Skip to main content

Production of natural products by plant cell biotechnology: results, problems and perspectives

  • Chapter
Plant Tissue Culture

Abstract

This short review presents some examples, which demonstrate the importance and the potential of plant cell and tissue cultures for a biotechnological production of natural products. On the other hand, it still can not be denied, that despite intensive work for some 30 years all over the world a real breakthrough of this technique has been achieved only very recently (Phyton 2002). The problems we are faced with and some new possibilities to overcome these problems will be discussed (for more detailed and/or special discussion see e.g. Walton et al. 1999, Bourgaud et al. 2001, Stafford 2002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airi S., Rawal R. S., Dhar U., Purohit A. N. (1997) Population studies on Podophyllum hexandrum Royle — a dwindling medicinal plant of the Himalaya. Plant Genet. Resour. Newsl. 110: 20–34.

    Google Scholar 

  • Akiu S., Suzuki Y., Fujinuma Y., Asahara T., Fukuda M. (1988) Inhibitory effect of arbutin on melanogenesis: Biochemical study in cultured B16 melanoma cells and effect on the UV-induced pigmentation in human skin. Proc. Japan. Soc. Invest. Dermatol. 12: 138–139.

    Google Scholar 

  • Alfermann A. W., Bergmann W., Figur C., Helmbold U., Schwantag D., Schuller I., Reinhard E. (1983) Biotransformation of ß-methyldigitoxin to ß-methyldigoxin by cell cultures of Digitalis lanata. In: Mantell S. H., Smith H. (eds.) Plant biotechnology. Cambridge University Press, Cambridge, pp. 67–74.

    Google Scholar 

  • Allison A. J., Butcher D. N., Connolly J. D., Overton K. H. (1968) Paniculides A, B, and C, bisabonolenoid lactones from tissue cultures of Andrographis paniculata. Chem. Comm. 1493.

    Google Scholar 

  • Anonymus (2002) Bioprocess news. Genet. Eng. News 22: 66.

    Google Scholar 

  • Arend J., Warzecha H., Hefner T., Stöckigt J. (2001) Utilizing genetically engineered bacteria to produce plant specific glucosides. Biotech. Bioeng. 76: 126–131.

    Article  CAS  Google Scholar 

  • Ball E. (1967) Production of a group of anthocyanins in a callus culture under the influence of an auxin. Plant Physiol. 42[Suppl]: S24.

    Google Scholar 

  • Bourgaud F., Gravot A., Milesi S., Gontier E. (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci. 161: 839–851.

    Article  CAS  Google Scholar 

  • DeCapite L. (1955) Azione degli zuccheri e delle basse temperature sulla formatione degli antociani in radici di Daucus carota coltivato in vitro. Ric. Sci. 35: 2091–2097.

    Google Scholar 

  • Eilert U. F. K., Kurz W. G. W., Constabel F. (1985) Stimulation of sanguinarine accumulation in Papaver somniferum cell cultures by fungal elicitors. J. Plant Physiol. 119: 65–76.

    Article  CAS  Google Scholar 

  • Empt U., Alfermann A. W., Pras N., Petersen M. (2000) The use of plant cell cultures for the production of podophyllotoxin and related lignans. J. Appl. Bot. 74: 145–150.

    CAS  Google Scholar 

  • Farnsworth N. R. (1985) The role of medicinal plants in drug development. In: Kroogsgard-Larsen P., Brogger Christensen S., Koford H. (eds.) Natural products and drug development. Munksgaard, Copenhagen, pp. 17–30.

    Google Scholar 

  • Fischer R., Drossard J., Schillberg S., Artsaenko O., Emans N., Naehring J. M. (2000) Modulation of plant function and plant pathogens by antibody expression. In: Verpoorte R., Alfermann A. W. (eds.) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, Dordrecht, pp. 87–109.

    Google Scholar 

  • Fujita Y., Tabata M., Nishi A., Yamada Y. (1982) New medium and production of secondary compounds with the two-staged culture method. In: Fujiwara A. (ed.) Plant tissue culture 1982. Maruzen, Tokyo, pp. 399–400.

    Google Scholar 

  • Gautheret R. J. (1939) Sur la possibilité de réaliser la culture indéfinie des tissus de tubercules de carotte. C. R. Acad. Sci. Paris 208: 118–120.

    Google Scholar 

  • Gautheret R. J. (1941) Action du saccharose sur la croissance des tissus de carotte. C. R. Soc. Biol. 135: 875–878.

    CAS  Google Scholar 

  • Gräther G., Schneider B. (2001) The metabolic diversity of plant cell and tissue cultures. Progr. Bot. 62: 276–304.

    Google Scholar 

  • Grotewold E., Chamberlin M., Snook M., Siame B., Butler L., Swenson J., Maddock S., St.Clair G. Bowen B. (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721–740.

    CAS  Google Scholar 

  • Gupta R., Sethi K. L. (1983) Conservation of medicinal plant resources in Himalayan region. In: Jain S. K., Mehra K. L. (eds.) Conservation of tropical plant resources. Botanical Survey of India, Howrah, pp. 101–107.

    Google Scholar 

  • Haberlandt G. (1902) Culturversuche mit isolierten Pflanzenzellen. Sitzungsberichte Math. Naturw. Kl. Kais. Akad. Wiss. Wien 111: 69 – 92.

    Google Scholar 

  • Hain R., Bieseler B., Kindl H., Schröder G., Stöcker R. (1990) Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol. Biol. 15: 325–335.

    CAS  Google Scholar 

  • Hain R., Reif H. J., Krause E., Langebartels R., Kindl H., Vornam B., Wiese W., Schmelzer E., Schreier P. H., Stöcker R. H., Stenzel K. (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Hampp N., Zenk M. H. (1988) Homogeneous strictosidine synthase from cell suspension cultures of Rauwolfia serpentina. Phytochemistry 27: 3811–3815.

    Article  CAS  Google Scholar 

  • Hartmann T. (1985) Principles of plant secondary metabolism. Plant Syst. Evol.150:13–34.

    Google Scholar 

  • Hashimoto T., Yamada Y. (1992) Biosynthesis of scopolamine and its application for genetic engineering of medicinal plants. In: Oono R., Hirabayashi T., Kiruchi S., Handa H., Kahwara S. (eds.) Plant tissue culture and gene manipulation for breeding and formation of phytochemicals. National Institute of Agrobiological Resources, Tsukuba/Japan, pp. 255–259.

    Google Scholar 

  • Heide L., Tabata M. (1987a) Enzyme activities in cell-free extracts of shikoninproducing Lithospermum erythrorhizon cell suspension cultures. Phytochemistry 26: 1645–1650.

    Article  Google Scholar 

  • Heide L., Tabata M. (1987b) Geranylpyrophosphate:p-hydroxybenzoate geranyltransferase activity in extracts of Lithospermum erythrorhizon cell cultures. Phytochemistry 26: 1651–1655.

    Article  Google Scholar 

  • Henkel T., Brunne R. M., Müller H., Reichel F. (1999) Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed. 38: 643–647.

    Article  CAS  Google Scholar 

  • Herbers K., Wilke I., Sonnewald U. (1995) A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. Bio/Technology 13: 63–66.

    Article  CAS  Google Scholar 

  • Inoue H., Ueda S., Inoue K., Matsumura H. (1979) Biosynthesis of shikonin in callus cultures of Lithospermum erythrorhizon. Phytochemistry 18: 1301–1308.

    Article  Google Scholar 

  • Kesselring (1985) Pflanzenzellkulturen (PZK) zur Auffindung neuer, therapeutisch relevanter Naturstoffe und deren Gewinnung durch Fermentationsprozesse. In: Bundesminister für Forschung und Technologie (ed.) Pflanzliche Zellkulturen. Projektträger Biotechnologie, KFA Jülich, pp. 111–129.

    Google Scholar 

  • Kingston D. G. I., Newman D. J. (2002) Mother nature’s combinatorial libraries; their influence on the synthesis of drugs. Curr. Opinion Drug Discovery & Development 5: 304–316.

    Google Scholar 

  • Konuklugil B., Schmidt T. J., Alfermann A. W. (1999) Accumulation of aryltetralin lactone lignans in cell suspension cultures of Linum nodiflorum. Planta Med. 65: 587–588.

    Article  PubMed  CAS  Google Scholar 

  • Konuklugil B., Schmidt T. J., Alfermann A. W. (2001) Accumulation of lignans in suspension cultures of Linum mucronatum ssp. armenum (Bordz.) Davis. Z. Naturforsch. 56c: 1164–1165.

    Google Scholar 

  • Kurz W. G. W., Tyler R. T., Roewer I. A. (1990) Elicitation — a method to induce metabolite production by plant cells. In: Durand G., Bobichon L., Florent J. (eds.) Proc. 8th Int. Biotechnol. Symp., vol. 1. Soc. Franc. Microbiol., Paris, pp. 193–204.

    Google Scholar 

  • Kutchan T. M. (1989) Expression of enzymatically active cloned strictosidine synthase from the higher plant Rauwolfia serpentina in Escherichia coll. FEBS Lett. 257: 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Kutchan T., Dittrich H., Bracher D., Zenk M. H. (1991) Enzymology and molecular biology of alkaloid biosynthesis. Tetrahedron 47: 5945–5954.

    Article  CAS  Google Scholar 

  • Lutterbach R., Stöckigt J. (1992) High-yield formation of arbutin from hydroquinone by cell-suspension cultures of Rauwolfia serpentina. Hely. Chim. Acta 75: 2009–2011.

    CAS  Google Scholar 

  • Lutterbach R., Ruyter C. M., Stöckigt J. (1994) Isolation and characterization of an UDPG-dependent glucosyltransferase activity from Rauwolfia serpentina Benth. cell suspension cultures. Can. J. Chem. 72: 51–55.

    CAS  Google Scholar 

  • Memelink J, Verpoorte R., Kijne J. W. (2001) ORCAnisation of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci. 6: 212–219.

    Article  PubMed  CAS  Google Scholar 

  • Menke F. L. H., Champion A., Kijne J. W., Memelink J. (1999) A novel jasmonateresponsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J. 18: 4455–4463.

    Article  Google Scholar 

  • Mizukami H., Terato T., Miura H., Ohashi H. (1983) Glucosylation of salicyl alcohol in cultured plant cells. Phytochemistry 22: 679–680.

    Article  CAS  Google Scholar 

  • Mizukami H., Terato T., Ohashi H. (1985) Partial purification and characterization of UDP-glucose:salicyl alcohol glucosyltransferase from Gardenia jasminoides cell cultures. Planta Med. 46: 104–107.

    Article  Google Scholar 

  • Mizukami H., Terato T., Amano A., Ohashi H. (1986) Glucosylation of salicyl alcohol by Gardenia jasminoides cell cultures. Plant Cell Physiol. 27: 645–650.

    CAS  Google Scholar 

  • Mizukami H., Terato T., Ohashi H. (1987) Effect of substituent groups on the glucosyl formation of xenobiotic phenols by cultured cells of Gardenia jasminoides. Plant Sci. 48: 11–15.

    Article  CAS  Google Scholar 

  • Mohagheghzadeh A., Schmidt T. J., Alfermann A. W. (2002) Arylnaphthalene lignans from in vitro cultures of Linum austriacum. J. Nat. Prod. 65: 69–71.

    Article  PubMed  CAS  Google Scholar 

  • Molog G. A., Empt U., Kuhlmann S., van Uden W., Pras N., Alfermann A. W., Petersen M. (2001) Deoxypodophyllotoxin 6-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum flavum involved in the biosynthesis of cytotoxic lignans. Planta 214: 288–294.

    Article  PubMed  CAS  Google Scholar 

  • Nobécourt P. (1937) Culture en série de tissus végétaux sur milieu artificiel. C.R. Séances Soc. Biol. 205: 521–523.

    Google Scholar 

  • Pabsch K., Petersen M., Rao N. N., Alfermann A. W., Wandrey C. (1991) Chemo-enzymatic synthesis of rosmarinic acid. Rec. Tray. Chim. Pays-Bas 110: 199–205.

    Article  CAS  Google Scholar 

  • Petersen M. (1995) Plant cell cultures as a source of enzymes involved in natural product biosynthesis. Proc. 7th Europ. Congr. Biotechnol., Nice, France.

    Google Scholar 

  • Petersen M., Alfermann A. W. (2001) The production of cytotoxic lignans byplant cell cultures. Appl. Microbiol. Biotechnol. 55: 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Petersen M., Seitz H. U. (1985) Cytochrome P-450 dependent digitoxin 12ßhydroxylase from cell cultures of Digitalis lanata. FEBS Lett. 188: 11–14.

    Article  CAS  Google Scholar 

  • Petersen M., Seitz H. U. (1988) Reconstitution of cytochrome P-450 dependent digitoxin 12ß-hydroxylase from cell cultures of Digitalis lanata Ehrh. Biochem. J. 252: 537–543.

    CAS  Google Scholar 

  • Petersen M., Seitz H. U., Reinhard E. (1988) Characterization and localization of digitoxin 12ß-hydroxylase from cell cultures of Digitalis lanata Ehrh. Z. Naturforsch. 43c: 199–206.

    Google Scholar 

  • Petersen M., Alfermann A. W., Reinhard E., Seitz H. U. (1987) Immobilization of digitoxin 12ß-hydroxylase, a cytochrome P-450-dependent enzyme from cell cultures of Digitalis lanata EHRH. Plant Cell Rep. 6: 200–203.

    Article  CAS  Google Scholar 

  • Petersen M., Dombrowski K., Gertlowski C., Häusler E., Karwatzki B., Meinhard J., Alfermann A. W. (1992) The use of plant cell cultures to study natural product biosynthesis. In: Oono R., Hirabayashi T., Kiruchi S., Handa H., Kahwara S. (eds.) Plant tissue culture and gene manipulation for breeding and formation of phytochemicals. National Institute of Agrobiological Resources, Tsukuba/Japan, pp. 297–310.

    Google Scholar 

  • Pfitzner U., Zenk M. H. (1982) Immobilization of strictosidine synthase from Catharanthus cell cultures and preparative synthesis of strictosidine. Planta Med. 46: 10–14.

    Article  PubMed  CAS  Google Scholar 

  • Phyton Inc. (2002) Phyton expands commercial partnership with Bristol-Myers Sqibb for paclitaxel supply. Press release July 10, 2002.

    Google Scholar 

  • Pilgrim H. (1970) Untersuchungen zur Glycosidbildung in pflanzlichen Gewebekulturen. Pharmazie 25: 568.

    PubMed  CAS  Google Scholar 

  • Reinert J., Clauss H., von Ardenne R. (1964) Anthocyanbildung in Gewebekulturen von Haplopappus gracilis in Licht verschiedener Qualität. Naturwissenschaften 51: 87.

    Article  CAS  Google Scholar 

  • Romeike A. (1960) Die Rolle von Sproß und Wurzel bei der Umwandlung des Hyoscyamins in verschiedenen Datura Arten. Planta Med. 8: 491–496.

    Article  CAS  Google Scholar 

  • Routien J. B., Nickel L. G. (1952) Cultivation of Plant Tissue. US Patent 2,747,334. Ruyter C. M., Stöckigt J. (1989) Novel natural products from plant cell and tissuecultures — an update. GIT Fachz. Lab. 4: 283–293.

    Google Scholar 

  • Scott A. I. (1994) Genetically engineered synthesis of natural products. J. Nat. Prod. 57: 557–573.

    Article  PubMed  CAS  Google Scholar 

  • Seidel V., Windhövel J., Eaton G., Alfermann W., Arroo R. R., Medarde M., Petersen M., Woolley J. G. (2002) Biosynthesis of podophyllotoxin in Linum album cell cultures. Planta: published online July 25.

    Google Scholar 

  • Smollny T., Wichers H., Kalenberg S., Shahsavary A., Petersen M., Alfermann A W. (1998) Accumulation of podophyllotoxin and related lignans in cell suspension cultures of Linum album. Phytochemistry 48: 975–979.

    Article  CAS  Google Scholar 

  • Stafford A. M. (2002) Plant cell cultures as a source of bioactive small molecules. Curr. Opinion Drug Discovery & Development 5: 296–303.

    CAS  Google Scholar 

  • Stöckigt J. (1993) Biotransformations with plant cells. Agro-Food-Industry Hi-Tech, 25–28.

