The in-vitro conservation of valuable genetic resources

  • Gunda Mix-Wagner
  • Heinz Martin Schumacher


Today tissue culture techniques are indispensable tools for modern plant research. They provided fascinating new methods for fundamental research, particularly for investigations of cell metabolism like the elucidation of biochemical pathways or the investigation of subcellular transport mechanisms. They even led to the discovery of phenomena like somaclonal variation that became new topics of investigation. At the same time cell culture techniques contributed considerably to plant biotechnology. The fermentation of suspension cultures and the mass propagation of in-vitro plants have been made possible Improvement of old and the development of new breeding techniques were achieved as well as techniques like virus eradication Finally, even the most advanced techniques of molecular transformation of plants were based on tissue culture techniques.


Plant Cell Tissue Organ Cult Potato Germplasm Droplet Method Valuable Genetic Resource Recovery Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abernethy D., Conner J.(1992) Laboratory guide for the micropropagation of asparagus.Crop & Food Research Rep 1: 34.Google Scholar
  2. Bajaj Y. P. S. (1977) Initiation of shoots and callus from potato sprouts and axillary buds frozen at —196°C. Crop. Imp. 4: 48–53.Google Scholar
  3. Bajaj Y. P. S. (1977) Clonal multiplication and cryopresevation of cassava through tissue culture. Crop. Imp. 4: 198–204.Google Scholar
  4. Bajaj Y. P. S. (1981) Regeneration of plants from potato meristems freeze-preserved for 24 months. Euphytica 30: 141–145.CrossRefGoogle Scholar
  5. Bouafia S., Jelti N., Lairy G., Blanc A., Bonnel E., Dereuddre J. (1996) Cryopreservation of potato shoot tips by encapsulation-dehydration. Potato Res. 39: 69–78.CrossRefGoogle Scholar
  6. Fabre J., Dreuddre J. (1990) Encapsulation-dehydration: A new approach to cryopreservation of Solanum shoot tips. Cryo-Lett. 11: 413–426.Google Scholar
  7. Fletcher P. J., Fletcher J. D., Cross R. J. (1998) Potato germplasm: in-vitro stoarge and virus reduction. New Zealand J Crop. and Hort. Sci. 26: 249–252.CrossRefGoogle Scholar
  8. Fukai S., Goi M., Tanaka M. (1994) The chimeric structure of the apical dome of Chrysanthemum ((Dendranthema grandiflorum (Ramat.) Kitam.) is affected by cryopreservation. Scientia Hort. 57: 347–351.CrossRefGoogle Scholar
  9. Grout B. W. W., Henshaw G. G. (1978) Freeze preservation of potato shoot tip cultures. Ann. Bot. (London) 42: 1227–1230.Google Scholar
  10. Grout B. W. W., Westcott R., Henshaw G. G. (1978) Survival of shoot meristems of tomato seedlings frozen in liquid nitrogen. Cryobiology 15(4): 478–483.PubMedCrossRefGoogle Scholar
  11. Grout B. W. W. (1990) In-vitro conservation of germplasm. In: Bhojwani S. S. (ed.) Plant tissue culture: Application and limitation. Elsevier, Amsterdam Tokyo 19: 394–411.Google Scholar
  12. Haberlandt G. (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber. Akad. Wiss. Math. Naturwiss. Kl. (Wien) 11: 69–92.Google Scholar
  13. Hirai D., Sakai A. (1999) Cryopreservation of in-vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification. Potato Res. 42: 153–160.CrossRefGoogle Scholar
  14. Hitmi A., Barthomeuf C., Sallanon H. (1999) Cryopreservation of Chrysanthemum cinerariaefolium shoot tips. Effects of pretreatment conditions and retention of biosynthetic capacity. Cryo-Lett. 20: 113–120.Google Scholar
  15. Kartha K. K., Leung N. L., Gamborg O. L. (1979) Freeze-preservation of pea meristems in liquid nitrogen and subsequent plant regeneration. Plant Sci. Lett. 15: 7–24.Google Scholar
  16. Kartha K. K., Leung N. L., Pahl K. (1980) Cryopreservation of strawberry meristems and mass propagation of plantlets. J. Am. Soc. Hortic. Sci. 105: 481–484.Google Scholar
  17. Kohmura H., Sakai A., Chokyu S., Yakuwa T. (1992) Cryopreservation of in-vitro cultured multiple bud cluster of asparagus (Asparagus officinalis L. cv. Hiroshimagreen, 2n = 30 = by the techniques of vitrification. Plant Cell Rep. 11: 433–437.CrossRefGoogle Scholar
  18. Maruyama E., Kinoshita I., Ishii K., Ohba K., Sakai A. (1997) Germplasm conservation of Guazuma crinita a useful tree in the Peru-Amazon, by the cryopreservation of in-vitro-cultured multiple bud clusters. Plant Cell Tissue Organ Cult. 48: 161–165.CrossRefGoogle Scholar
  19. Mix-Wagner G. (1996) Management of the in-vitro genebank for old potato cultivars at the Institute of Crop Science in Braunschweig. Landbauforsch Völkenrode 46: 5–9.Google Scholar
  20. Mix-Wagner G., Conner A. J., Cross R. J. (2000) Survival and recovery of asparagus shoot tips after cryopreservation using the „droplet” method. New Zealand J Crop. and Hort. Sci. 28: 283–287.CrossRefGoogle Scholar
  21. Mix-Wagner G. (1999) The conservation of potato cultivars. Potato Res. 42: 427–436.CrossRefGoogle Scholar
  22. Mix-Wagner G., Schumacher H. M., Cross R. J. (2002) Recovery of frozen potatoapices after several years of storage in liquid nitrogen. (in preparation).Google Scholar
  23. Murashige T., Skoog F. (1962) A revised medium for rapid growth and bioassays in tobacco tissue culture. Physiol. Plant 16: 473-493.Google Scholar
  24. Nag K. K., Street H. E. (1973) Carrot embryogenesis from frozen cell cultures. Nature (London) 245: 270–272.CrossRefGoogle Scholar
  25. Ogawa R., Ishikawa M., Niwata E., Oosawa K. (1997) Cryopreservation of shoot primordia cultures of melon using a slow prefreezing procedure. Plant Cell Tissue Organ Cult. 49: 171–177.CrossRefGoogle Scholar
  26. Paul H., Daigny G., Sangwan-Norreel B. S. (2000) Cryopreservation of apple (Malus domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep. 19: 768-774.CrossRefGoogle Scholar
  27. Quatrano R. S. (1968) Freeze-preservation of cultured flax utilizing DMSO. Plant Physiol. 43: 2057–2061.PubMedCrossRefGoogle Scholar
  28. Sakai A. (1956) Survival of plant tissue of super-low temperature. Contrib. Inst. Temp. Sci. Haikkaido Univ. Ser. B 14: 17.Google Scholar
  29. Sakai A. (1960) Survival of the twigs of woody plants at —196°C. Nature (London) 185: 392.Google Scholar
  30. Schäfer-Menuhr A., Müller E., Mix-Wagner G. (1996) Cryopreservation: an alternative for the long-term storage of old potato varieties. Potato Res. 39: 507–513.CrossRefGoogle Scholar
  31. Schäfer-Menuhr A., Schumacher H. M., Mix-Wagner G. (1997) Cryopreservation of potato cultivars — design of a method for routine application in genebanks. Acta Horticulturae 447: 477–482.Google Scholar
  32. Schnabel-Preikstas B., Earle E. D., Steponkus R (1992) Cryopreservation of potato shoot tips by vitrification. Abstract of the 29th Annual Meeting of the Society for Cryobiology, 48.Google Scholar
  33. Towill L. E. (1981) Survival at low temperatures of shoot-tips of cultivars of Solanum tuberosum group Tuberosum. Cryo. Lett. 2: 373–382.Google Scholar
  34. Towill L. E., Jarret R. L. (1992) Cryopreservation of sweet potato (Ipomea batatas L. Lam.) shoot tips by vitrification. Plant Cell Rep. 11: 175–178.Google Scholar
  35. Withers L. (1980) Tissue culture storage for genetic conservation. IBPGR Technical Rep 8: 1–91.Google Scholar
  36. Zhao Y., Wu Y., Engelmann F., Zhou M., Chen S. (1999) Cryopreservation of apple in-vitro shoot tips by the droplet freezing method. Cryo-Lett. 20: 109–112.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Gunda Mix-Wagner
    • 1
  • Heinz Martin Schumacher
    • 2
    • 3
  1. 1.Institute of Crop and Grassland ScienceFederal Agricultural Research Centre (FAL)BraunschweigGermany
  2. 2.DSMZ — Deutsche Sammlung von MikroorganismenBraunschweigGermany
  3. 3.Zellkulturen GmbHBraunschweigGermany

Personalised recommendations