In the last decade, a structurally diverse class of new bioactive natural products was isolated from fungi in which two naphthalene units are fused together via oxidative coupling. These compounds attracted attention because of their antifungal, antibacterial, and antitumoral activity. In addition, several enzymes, namely: phospholipase D, DNA gyrase, and Ras farnesyl-protein transferase, were also found to be inhibited with high selectivity.


Endophytic Fungus Absolute Configuration Specific Optical Rotation Relative Stereochemistry Absolute Stereochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsuboi M, Minami M, Nonaka GI, Nishioka I (1977) Studies on Rhubarb (Rhei Rhizoma) IV. Naphthalene Glycosides. Chem Pharm Bull (Jn) 25: 2708CrossRefGoogle Scholar
  2. 2.
    Bode HB, Zeeck A (2000) Sphaerolone and Dihydrosphaerolone, Two New Bisnaphthyl Pigments from the Fungus Sphaeropsidales sp. F24’707. Phytochem 54: 597CrossRefGoogle Scholar
  3. 3.
    Arnone A, Nasini G, Merlini L, Assante G (1986) Secondary Mould Metabolites. Part Stemphyltoxins, New Reduced Perylenequinone Metabolites from Stemphylium botryosum var. Lactucum. J Chem Soc Perkin Trans 1, 525CrossRefGoogle Scholar
  4. 4.
    Diwu Z, Lown JW (1992) A Simple High-Yielding Approach to Perylenequinones from the Novel One-Step Double Coupling Reaction of 1,2-Naphthoquinone. Tetrahedron 48: 45CrossRefGoogle Scholar
  5. 5.
    Lown WS, Diwu Z, Lown JW (1996) 1996 Hoffman-LaRoche Award Lecture. Photochemistry and Photobiology of Perylenequinones. Can J Chem 75: 99CrossRefGoogle Scholar
  6. 6.
    Arnone A, Merlini L, Mondelli R, Nasini G, Ragg E, Scaglioni L (1993) Structure, Conformational Analysis and Absolute Configuration of the Perylenequinone Pigments Elsinochromes Bl, B2, Cl and C2. Gazz Chim Ital 123: 131Google Scholar
  7. 7.
    Gill M, Steglich W (1987) Pigments from Fungi. In: Herz W, Grisebach H, Kirby GW, Tamm Ch (eds) Prog Chem Org Nat Prod, vol 51. Springer, Wien New York, p 118ffGoogle Scholar
  8. 8.
    Bode HB, Zeeck A (2000) UV Mutagenesis and Enzyme Inhibitors as Tools to Elucidate the Late Biosynthesis of the Spirobisnaphthalenes. Phytochem 55: 311CrossRefGoogle Scholar
  9. 9.
    Bode HB, Walker M, Zeeck A (2000) Secondary Metabolites by Chemical Screening. 42. Cladospirones B to I from Sphaeropsidales sp. F-24’707 by Variation of the Culture Conditions. Eur J Org Chem 3185Google Scholar
  10. 10.
    McDonald LA, Abbanat DR, Barbieri LR, Beman VS, Discafani CM, Greenstein M, Janota K, Korshalla JD, Lassota P, Tischler M, Carter GT (1999) Spiroxins, DNA Cleaving Antitumor Antibiotics from a Marine-Derived Fungus. Tetrahedron Lett 40: 2489CrossRefGoogle Scholar
  11. 11.
    Schlingmann G, Matile S, Berova N, Nakanishi K, Carter GT (1995) Absolute Stereochemistry of the Diepoxins. Tetrahedron 52: 435CrossRefGoogle Scholar
  12. 12.
    Krohn K, Michel A, Flörke U, Aust H-J, Draeger S, Schulz B (1994) Biologically Active Metabolites from Fungi, 4. Palmarumycins CPI to CP4 from Coniothyrium palmarum: Isolation, Structure Elucidation and Biological Activity. Liebigs Ann Chem 1093Google Scholar
  13. 13.
    Weber HA, Baenziger NC, Gloer JB (1990) Structure of Preussomerin A: An Unusual New Antifungal Metabolite from the Coprophilous Fungus Preussia isomera. J Am Chem Soc 112: 6718CrossRefGoogle Scholar
  14. 14.
    Ohkishi H, Chiba N, Mikawa T, Sasaki T, Miyaji S, Sezaki M (1989) Mitsubishi Kasei Corp, JP, 01294686 (November 28, 1989); (1990) Chem Abst 113: 38906qGoogle Scholar
  15. 15.
    Connolly JD (1990) Structural Elucidation of Some Natural Products. In: Atta-urRahman (ed) Frontiers in Natural Product Chemistry, Elsevier, Amsterdam Oxford New York Tokyo, pp 524–539Google Scholar
  16. 16.
    Krohn K, Michel A, Flörke U, Aust H-J, Draeger S, Schulz B (1994) Biologically Active Metabolites from Fungi, 5. Palmarumycins CI to C16 from Coniothyrium sp.: Isolation, Structure Elucidation, and Biological Activity. Liebigs Ann Chem 1099Google Scholar
  17. 17.
    Bode HB, Wegner B, Zeeck A (2000) Biosynthesis of Cladospirone Bisepoxide, A Member of the Spirobisnaphthalene Family. J Antibiot 53: 153CrossRefGoogle Scholar
  18. 18.
    Krohn K, Beckmann K, Aust H-J, Draeger S, Schulz B, Busemann S, Bringmann G (1997) Biologically Active Metabolites from Fungi, 10. Generation of the Palmarumycin Spiroacetal Framework by Oxidative Cyclization of an Open Chain Metabolite from Coniothyrium palmarum. Liebigs Ann Chem 2531Google Scholar
  19. 19.
    Kouam TNM, Lavaud C, Massiot G, Nuzillard J-M, Connolly JD, Rycroft D (1993) Bipendensin, an Unusual Phenolic Acetal from Afzelia Bipendensis. Nat Prod Lett 3: 299CrossRefGoogle Scholar
  20. 20.
    Ragot JP, Steeneck C, Alcaraz M-L, Taylor RJK (1999) The Synthesis of 1,8Dihydroxynaphthalene-Derived Natural Products: Palmarumycin CPI and CP2, CJ-12,371, Deoxypreussomerin A and Novel Analogues. J Chem Soc Perkin Trans 1, 1073CrossRefGoogle Scholar
  21. 21.
    Chu M, Patel MG, Pai MG, Das J-K, Puar MS (1996) Sch 55823 and Sch 53825, Novel Fungal Metabolites with Phospholipase D Inhibitory Activity. Bioorg Med Chem Lett 6: 579CrossRefGoogle Scholar
  22. 22.
    Bringmann G, Busemann S, Krohn K, Beckmann K (1997) Quantum Mechanical Calculation of CD Spectra: The Absolute Configuration of Palmarumycins CP3 and C2. Tetrahedron 53: 1655CrossRefGoogle Scholar
  23. 23.
    Chu M, Truumees I, Patel MG, Blood C, Das PR, Puar MS (1995) Sch 50673 and Sch 50676, Two Novel Antitumor Fungal Metabolites. J Antibiot 48: 329CrossRefGoogle Scholar
  24. 24.
    Schlingmann G, West RR, Milne L, Pearce CJ, Carter GT (1993) Diepoxins, Novel Fungal Metabolites with Antibiotic Activity. Tetrahedron Lett 34: 7225CrossRefGoogle Scholar
  25. 25.
    Chu M, Truumees I, Patel MG, Blood C, Das PR, Puar MS (1994) A Novel Class of Antitumor Metabolites from the Fungus Nattrassia mangiferae. Tetrahedron Lett 35: 1343CrossRefGoogle Scholar
  26. 26.
    Thiergardt R, Hug P, Rihs G, Peter HH (1995) Cladospirone Bisepoxide: Definite Structure Assignment Including Absolute Configuration and Selective Chemical Transformations. Tetrahedron 51: 733CrossRefGoogle Scholar
  27. 27.
    Chu M, Truumees I, Patel MG, Gullo VP, Puar M (1994) Structure of Sch 49209: A Novel Antitumor Agent from the Fungus Nattrassia mangiferae. J Org Chem 59: 1222CrossRefGoogle Scholar
  28. 28.
    Chu M, Truumers I, Patel MG, Gullo VP, Pai I-K, Das PR, Puar MS (1994) Two New Phospholipase D Inhibitors, Sch 49211 and Sch 49212, Produced by the Fungus N. mangiferae. Bio Med Chem Lett 4: 1539CrossRefGoogle Scholar
  29. 29.
    Sakemi S, Inagaki T, Kaneda K, Hirai H, Iwata E, Sakakibara T, Yamauchi Y, Norcia M, Wondrack LM, Sutcliffe JA, Kojima N (1995) CJ-12,371 and CJ-12,372, Two Novel DNA Gyrase Inhibitors. Fermentation, Isolation, Structural Elucidation, and Biological Activities. J Antibiot 27: 134CrossRefGoogle Scholar
  30. 30.
    Thiergardt R, Hug P, Rihs G, Peter HH (1994) Cladospirone Bisepoxide ¡ª A Novel Fungal Metabolite Structure Determination. Tetrahedron Lett 35: 1043CrossRefGoogle Scholar
  31. 31.
    Petersen F, Moerker T, Vanzanella F, Peter HH (1994) Production of Cladospirone Bisepoxide, A New Fungal Metabolite. J Antibiot 47: 1098CrossRefGoogle Scholar
  32. 32.
    Singh SB, Zink DL, Liesch JM, Ball RG, Goetz MA, Bolessa EA, Giacobbe RA, Silverman KC, Bills GF, Pelaez F, Cascales C, Gibbs JB, Lingman RB (1994) Preussomerins and Deoxypreussomerins: Novel Inhibitors of Ras Farnesyl-Protein Transferase. J Org Chem 59: 6296CrossRefGoogle Scholar
  33. 33.
    Krohn K, Beckmann K, Flörke U, Aust H-J, Draeger S, Schulz B, Busemann S, Bringmann G (1997) Biologically Active Metabolites from Fungi, 9. New Palmarumycins CP4a and CP5 from Coniothyrium palmarum: Structure Elucidation, Crystal Structure Analysis and Determination of the Absolute Configuration by CD-Calculations. Tetrahedron 53: 3101CrossRefGoogle Scholar
  34. 34.
    Chu M, Gullo VP, Horan AC, Patel M (1994) Schering Corp. WO, 9320081 (October 14, 1993); Chem Abstr 120: 572Google Scholar
  35. 35.
    Schlingmann GR, Milne L, Borders DB, Greenstein M, Carter GT (1995) Isolation, Characterization and Structure of a New Allenic Polyyne Antibiotic Produced by Fungus LL-07F275. J Antibiot 48: 375CrossRefGoogle Scholar
  36. 36.
    G. Schlingmann (private communication)Google Scholar
  37. 37.
    Höfs R, Walker M, Zeeck A (2000) Hexacyclinsäure, ein Polyketid mit neuartigem Grundgerüst aus Streptomyces. Angew Chem 112: 3400CrossRefGoogle Scholar
  38. 38.
    Weber HA, Gloer JB (1991) The Preussomerins: Novel Antifungal Metabolites from the Coprophilous Fungus Preussia isomera Cain. J Org Chem 56: 4355CrossRefGoogle Scholar
  39. 39.
    Polishook JD, Dombrowski AW, Tsou NN, Salituro GM, Curoto JE (1993) Preussomerin D from the Endophyte Hormonema dematioides. Mycologia 85: 62CrossRefGoogle Scholar
  40. 40.
    Soman AG, Gloer JB, Koster B, Malloch D (1999) Sporovexins A-C and a New Preussomerin Analog: Antibacterial and Antifungal Metabolites from the Coprophilous Fungus Sporomiella vexans. J Nat Prod 62: 659CrossRefGoogle Scholar
  41. 41.
    Krohn K, Flörke U, John M, Root N, Steingröver K, Aust H-J, Draeger S, Schulz B, Antus S, Simonyi M, Zsila F (2001) Biologically Active Metabolites from Fungi, 16. New Preussomerins J, K and L from an Endophytic Fungus: Structure Elucidation, Crystal Structure Analysis and Determination of Absolute Configuration by CD Calculations. Tetrahedron 57: 4343CrossRefGoogle Scholar
  42. 42.
    Browning JW BDZDO/MCDPPD. Program package BDZDO/MCDPPD, Department of Chemistry and Biochemistry, University of Colorado, Boulder, USA. Modified by J Fleischauer J, Schlecker W, and Kramer B, University of Aachen, GermanyGoogle Scholar
  43. 43.
    Krohn K, Steingröver K, Zsila F (2001) The Absolute Configuration of the Palmarumycins C9, C10, and C12 by Quantum-Mechanical Calculations of CD Spectra. Tetrahedron Asymm 12: 1961CrossRefGoogle Scholar
  44. 44.
    Krohn K, John M, Aust H-J, Draeger S, Schulz B (1999) Biologically Active Secondary Metabolites from Fungi, 13. Stemphytriol, a New Perylene Derivative from Monodictys fluctuata. Nat Prod Lett 14: 31CrossRefGoogle Scholar
  45. 45.
    Wipf P, Jung J-K (1998) Total Synthesis of Palmarumycin CPI and (¡À)-Deoxypreussomerin A. J Org Chem 63: 3530CrossRefGoogle Scholar
  46. 46.
    Wipf P, Jung J-K (1999) Total Synthesis of the Spiroketal Naphthoquinone (¡À)Diepoxin a. J Org Chem 64: 1092CrossRefGoogle Scholar
  47. 47.
    Wipf P, Jung J-K (2000) Formal Total Synthesis of (+)-Diepoxin a. J Org Chem 65: 6319CrossRefGoogle Scholar
  48. 48.
    Krohn K, Schlummer S (unpublished results)Google Scholar
  49. 49.
    Kelly TR, Whiting A, Chandrakumar NS (1986) A rationally designed chiral Lewis acid for the asymmetric induction of some Diels-Alder reactions. J Am Chem Soc 108: 3510CrossRefGoogle Scholar
  50. 50.
    Maruoka K, Sakurai M, Fujiwara J, Yamamoto H (1986) Asymmetric Diels-Alder Reaction Directed Toward Chiral Anthracycline Intermediates. Tetrahedron Lett 27: 4895CrossRefGoogle Scholar
  51. 51.
    Coutts IGC, Allock RW, Scheeren HW (2000) Novel Synthetic Approaches to the Palmarumycin Skeleton. Tetrahedron Lett 41: 9105CrossRefGoogle Scholar
  52. 52.
    Barrett AGM, Hamprecht D, Meyer T (1998) Total Syntheses of Palmarumycins CPI and CP2 and CJ-12,371. Novel Spiro-Ketal Fungal Metabolites. J Chem Soc Perkin Trans 1, 809Google Scholar
  53. 53.
    Ragot JP, Alcaraz M-L, Taylor RJK (1998) Synthesis of Palmarumycin CPI and CP2, CJ-12,371 and Novel Analogues. Tetrahedron Lett 39: 4921CrossRefGoogle Scholar
  54. 54.
    Chidambaram N, Chandrsekaran S (1987) tert-Butylhydroperoxid-Pyridinium Dichromate: A Convenient Reagent System for Allylic and Benzylic Oxidations. J Org Chem 52: 5048CrossRefGoogle Scholar
  55. 55.
    Bycroft BW, Roberts JC (1963) Mycological Chemistry. XIV. Synthesis of Flavasperone. J Chem Soc 4868Google Scholar
  56. 56.
    Ramachandran PV, Gong B, Brown HC (1985) Chlorodiisopinocamphenyl Borane. Tetrahedron Lett 26: 1415CrossRefGoogle Scholar
  57. 57.
    Chi S, Heathcock CH (1999) Total Synthesis of (+)-Preussomerins. Org Lett 1: 3CrossRefGoogle Scholar
  58. 58.
    Saegusa T, Hirao T, Ito Y (1978) Dehydrierungen. J Org Chem 43: 1011CrossRefGoogle Scholar
  59. 59.
    Ragot JP, Prime ME, Archiblad SJ, Taylor RJK (2000) A Novel Route to Preussomerins via 2-Arylacetal Anions. Org Lett 2: 1613CrossRefGoogle Scholar
  60. 60.
    Barrett AGM, Blaney F, Campbell AD, Hamprecht D, Meyer T, White AJP, Witty D, Williams DJ (2002) A Unified Route to the Palmarumycin and Preussomerin Natural Products. An Enantioselective Synthesis (—)-Preussomerin G. J Org Chem 67 (2735)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • K. Krohn
    • 1
  1. 1.Fachbereich Chemie und ChemietechnikUniversität PaderbornGermany

Personalised recommendations