Binding Glycoprotein in Adhesion to Cellulose. Can J Microbiol 42: 453CrossRefGoogle Scholar
  278. 259.
    Doherty H, Condon C, Owen P (1982) Resolution and In Vitro Glycosylation of Membrane Glycoproteins in Micrococcus luteus (lysodeikticus) FEMS Microbial Lett 15: 331CrossRefGoogle Scholar
  279. 260.
    Maeba PY (1986) Isolation of a Surface Glycoprotein from Myxococcus xanthus. J Bacteriol 166: 644Google Scholar
  280. 261.
    Kozloff LM, Turner MA, Arellano F (1991) Formation of Bacterial Membrane Ice-Nucleating Lipoglycoprotein Complexes. J Bacteriol 173: 6528Google Scholar
  281. 262.
    Turner MA, Arellano F, Kozloff LM (1991) Components of Ice Nucleation Structures of Bacteria. J Bacteriol 173: 6515Google Scholar
  282. 263.
    Yang LL, Haug A (1979) Purification and Partial Characterization of a Procaryotic Glycoprotein from the Plasma Membrane of Thermoplasma acidophilum. Biochim Biophys Acta 556: 265CrossRefGoogle Scholar
  283. 264.
    Moens S, Michiels K, Vanderleyden J (1995) Glycosylation of the Flagellin of the Polar Flagellum of Azospirillum brasilense a Gram-Negative Nitrogen-Fixing Bacterium. Microbiology 141: 2651CrossRefGoogle Scholar
  284. 265.
    Guerry P, Doig P, Alm RA, Burr DH, Kinsella N, Trust TJ (1996) Identification and Characterization of Genes Required for Post-Translational Modification of Campylobacter coli VC167 Flagellin. Mol Microbiol 19: 369CrossRefGoogle Scholar
  285. 266.
    Doig P, Kinsella N, Guerry P, Trust TJ (1996) Characterization of a Post-Translational Modification of Campylobacter Flagellin: Identification of a Sero-Specific Glycosyl Moiety. Mol Microbiol 19: 379CrossRefGoogle Scholar
  286. 267.
    Gerwig GJ, de Waard P, Kamerling JP, Vliegenthart JFG, Morgenstern E, Lamed R, Bayer EA (1989) Novel 0-Linked Carbohydrate Chains in the Cellulase Complex (Cellulosome) of Clostridium thermocellum. J Biol Chem 264: 1027Google Scholar
  287. 268.
    Tomoeda M, Inuzuka M, Date T (1975) Bacterial Sex Pili. Progr Biophys Mol Biol 30: 23CrossRefGoogle Scholar
  288. 269.
    Dobson WJ, McCurdy HD (1979) The Function of Fimbriae in Myxococcus xanthus. I. Purification and Properties of M. xanthus Fimbriae. Can J Microbiol 25: 1152CrossRefGoogle Scholar
  289. 270.
    Dobson WJ, McCurdy HD, MacRae TH (1979) The Function of Fimbriae in Myxococcus xanthus. II. The Role of Fimbriae in Cell-Cell Interactions. Can J Microbiol 25: 1359CrossRefGoogle Scholar
  290. 271.
    Virji M, Saunders JR, Sims G, Makepeace K, Maskell D, Ferguson DJP (1993) Pilus-Faciliated Adherence of Neisseria meningitidis to Human Epithelial and Endothelial Cells: Modulation of Adherence Phenotype Occurs Concurrently with Changes in Primary Amino Acid Sequence and the Glycosylation Status of Pilin. Mol Microbiol 10: 1013CrossRefGoogle Scholar
  291. 272.
    Hoiczyk E, Baumeister W (1997) Oscillin, an Extracellular, Caz+-Binding Glycoprotein Essential for the Gliding Motility of Cyanobacteria. Mol Microbiol 26: 699CrossRefGoogle Scholar
  292. 273.
    Brimer CD, Montie TC (1998) Cloning and Comparison of fliC Genes and Identification of Glycosylation in the Flagellin of Pseudomonas aeruginosa a-Type Strains. J Bacteriol 180: 3209Google Scholar
  293. 274.
    Castric P (1995) pilOa Gene Required for Glycosylation of Pseudomonas aeruginosa1244 Pilin. Microbiology 141: 1247CrossRefGoogle Scholar
  294. 275.
    Li Z, Dumas F, Dubreuil D, Jacques M (1993) A Species-Specific Periplasmic Flagellar Protein of Serpulina (Treponema) hyodysenteriae. J Bacteriol 175: 8000Google Scholar
  295. 276.
    Brahamsha B, Greenberg EP (1989) Cloning and Sequence Analysis offlaA, a Gene Encoding a Spirochaeta aurantia Flagellar Filament Surface Antigen. J Bacteriol 171: 1692Google Scholar
  296. 277.
    Weerkamp AH, van der Mei HC, Liem RSB (1984) Adhesive Cell Wall-Associated Glycoprotein of Streptococcus salivarius (K+) Is a Cell Surface Fibril. FEMS Microbiol Lett 23: 163CrossRefGoogle Scholar
  297. 278.
    Morris EJ, Ganeshkumar N, Song M, McBride BC (1987) Identification and Preliminary Characterization of a Streptococcus sanguis Fibrillar Glycoprotein. J Bacteriol 169: 164Google Scholar
  298. 279.
    Wieland F, Paul G, Sumper M (1985) Halobacterial Flagellins are Sulfated Glycoproteins. J Biol Chem 260: 15180Google Scholar
  299. 280.
    Faguy DM, Koval SF, Jarrell KF (1992) Correlation Between Glycosylation of Flagellin Proteins and Sensitivity of Flagellar Filaments to Triton X-100 in Methanogens. FEMS Microbiol Lett 90: 129CrossRefGoogle Scholar
  300. 281.
    Bayley DP, Kalmokoff ML, Jarrell KF (1993) Effect of Bacitracin on Flagellar Assembly and Presumed Glycosylation of the Flagellins of Methanococcus deltae. Arch Microbiol 160: 179Google Scholar
  301. 282.
    Southam G, Kalmokoff ML, Jarrell KF, Koval SF, Beveridge TJ (1990) Isolation, Characterization, and Cellular Insertion of the Flagella from Two Strains of the Archaebacterium Methanospirillum hungatei. J Bacteriol 172: 3221Google Scholar
  302. 283.
    Faguy DM, Koval SF, Jarrell KF (1994) Physical Characterization of the Flagella and Flagellins from Methanospirillum hungatei. J Bacteriol 176: 7491Google Scholar
  303. 284.
    Fedorov OV, Paytibratov MG, Kostyukova AS, Osina NK, Tarasov VY (1994) Protofilament as a Structural Element of Flagella of Haloalkalophilic Archaebacteria. Can J Microbiol 40: 45CrossRefGoogle Scholar
  304. 285.
    Grogan DW (1989) Phenotypic Characterization of the Archaebacterial Genus Sulfolobus: Comparison of Five Wild-Type Strains. J Bacteriol 171: 6710Google Scholar
  305. 286.
    Faguy DM, Bayley DP, Kostyukova AS, Thomas NA, Jarrell KF (1996) Isolation and Characterization of Flagella and Flagellin Proteins from the Thermoacidophilic Archaea Thermoplasma volcanium and Sulfolobus shibatae. J Bacteriol 178: 902Google Scholar
  306. 287.
    Yoshida S, Sako Y, Uchida A (1998) Cloning, Sequence Analysis, and Expression in Escherichia coil of a Gene Coding for an Enzyme from Bacillus circulans K-1 that Degrades Guar Gum. Biosci Biotechnol Biochem 62: 514CrossRefGoogle Scholar
  307. 288.
    Paul J, Varma AK (1992) Glycoprotein Components of Cellulase and Xylanase Enzymes of a Bacillus sp. Biotechnol Lett 14: 207CrossRefGoogle Scholar
  308. 289.
    Ong E, Kilburn DG, Miller RC Jr, Warren RAJ (1994) Streptomyces lividans Glycosylates the Linker Region of a ß-1,4-Glycanase from Cellulomonas fimi. J Bacterial 176: 999Google Scholar
  309. 290.
    Gilkes NR, Langsford ML, Kilburn DG, Miller Jr RC, Warren RAJ (1984) Mode of Action and Substrate Specificities of Cellulases from Cloned Bacterial Genes. J Biol Chem 259: 10455Google Scholar
  310. 291.
    Gilkes NR, Warren RAJ, Miller Jr RC, Kilburn DG (1988) Precise Excision of the Cellulose Binding Domains from two Cellulomonas fimi Cellulases by a Homologous Protease and the Effect on Catalysis. J Biol Chem 263: 10401Google Scholar
  311. 292.
    Béguin P, Eisen H (1978) Purification and Partial Characterization of Three Extracellular Cellulases from Cellulomonas sp. Eur J Biochem 87: 525CrossRefGoogle Scholar
  312. 293.
    Strobel GA, Talmadge KW, Albersheim P (1972) Observations on the Structure of the Phytotoxic Glycopeptide of Corynebacterium sepedonicum. Biochim Biophys Acta 261: 365CrossRefGoogle Scholar
  313. 294.
    Meier B, Brunotte CM, Franz B, Warlich B, Petermann M, Ziesenis A, Schuberth H-J, Habermehl GG, Petzoldt K, Leibold W (1992) Isolation of a High-Molecular Mass Glycoprotein from Culture Supernatant of an Arthritogenic Strain of the Bacteria Erysipelothrix rhusiopathiae Reacting With “Inductive” Monoclonal Antibodies Derived From Rats With Erysipelas Polyarthritis. Biol Chem HoppeSeyler 373: 715CrossRefGoogle Scholar
  314. 295.
    Huang L, Forsberg CW, Thomas DY (1988) Purification and Characterization of a Chloride-Stimulated Cellobiosidase from Bacteroides succinogenes S85. J Bacteriol 170: 2923Google Scholar
  315. 296.
    Plummer Jr TH, Tarentino AL, Hauer CR (1995) Novel, Specific 0-Glycosylation of Secreted Flavobacterium meningosepticum Proteins. Asp-Ser* and Asp-Thr*Thr Consensus Sites. J Biol Chem 270: 13192CrossRefGoogle Scholar
  316. 297.
    Reinhold BB, Hauer CR, Plummer TH, Reinhold VN (1995) Detailed Structural Analysis of a Novel, Specific 0-Linked Glycan from the Prokaryote Flavobacterium meningosepticum. J Biol Chem 270: 13197CrossRefGoogle Scholar
  317. 298.
    Fifis T, Costopoulos C, Radford AJ, Bacic A, Wood PR (1991) Purification and Characterization of Major Antigens from a Mycobacterium bovis Culture Filtrate. Infect Immun 59: 800Google Scholar
  318. 299.
    Dobos KM, Swiderek K, Khoo K-H, Brennan Pi, Belisle JT (1995) Evidence for Glycosylation Sites on the 45-Kilodalton Glycoprotein of Mycobacterium tuberculosis. Infect Immun 63: 2846Google Scholar
  319. 300.
    Garbe T, Harris D, Vordermeier M, Lathigra R, Ivanyi J, Young D (1993) Expression of the Mycobacterium tuberculosis 19-Kilodalton Antigen in Mycobacterium smegmatis: Immunological Analysis and Evidence for Glycosylation. Infect Immun 61: 260Google Scholar
  320. 301.
    Kluepfel D, Vats-Mehta S, Aumont F, Shareck F, Morosoli R (1990) Purification and Characterization of a New Xylanase (Xylanase B) Produced by Streptomyces lividans 66. Biochem J 267: 45Google Scholar
  321. 302.
    Van Rijssel M, Gerwig GJ, Hansen TA (1993) Isolation and Characterization of an Extracellular Glycosylated Protein Complex from Clostridium the rmosaccharolyticum with Pectin Methylesterase and Polygalacturonate Hydrolase Activity. Appl Environ Microbiol 59: 828Google Scholar
  322. 303.
    Calza RE, Irwin DC, Wilson DB (1985) Purification and Characterization of Two ß1,4-Endoglucanases from Thermomonospora fusca. Biochemistry 24: 7797CrossRefGoogle Scholar
  323. 304.
    Kim B-K, Pihl TD, Reeve JN, Daniels L (1995) Purification of the Copper Response Extracellular Proteins Secreted by the Copper-Resistant Methanogen Methanobacterium bryantii BKYH and Cloning, Sequencing, and Transcription of the Genes Encoding These Proteins. J Bacteriol 177: 7178Google Scholar
  324. 305.
    Taku A, Fan DP (1976) Purification and Properties of a Protein Factor Stimulating Peptidoglycan Synthesis in Toluene-and LiCI-Treated Bacillus megaterium Cells. J Biol Chem 251: 1889Google Scholar
  325. 306.
    García-Patrone M, Tandecraz JS (1995) A Glycoprotein Multimer from Bacillus thuringensis Sporangia: Dissociation into Subunits and Sugar Composition. Mol Cell Biochem 145: 29CrossRefGoogle Scholar
  326. 307.
    Bulla Jr LA, Kramer KJ, Davidson LI (1977) Characterization of the Entomocidal Parasporal Crystal of Bacillus thuringiensis. J Bacteriol 130: 375Google Scholar
  327. 308.
    Pfannenstiel MA, Muthukumar G, Couche GA, Nickerson KW (1987) Amino Sugars in the Glycoprotein Toxin from Bacillus thuringiensis subsp. israelensis. J Bacteriol 169: 796Google Scholar
  328. 309.
    Muthukumar G, Nickerson KW (1987) The Glycoprotein Toxin of Bacillus thuringensis subsp. israelensis Indicates a Lectinlike Receptor in the Larval Mosquito Gut. Appl Environ Microbiol 53: 2650Google Scholar
  329. 310.
    Webster JR, Reid SJ, Jones DT, Woods DR (1981) Purification and Characterization of an Autolysin from Clostridium acetobutylicum. Appl Environ Microbiol 41: 371Google Scholar
  330. 311.
    Kawamura T, Shockman GD (1983) Purification and Some Properties of the Endogenous, Autolytic N-Acetylmuramoylhydrolase of Streptococcus faeciuma Bacterial Glycoenzyme. J Biol Chem 258: 9514Google Scholar
  331. 312.
    Yao R, Macario AJL, Conway de Macario E (1992) Immunochemical Differences Among Methanosarcina mazei S-6 Morphologic Forms. J Bacteriol 174: 4683Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  1. 1.Zentrum für Ultrastrukturforschung und Ludwig-Boltzmann-Institut für Molekulare NanotechnologieUniversität für Bodenkultur WienAustria

Personalised recommendations