    Google Scholar 

  • Suzuki T., Yoshioka T., Tabata M., Fujita Y. (1987) Potential of Datura innoxia cell suspension cultures for glycosylating hydroquinone. Plant Cell Rep. 6: 275–278.

    Article  CAS  Google Scholar 

  • Tabata M., Ikeda F., Hiraoka N., Konoshima M. (1976) Glucosylation of phenolic compounds by Datura innoxia suspension cultures. Phytochemistry 15: 1225–1229.

    Article  CAS  Google Scholar 

  • Tabata M., Umetani Y., Ooya M., Tanaka S. (1988) Glucosylation of phenolic compounds by plant cell cultures. Phytochemistry 27: 809–813.

    Article  CAS  Google Scholar 

  • Tanaka S., Hayakawa K., Umetani Y., Tabata M. (1990) Glucosylation of isomeric hydroxybenzoic acids by cell suspension cultures of Mallotus japonicus. Phytochemistry 29: 1555–1558.

    Article  CAS  Google Scholar 

  • Treimer J. F., Zenk M. H. (1979) Purification and properties of strictosidine synthase,the key enzyme in indole alkaloid formation. Eur. J. Biochem. 101: 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Ushiyama K. (1991) Large scale cultivation of ginseng. In: Komamine A., MisawaA.,DiCosmo F. (eds.) Plant cell culture in Japan. CMC, Tokyo, pp. 92–98.

    Google Scholar 

  • Van der Fits L., Memelink J. (2000) ORCA3, a jasmonate-responsive transcriptionalregulator of plant primary and secondary metabolism. Science 289: 295–297.

    Article  PubMed  Google Scholar 

  • Venkat K. (1998) Paclitaxel production through plant cell culture: An exciting approach to harnessing biodiversity. Pure Appl. Chem. 70: 2127.

    Google Scholar 

  • Verpoorte R., Alfermann A. W. (2000) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Verpoorte R., Memelink J (2002) Engineering secondary metabolite production in plants. Curr. Opinion Biotechnol. 13: 181–187.

    Article  CAS  Google Scholar 

  • Wahl J. (1985) Adaption konventioneller Fermenter zur Züchtung von Pflanzenzellen zum Zwecke der Gewinnung von Naturstoffen. In: Bundesminister für Forschung und Technologie (ed.) Pflanzliche Zellkulturen. Projektträger Biotechnologie, KFA Jülich, pp. 35–43.

    Google Scholar 

  • Walton N. J., Alfermann A. W., Rhodes M. J. C. (1999) Production of secondary metabolites in cell and differentiated organ cultures. In: Wink E. (ed.) Annual Plant Reviews 3: Functions of plant secondary metabolites and their exploitation in biotechnology. Sheffield Academic Press, Sheffield, pp. 311–345.

    Google Scholar 

  • Westphal K. (1990) Large scale production of new biologically active compounds in plant cell cultures. In: Nijkamp H. J. J., van der Plas L. H. W., van Aartrijk J. (eds.) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, pp. 601–608.

    Chapter  Google Scholar 

  • White P. R. (1939) Potentially unlimited growth of excised plant callus in an artificial medium. Am. J. Bot. 26: 59–64.

    Article  Google Scholar 

  • Yokoyama M., Yanagi M. (1991) High level production of arbutin by biotransforma-tion. In: Komamine A., Misawa M. (eds.) Plant cell culture in Japan. CMC, Tokyo, pp. 79–91.

    Google Scholar 

  • Zenk M. H., El-Shagi H., Arens H., Stöckigt J., Weiler E. W., Deus B. (1977) Formation of indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In: Barz W., Reinhard E., Zenk M. H. (eds.) Plant tissue culture and its bio-technological application. Springer, Berlin, pp. 27–43.

    Google Scholar 

  • Zenk M. H. (1991) Chasing the enzymes of secondary metabolism: Plant cell cultures as a pot of gold. Phytochemistry 30: 3861–3863.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Alfermann, A.W., Petersen, M., Fuss, E. (2003). Production of natural products by plant cell biotechnology: results, problems and perspectives. In: Laimer, M., Rücker, W. (eds) Plant Tissue Culture. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6040-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6040-4_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83839-6

  • Online ISBN: 978-3-7091-6040-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics