Skip to main content

Intraoperative MR at 1.5 Tesla — Experience and Future Directions

  • Conference paper
Intraoperative Imaging in Neurosurgery

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 85))

Abstract

The objective of this report is to present and contrast the development of the different intraoperative MR systems that are currently in use. The manuscript focuses on the design and clinical experience of a 1.5 Tesla MR system, based on a movable magnet. This configuration is similar to the operating microscope and other surgical adjuncts, with MR technology moved to and from the patient as needed. The system has been used to monitor 294 neurosurgical procedures, including CNS neoplasia, epilepsy, cervical spine disorders, arteriovenous malformations, cavernomas and aneurysms. In many cases the surgical procedure was significantly altered by intraoperatively acquired MRI. Future developments include the construction of a 3 Tesla intraoperative MR system and an ambidextrous MR-compatible robot. This seamless integration of robotic technology into an intraoperative MR environment may well revolutionize neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benabid AL, Cinquin P, Lavalle S, Le Bas JF, Demongeot J, de Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging. Technological design and preliminary results. Appl Neurophysiol 50: 153–154

    PubMed  CAS  Google Scholar 

  2. Black PM, Moriarty T, Alexander E III, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41:831–842

    Article  PubMed  CAS  Google Scholar 

  3. Bohinski RJ, Kokkino AK, Warnick RE, Gaskill-Shipley MF, Kormos DW, Lukin RR, Tew JM Jr (2001) Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery 48: 731–742

    PubMed  CAS  Google Scholar 

  4. Dandy WE (1919) Roentgenography of the brain after the injection of air into the spinal canal. Ann Surg 70: 397–403

    Article  PubMed  CAS  Google Scholar 

  5. Dort JC, Sutherland GR (2001) Intraoperative magnetic resonance imaging for skull base surgery. Laryngoscope 111: 1570–1575

    Article  PubMed  CAS  Google Scholar 

  6. Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer-and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29: 27–31

    Article  PubMed  CAS  Google Scholar 

  7. Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z (2001) Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 48: 799–807

    PubMed  CAS  Google Scholar 

  8. Hall WA, Liu H, Martin AJ, Truwit CL (2000) Intraoperative magnetic resonance imaging. Top Magn Reson Imaging 11: 203–212

    Article  PubMed  CAS  Google Scholar 

  9. Himpens J, Leman G, Cadiere GB (1998) Telesurgical laparoscopic cholecystectomy. Surg Endosc 12: 1091

    Article  PubMed  CAS  Google Scholar 

  10. Hoult DI, Saunders JK, Sutherland GR, Sharp J, Gervin M, Kolansky HG, Kripiakevich DL, Procca A, Sebastian RA, Dombay A, Rayner DL, Roberts FA, Tomanek B (2001) The engineering of an interventional MRI with a movable 1.5 Tesla magnet. J Magn Reson Imaging 13: 78–86

    Article  PubMed  CAS  Google Scholar 

  11. Kaibara T, Myles ST, Lee MA, Sutherland GR (2002) Optimizing epilepsy surgery with intraoperative MR imaging. Epilepsia (in press)

    Google Scholar 

  12. Kaibara T, Hurlbert RJ, Sutherland GR (2001) Transoral resection of axial lesions augmented by intraoperative magnetic resonance imaging. Report of three cases. J Neurosurg 95: 239242

    Google Scholar 

  13. Kaibara T, Saunders JK, Sutherland GR (1999) Utility of a moveable 1.5 Tesla intraoperative MR imaging system. Can J Neurol Sci 26: 313–316

    PubMed  CAS  Google Scholar 

  14. Kaibara T, Saunders JK, Sutherland GR (2000) Advances in mobile intraoperative magnetic resonance imaging. Neurosurgery 47: 131–137

    PubMed  CAS  Google Scholar 

  15. Mohr FW, Falk V, Diegeler A, Autschback R (1999) Computer-enhanced coronary artery bypass surgery. J Thorac Cardiovasc Surg 117: 1212–1214

    Article  PubMed  CAS  Google Scholar 

  16. Mohr FW, Falk V, Diegeler A, Walther T, van Son JA, Autschbach R (1998) Minimally invasive port-access mitral valve surgery. J Thorac Cardiovasc Surg 115: 567–574

    Article  PubMed  CAS  Google Scholar 

  17. Moniz E (1927) L’encephalographie arterielle, son importance dans la localisations des tumeurs cerebrales. Rev Neural 2: 7290

    Google Scholar 

  18. Steinmeier R, Fahlbusch R, Ganslandt O, Nimsky C, Buchfelder M, Kaus M, Heigl T, Lenz G, Kuth R, Huk W (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43: 739–747

    Article  PubMed  CAS  Google Scholar 

  19. Sung GT, Gill IS (2001) Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems. Urology 58: 893–898

    Article  PubMed  CAS  Google Scholar 

  20. Sutherland GR, Kaibara T (2001) Neurosurgical suite of the future III. In: Truwit C (ed) MR-guided therapy in neurosurgery. WB Saunders, Philadelphia, pp 593–609

    Google Scholar 

  21. Sutherland GR, Kaibara T, Wallace C, Tomanek B (2001) Intraoperative assessment of aneurysm clipping using MR angiography and diffusion weighted imaging. Neurosurg (in press)

    Google Scholar 

  22. Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91: 804–813

    Article  PubMed  CAS  Google Scholar 

  23. Tronnier VM, Wirtz CR, Knauth M, Lenz G, Pastyr O, Bonsanto MM, Albert FK, Kuth R, Staubert A, Schlegel W, Sartor K, Kunze S (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40: 891–900

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag/Wien

About this paper

Cite this paper

Sutherland, G.R., Kaibara, T., Louw, D.F. (2003). Intraoperative MR at 1.5 Tesla — Experience and Future Directions. In: Bernays, R.L., Imhof, HG., Yonekawa, Y. (eds) Intraoperative Imaging in Neurosurgery. Acta Neurochirurgica Supplements, vol 85. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6043-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6043-5_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83835-8

  • Online ISBN: 978-3-7091-6043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics