Skip to main content

Glioma Surgery Evaluated by Intraoperative Low-Field Magnetic Resonance Imaging

  • Conference paper
Intraoperative Imaging in Neurosurgery

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 85))

Abstract

Objective. To give an overview on intraoperative magnetic resonance (MR) imaging in glioma surgery.

Material and Methods. MR imaging was performed using a 0.2T scanner, located in a radiofrequency-shielded operating theatre. Two setups were used: surgery either in a neighbouring operating theatre, or directly at the 5G line. Additionally, in gliomas adjacent to eloquent brain areas microscope-or pointer-based neuronavigation with integrated functional data was applied. 106 gliomas were among the 330 patients investigated in the last 5 years.

Results. We did not observe complications attributable to intraoperative MR imaging. Image quality was sufficient to evaluate the extent of the tumour resection in the majority of cases. Intraoperative imaging revealed remaining tumour in 63%. In a total of 26% patients further tumour could be removed due to the results of intraoperative imaging, increasing the rate of complete tumour removal especially in the low-grade tumours. The additional use of functional neuronavigation prevented an increased morbidity.

Conclusion. Intraoperative MR imaging offers the possibility of further tumour removal during the same surgical procedure in case of tumour remnants, increasing the rate of complete tumour removal. The effects of brain shift can be compensated for using intraoperative image data for updating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausman JI (2001) Is intraoperative MR-guided surgery of value? Surg Neurol 56: 276

    Article  PubMed  CAS  Google Scholar 

  2. Bernstein M, Al-Anazi AR, Kucharczyk W et al (2000) Brain tumor surgery with the Toronto open magnetic resonance imaging system: preliminary results for 36 patients and analysis of advantages, disadvantages, and future prospects. Neurosurgery 46: 900–909

    PubMed  CAS  Google Scholar 

  3. Black PM, Alexander III E, Martin C et al (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45: 423–433

    Article  PubMed  CAS  Google Scholar 

  4. Black PM, Moriarty T, Alexander III E et al (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41: 831–845

    Article  PubMed  CAS  Google Scholar 

  5. Bohinski RJ, Kokkino AK, Warnick RE et al (2001) Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 48: 731–744

    PubMed  CAS  Google Scholar 

  6. Bonsanto MM, Staubert A, Wirtz CR et al (2001) Initial experience with an ultrasound-integrated single-RACK neuronavigation system. Acta Neurochir (Wien) 143: 1127–1132

    Article  CAS  Google Scholar 

  7. Buchfelder M, Ganslandt O, Fahlbusch R et al (2000) Intraoperative magnetic resonance imaging in epilepsy surgery. J Magn Reson Imaging 12: 547–555

    Article  PubMed  CAS  Google Scholar 

  8. Butler WE, Piaggio CM, Constantinou C et al (1998) A mobile computed tomographic scanner with intraoperative and intensive care unit applications. Neurosurgery 42: 1304–1311

    Article  PubMed  CAS  Google Scholar 

  9. Dietrich J, Schneider JP, Schulz T et al (1998) Appearance of the resection area of brain tumors in intraoperative MRI imaging. Radiologe 38: 935–942

    Article  PubMed  CAS  Google Scholar 

  10. Fahlbusch R, Ganslandt O, Buchfelder M et al (2001) Intraoperative magnetic resonance imaging during transsphenoidal surgery. J Neurosurg 95: 381–390

    Article  PubMed  CAS  Google Scholar 

  11. Fahlbusch R, Nimsky C, Ganslandt O et al (1998) The erlangen concept of image guided surgery. In: Lemke H, Vannier M, Inamura K, Farman A (eds) CAR’98. Elsevier Science BV, Amsterdam, pp 583–588

    Google Scholar 

  12. Ganslandt O, Fahlbusch R, Nimsky C et al (1999) Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 91: 73–79

    Article  PubMed  CAS  Google Scholar 

  13. Ganslandt O, Steinmeier R, Kober H et al (1997) Magnetic source imaging combined with image-guided frameless stereotaxy: a new method in surgery around the motor strip. Neurosurgery 41: 621–628

    PubMed  CAS  Google Scholar 

  14. Giese A, Westphal M (2001) Treatment of malignant glioma: a problem beyond the margins of resection. J Cancer Res Clin Oncol 127: 217–225

    Article  PubMed  CAS  Google Scholar 

  15. Gronningsaeter A, Kleven A, Ommedal S et al (2000) Sono-Wand, an ultrasound-based neuronavigation system. Neurosurgery 47: 1373–1380

    Article  PubMed  CAS  Google Scholar 

  16. Grunert P, Muller-Forell W, Darabi K et al (1998) Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg 3: 166–173

    Article  PubMed  CAS  Google Scholar 

  17. Hadani M, Spiegelman R, Feldman Z et al (2001) Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 48: 799–809

    PubMed  CAS  Google Scholar 

  18. Hall WA, Liu H, Martin AJ et al (2000) Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery. Neurosurgery 46: 632–642

    Article  PubMed  CAS  Google Scholar 

  19. Hall WA, Martin AJ, Liu H et al (1999) Brain biopsy using high-field strength interventional magnetic resonance imaging. Neurosurgery 44: 807–814

    Article  PubMed  CAS  Google Scholar 

  20. Hall WA, Martin AJ, Liu H et al (1998) High-field strength interventional magnetic resonance imaging for pediatric neurosurgery. Pediatr Neurosurg 29: 253–259

    Article  PubMed  CAS  Google Scholar 

  21. Hammoud MA, Ligon BL, elSouki R et al (1996) Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84: 737–741

    Article  PubMed  CAS  Google Scholar 

  22. Hastreiter P, Engel K, Soza G et al (2001) Remote analysis for brain shift compensation. In: Niessen W, Viergever M (eds) Medical image computing and computer assisted intervention 4th international conference. Springer, Berlin Heidelberg New York Tokyo, pp 1248–1249

    Google Scholar 

  23. Hastreiter P, Rezk-Salama C, Nimsky C et al (2000) Registration techniques for the analysis of the brain shift in neurosurgery. Computers and Graphics 24: 385–389

    Article  Google Scholar 

  24. Hata N, Dohi T, Iseki H et al (1997) Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration. Neurosurgery 41: 608–614

    PubMed  CAS  Google Scholar 

  25. Hum B, Feigenbaum F, Cleary K et al (2000) Intraoperative computed tomography for complex craniocervical operations and spinal tumor resections. Neurosurgery 47: 374–381

    Article  PubMed  CAS  Google Scholar 

  26. J&dicke A, Deinsberger W, Erbe H et al (1998) Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing Minim Invas Neurosurg 41: 13–19

    Google Scholar 

  27. Kabuto M, Kubota T, Kobayashi H et al (1998) Intraoperative CT imaging system using a mobile CT scanner gantry mounted on floor-embedded rails for neurosurgery. No To Shinkei 50: 1003–1008

    PubMed  CAS  Google Scholar 

  28. Kaibara T, Saunders JK, Sutherland GR (2000) Advances in mobile intraoperative magnetic resonance imaging. Neurosurgery 47: 131–138

    PubMed  CAS  Google Scholar 

  29. Keles GE, Lamborn KR, Berger MS (2001) Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg 95: 735–745

    Article  PubMed  CAS  Google Scholar 

  30. Knauth M, Aras N, Wirtz CR et al (1999) Surgically induced intracranial contrast enhancement: potential source of diagnostic error in intraoperative MR imaging. AJNR Am J Neuroradiol 20: 1547–1553

    PubMed  CAS  Google Scholar 

  31. Knauth M, Wirtz CR, Aras N et al (2001) Low-field interventional MRI in neurosurgery: finding the right dose of contrast medium. Neuroradiology 43: 254–258

    Article  PubMed  CAS  Google Scholar 

  32. Knauth M, Wirtz CR, Tronnier VM et al (1999) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 20: 1642–1646

    PubMed  CAS  Google Scholar 

  33. Kober H, Moller M, Nimsky C et al (2001) New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp 14: 236–250

    Article  PubMed  CAS  Google Scholar 

  34. Kober H, Nimsky C, Moller M et al (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14: 1214–1228

    Article  PubMed  CAS  Google Scholar 

  35. Kowalczuk A, Macdonald RL, Amidei C et al (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41: 1028–1038

    Article  PubMed  CAS  Google Scholar 

  36. LeRoux PD, Winter TC, Berger MS et al (1994) A comparison between preoperative magnetic resonance and intraoperative ultrasound tumor volumes and margins. J Clin Ultrasound 22: 29–36

    Article  PubMed  CAS  Google Scholar 

  37. Lewin JS (1999) Interventional MR imaging: concepts, systems, and applications in neuroradiology. AJNR Am J Neuroradiol 20: 735–748

    PubMed  CAS  Google Scholar 

  38. Lunsford LD, Parrish R, Albright L (1984) Intraoperative imaging with a therapeutic computed tomographic scanner. Neurosurgery 15: 559–561

    Article  PubMed  CAS  Google Scholar 

  39. Lunsford LD, Rosenbaum AE, Perry J (1982) Stereotactic surgery using the “therapeutic” CT scanner. Surg Neurol 18: 116–122

    Article  PubMed  CAS  Google Scholar 

  40. Matula C, Rossler K, Reddy M et al (1998) Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow. Comput Aided Surg 3: 174–182

    Article  PubMed  CAS  Google Scholar 

  41. Miller M, Kober H, Ganslandt O et al (1999) Functional mapping of speech evoked brain activity by magnetoencephalography and its clinical application. Biomed Tech (Berl) 44: 159–161

    Article  Google Scholar 

  42. Nabavi A, Black PM, Gering DT et al (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48: 787–797; discussion 797–788

    Google Scholar 

  43. Nicolato A, Gerosa MA, Fina P et al (1995) Prognostic factors in low-grade supratentorial astrocytomas: a uni-multivariate statistical analysis in 76 surgically treated adult patients. Surg Neural 44: 208–223

    Article  CAS  Google Scholar 

  44. Nimsky C, Ganslandt O, Cerny S et al (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47: 1070–1080

    Article  Google Scholar 

  45. Nimsky C, Ganslandt O, Hastreiter P et al (2001) Intraoperative compensation for brain shift. Surg Neural 56: 357–364

    Article  CAS  Google Scholar 

  46. Nimsky C, Ganslandt O, Kober H et al (2001) Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 48: 1082–1091

    Article  PubMed  CAS  Google Scholar 

  47. Nimsky C, Ganslandt O, Kober H et al (1999) Integration of functional magnetic resonance imaging supported by magneto-encephalography in functional neuronavigation. Neurosurgery 44: 1249–1256

    PubMed  Google Scholar 

  48. Okudera H, Kobayashi S, Kyoshima K et al (1991) Development of the operating computerized tomographie scanner system for neurosurgery. Acta Neurochir (Wien) 111: 61–63

    Article  CAS  Google Scholar 

  49. Okudera H, Kyoshima K, Kobayashi S et al (1994) Intraoperative CT scan findings during resection of glial tumours. Neurol Res 16: 265–267

    PubMed  CAS  Google Scholar 

  50. Rubin JM, Quint DJ (2000) Intraoperative US versus intraoperative MR imaging for guidance during intracranial neurosurgery. Radiology 215: 917–918 (letter)

    PubMed  CAS  Google Scholar 

  51. Rubino GJ, Farahani K, McGill D et al (2000) Magnetic resonance imaging-guided neurosurgery in the magnetic fringe fields: the next step in neuronavigation. Neurosurgery 46: 643–654

    Article  PubMed  CAS  Google Scholar 

  52. Schneider JP, Schulz T, Schmidt F et al (2001) Gross-total surgery of supratentorial low-grade gliomas under intraoperative MR guidance. AJNR Am J Neuroradiol 22: 89–98

    PubMed  CAS  Google Scholar 

  53. Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94: 936–945

    Article  PubMed  CAS  Google Scholar 

  54. Schwartz RB, Hsu L, Wong TZ et al (1999) Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology 211: 477–488

    PubMed  CAS  Google Scholar 

  55. Seifert V, Zimmermann M, Trantakis C et al (1999) Open MRIguided neurosurgery. Acta Neurochir 141: 455–464

    Article  CAS  Google Scholar 

  56. Staubert A, Pastyr O, Echner G et al (2000) An integrated headholder/coil for intraoperative MRI in open neurosurgery. J Magn Reson Imaging 11: 564–567

    Article  PubMed  CAS  Google Scholar 

  57. Steinmeier R, Fahlbusch R, Ganslandt O et al (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures. A preliminary report. Neurosurgery 43: 739–748

    Article  PubMed  CAS  Google Scholar 

  58. Sutherland GR, Kaibara T, Louw D et al (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91: 804–813

    Article  PubMed  CAS  Google Scholar 

  59. Tronnier V, Staubert A, Wirtz R et al (1999) MRI-guided brain biopsies using a 0.2 Tesla open magnet Minim Invasive Neurosurg 42: 118–122

    Article  CAS  Google Scholar 

  60. Tronnier VM, Wirtz CR, Knauth M et al (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40: 891–902

    Article  PubMed  CAS  Google Scholar 

  61. Wirtz CR, Bonsanto MM, Knauth M et al (1997) Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg 2: 172–179

    PubMed  CAS  Google Scholar 

  62. Wirtz CR, Knauth M, Staubert A et al (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46: 1112–1122

    Article  PubMed  CAS  Google Scholar 

  63. Woydt M, Krone A, Becker G et al (1996) Correlation of intraoperative ultrasound with histopathologic findings after tumour resection in supratentorial gliomas. A method to improve gross total tumour resection. Acta Neurochir (Wien) 138: 1391–1398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag/Wien

About this paper

Cite this paper

Nimsky, C., Ganslandt, O., Buchfelder, M., Fahlbusch, R. (2003). Glioma Surgery Evaluated by Intraoperative Low-Field Magnetic Resonance Imaging. In: Bernays, R.L., Imhof, HG., Yonekawa, Y. (eds) Intraoperative Imaging in Neurosurgery. Acta Neurochirurgica Supplements, vol 85. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6043-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6043-5_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83835-8

  • Online ISBN: 978-3-7091-6043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics