Advertisement

The development of transformation of temperate woody fruit crops

  • M. Laimer

Abstract

In his memorial paper Härtel (1996) honours Haberlandts courage to break a tabu and destroy barriers between disciplines. What characterizes Haberlandt’s efforts in linking anatomy and physiology to create the most successful “Physiological Plant Anatomy” (Haberlandt 1884) nowadays would be called the capacity for transdisciplinarity.

Keywords

Transgenic Plant Somatic Embryo Somatic Embryogenesis Fruit Tree Coat Protein Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrios G. N. (1997) Plant pathology. 4th edn. Academic Press, San Diego.Google Scholar
  2. Ali G. S., Reddy A. S. (2000) Inhibition of fungal and bacterial plant pathogens by synthetic peptides: in vitro growth inhibition, interaction between peptides and inhibition of disease progression. Mol. Plant Microbe. Interact. 13: 847–857.Google Scholar
  3. Ammann K. (1998) Vom Gentechnik-Skeptiker zum Befürworter. NZZ Online Dossiers. 28. Juni 1999 http://www.nzz.ch/online/02_dossiers/gentech/ gen980414bst.htm.Google Scholar
  4. Atkinson R. G., Gardner R. C. (1993) Regeneration of transgenic tamarillo plants. Plant Cell Rep. 12:347–351.CrossRefGoogle Scholar
  5. Barlass M., Skene K. G. M. (1978) In vitro propagation of grapevine (Vitis vinifera L.) from fragmented shoot apices. Vitis. 17: 335–340.Google Scholar
  6. Baulcombe D. C. (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. The Plant Cell 8: 1833–1844.PubMedGoogle Scholar
  7. Baulcombe D. C. (1998) Resistance against viruses in plants: natural and artificial mechanisms. In: Invited papers Abstracts, ICPP 98 9.-16. August 1998, Edinburgh, Scotland: Vol. 1.Google Scholar
  8. Baulcombe D. C. (2002) Overcoming and exploiting RNA silencing. IAPTC&B Congress, June 2002. Orlando. P-7.Google Scholar
  9. Beachy R. N., Loesch-Fries L. S., Turner N. E. (1990) Coat protein-mediated resistance against virus infection. Annual Rev. Phytopath. 451–474.Google Scholar
  10. Bell R. L., Scorza R., Srinivasan C., Webb K. (1999) Transformation of “Beurre Bosc” pear with the rolC gene. J. Am. Soc. Hort. Sci. 124: 570–574.Google Scholar
  11. Bertioli D. J., Harris D. R., Edwards M. L., Cooper J. I., Hawes W. S. (1991) Transgenic plants and insect cells expressing the coat protein of arabis mosaic virus produce empty virus-like particles. J. Gen. Virol. 72: 1801–1809.PubMedCrossRefGoogle Scholar
  12. Bergmann C., Ito Y., Singer D., Albersheim P., Darvill A. G., Benhamou N., Nuss L., Salvi G., Cervone F., De Lorenzo G. (1994) Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. The Plant Journal 5: 625–634.PubMedCrossRefGoogle Scholar
  13. Bellincampi D., De Lorenzo G., Cervone E (1994) Oligogalacturonides as signal molecules in plant-pathogen interactions and in plant growth and development. IAPTC Newsletters 73: 2–8.Google Scholar
  14. Bolar J. R, Norelli J. L., Wong K.-W., Hayes C. K., Harman G. E., Aldwinckle H. S. (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90: 72–77.PubMedCrossRefGoogle Scholar
  15. Bovey R., Gärtel W., Hewitt W. B., Martelli G. R, Vuittenez A. (1980) Virosen und virusähnliche Krankheiten der Rebe. Verlag Eugen Ulmer, Stuttgart.Google Scholar
  16. Boyer J. C., Zaccomer B., Morch M. D., Tepfer M., Haenni A. M. (1990) Interference with turnip yellow mosaic virus replication by genome-like fragments and engineered defective interfering RNAs. Workshop on Genome Expression and Pathogenesis of plant RNA Viruses, Madrid, 59.Google Scholar
  17. Boxus R, Quorin M. (1977) Comportement en pepiniére d’arbres fruitiers issus de culture in vitro. Acta. Hort. 78: 373–378.Google Scholar
  18. Broekaert W. F., Cammue B. R A., De Bolle M. F. C., Thevissen K., de Samblanx G. W., Osborn R. W. (1997) Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 16: 297–323.Google Scholar
  19. Broglie K., Chet I., Holliday M., Cressman R, Biddle R, Knowlton S., Mauvais C. J., Broglie R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197.PubMedCrossRefGoogle Scholar
  20. CABUEPPO (1992) Plum pox potyvirus. In: Organismes de Quarantaine pour l’Europe. 976–981.Google Scholar
  21. Cary J. W., Rajasekaran K., Jaynes J. M., Cleveland T. E. (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci. 154: 171–181.PubMedCrossRefGoogle Scholar
  22. Cervera M., Ortega C., Navarro A., Navarro L., Peña L. (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J. Hort. Science and Biotechnology 75: 26–30.Google Scholar
  23. Chen H. C., Brown J. H., Morell J. L., Huang C. M. (1988) Synthetic magainin analogues with improved antimicrobial activity. FEBS Letters 236: 462–466.PubMedCrossRefGoogle Scholar
  24. Clark H. R. G., Davis J. M., Wilbert S. M., Bradshaw Jr. H. D., Gordon M. P. (1994) Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco. Plant Mol. Biol. 25: 799–815.Google Scholar
  25. Cociu V., Dragoi D., Popescu A. N. (1997) Gene sources for breeding new plum (Prunus domestica L.) varieties with tolerance to plum pox virus (sharka) Horticultural Science (Budapest) 29: 52–56.Google Scholar
  26. Cocking E. C. (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187: 927–929.CrossRefGoogle Scholar
  27. Colby S. M., Meredith C. P. (1990) Kanamycin sensitivity of cultured tissues of Vitis. P.C.R. 9: 237–240.Google Scholar
  28. Colby S. M., Juncosa A. M., Stamp J. A., Meredith C. P. (1991) Developmental anatomy of direct shoot organogenesis from leaf petioles of Vitis vinifera (Vitaceae). Amer. J. Botany 78: 260–269.CrossRefGoogle Scholar
  29. da Câmara Machado A., Laimer da Câmara Machado M. (1995) Genetic transformation in Prunus armeniaca L. (apricot). In: Bajaj Y. P. S. (ed.) Biotechnology in agriculture and forestry. Plant protoplasts and genetic engineering VI. 34: 246–260.Google Scholar
  30. da Câmara Machado A., Puschmann M., Katinger H., Laimer da Câmara Machado M. (1995a) Somatic embryogenesis of Prunus subhirtella and regeneration of transgenic plants after Agrobacterium-mediated transformation. Plant Cell Rep. 14: 335–340.CrossRefGoogle Scholar
  31. da Câmara Machado A., Knapp E., Seifert G., Pühringer H., Hanzer V., Weiss H., Wang Q., Katinger H., Laimer da Câmara M. (1995b) Gene transfer methods for the pathogen mediated resistance breeding in fruit trees. XXIV ISHS Congress, Kyoto, 1994. Acta. Hort. 392: 193–202.Google Scholar
  32. da Câmara Machado A., Knapp E., Pühringer H., Hanzer V., Weiss H., Wang Q., Katinger H., Laimer da Câmara M. (1995c) Progress in pathogen mediated-resistance breeding against Plum Pox Virus. XVI ISHS Symposium on Fruit Tree Viruses. Rome, 1994. Acta. Hort. 386: 318–326.Google Scholar
  33. da Câmara Machado A., Druart R, Brazda M., Pühringer H., Watillon B., Kaydamov C., Angerer C., Katinger H., Laimer M. (2003) Production and molecular characterization of transgenic cherry rootstocks. (submitted).Google Scholar
  34. Dandekar A. M. (1992) Transformation. In: Hammerschlag F. A., Litz R. E. (eds.) Biotechnology of perennical fruit crops. CAB Intl. Univ. Press, Cambridge, pp. 141–168.Google Scholar
  35. Dandekar A. M., McGranahan G. H., Vail R V., Uratsu S. L., Leslie C., Tebbets J. S. (1994) Low levels of expression of wild type Bacillus thuringiensis var. Kurstaki cryA (c) sequences in transgenic walnut somatic embryos. Plant Sci. 96: 151–162.CrossRefGoogle Scholar
  36. Dandekar A. M., McGranahan G. H., Vail P. V., Uratsu S. L., Leslie C., Tebbets J. S. (1998) High levels of expression of full-length crylA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci. 131: 181–193.CrossRefGoogle Scholar
  37. De Bondt A., Eggermont K., Penninckx I., Goderis I., Broekaert W. (1996) Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep. 15: 549–554.CrossRefGoogle Scholar
  38. De Bondt A., Zaman S., Broekaert W., Cammue B., Keulemans J (1998) Genetic transformation of apple (Malus x domestica Borkh.) for increased fungal resistance: In vitro antifungal activity in protein extracts of transgenic apple expressing Rs-AFP2 or Ace-AMP1. Acta Hort. 484: 565–569.Google Scholar
  39. Druart P. (1980) Plantlets regeneration from root callus of different Prunus species. Scientia Hort. 12: 339–342.CrossRefGoogle Scholar
  40. Druart P. (1990) Improvement of somatic embryogenesis of the cherry dwarf rootstock Inmil/GM9 by the use of different carbon sources. Acta Hort. 280: 125–129.Google Scholar
  41. Druart P., Delporte F., Brazda M., Ugarte-Ballon C., da Câmara Machado A., Laimer da Câmara Machado M., Jaquemin J., Watillon B. (1997) Genetic transformation of cherry trees. ISHS Cherry Meeting, Norway 1997. Acta Hort. 468: 71–76.Google Scholar
  42. Druart P., Kourteva G., Watillon B. (2000) Analysis of the shoot and root regeneration of Malus domestica cv “Jonagold” transformants expressing KNAP1, an apple knl-like homeobox gene. 4th Intl. Symp. “In vitro culture and Horticultural Breeding” 2–7 July 2000, Tampere, Finland. Acta Hort. (in press).Google Scholar
  43. Dodds J. (1983) Tissue Culture of Trees. Croom Helm Ltd. 147 pp.Google Scholar
  44. Dominguez A., Guerri J., Cambra M., Navarro L., Moreno P., Pena L. (2000) Efficient production of citrus transgenic plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep. 19: 427–433.CrossRefGoogle Scholar
  45. Dougherty W. G., Parks T. D. (1995) Transgenes and gene suppression: telling us something new? Current Opinion in Cell Biology 7: 399–405.Google Scholar
  46. Ellis D. D., Rintamaki-Strait J., Francis F., Kleiner K. W., Raffa K. F., McCown B. H. (1996) Transgene expression in spruce and poplar: From the lab to the field. Somatic Cell Genetics and Molecular Biology of Trees, pp. 37–48.Google Scholar
  47. English J. J., Mueller E., Baulcombe D. C. (1996) Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. The Plant Cell 8: 179–188.PubMedGoogle Scholar
  48. FAO (1999) Production Yearbook, Rome, Vol. 53: 171–183.Google Scholar
  49. Favre J.-M. (1977) Premiers resultats concernant l’obtention in vitro de neoformations caulinaires chez la vigne. Ann. Amelior. Plantes. 27: 151–169.Google Scholar
  50. Fitch M. M., Manshardt R. M., Gonsalves D., Slightom J. L., Sanford J. C. (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9: 189–194.Google Scholar
  51. Fitch M. M., Manshardt R. M., Gonsalves D., Slightom J. L., Sanford J. C. (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10: 1466–1472.CrossRefGoogle Scholar
  52. Fitch M. M., Manshardt R. M., Gonsalves D., Slightom J. L. (1993) Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 12: 245–249.CrossRefGoogle Scholar
  53. Fritig B., Heitz T., Legrand M. (1998) Antimicrobial proteins in induced plant defense. Curr Opin Immunol. 10: 16–22.PubMedCrossRefGoogle Scholar
  54. Gadani F., Mansky L. M., Medici R., Miller W. A., Hill J. H. (1990) Genetic engineering of plants for virus resistance. Arch. Virol. 115: 1–21.Google Scholar
  55. Gao M., Tao R., Miura K., Dandekar A., Sugiura A. (2001) Transformation of Japanese Persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADPdependent sorbitol-6-phosphate dehydrogenase. Science 160: 837–845.Google Scholar
  56. Gallagher S. R. (1992) Quantification by fluorometry. In: Gallagher S. R. (ed.) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press Inc., Harcourt Brace Jovanovich, Publ., San Diego, N.Y., Boston, pp. 47–59.Google Scholar
  57. Gayner J. A., Jones O. P., Watkins R., Hopgood M. E. (1979) Report of East Mailing Research Station, p. 187.Google Scholar
  58. Geissbühler H., Skoog F. (1957) Comments on the application of plant tissue cultivation to propagation of forest trees. Tappi, 40: 258–262.Google Scholar
  59. Gölles R., da Câmara Machado A., Tsolova V., Bouquet A., Moser R., Katinger H., Laimer da Câmara Machado M. (1996) Transformation of somatic embryos of Vitis sp. with different constructs containing nucleotide sequences from nepovirus coat protein genes. Acta Hort. 447: 265–272.Google Scholar
  60. Gölles R., da Câmara Machado A., Tsolova V., Bouquet A., Moser R., Lopes M. S., Mendonça D., Katinger H., Laimer da Câmara Machado M. (1997a) Transformation of somatic embryos of Vitis sp. (Grapevine) with different constructs containing nucleotide sequences from Nepovirus coat protein genes. Arquipelago. Life and Marine Sciences 14A: 67–74.Google Scholar
  61. Gölles R., da Câmara Machado A., Tsolova V., Bouquet A., Moser R., Katinger H., Laimer da Câmara Machado M. (1997b) Transformation of somatic embryos of Vitis sp. with different constructs containing nucleotide sequences from nepovirus coat protein genes. Acta Hort. 447: 265–272.Google Scholar
  62. Gölles R., da Câmara Machado A., Minafra A., Savino V., Saldarelli G., Martelli G. P., Pühringer H., Katinger H., Laimer da Câmara Machado M. (2000) Transgenic grapevines expressing coat protein gene sequences of grapevine fanleaf virus, arabis mosaic virus, grapevine virus A and grapevine virus B. Acta Hort. 528: 305–311.Google Scholar
  63. Gray D. J. (1989) Effects of dehydration and exogenous growth regulators on dormancy, quiescence and germination of grape somatic embryos. In Vitro Cell Dev. Biol. 25: 173–178.CrossRefGoogle Scholar
  64. Gray D. J., Meredith C. P. (1992) Chapter 9 — Grape. In Biotechnology in Agriculture, No. 8. Biotechnology of Perennial Fruit Crops. CAB Intern Wallingford, 229–262.Google Scholar
  65. Gribaudo I., Scariot V., Gambino G., Schubert A., Gölles R., Laimer M. (2002) Transformation of Vitis vinifera L. cv Nebbiolo with the coat protein gene of Grapevine FanLeaf Virus (GFLV). VII International Conference on Grape Genetics and Breeding August 26–31, 2002 — Kecskemét, Hungary. Acta Hort. (in press).Google Scholar
  66. Haberlandt G. (1884) Physiologische Pflanzenanatomie, 1. Ed. — W. Engelmann, Leipzig, 1914–24 Physiological Plant Anatomy 2. — 6. Ed. Macmillan and Co., London.Google Scholar
  67. Haissig B. E. (1965) Organ formation in vitro as applicable to forest tree propagation. Bot. Rev. 31:607–626.Google Scholar
  68. Hamilton R. I. (1980) Defenses triggered by previous invaders: viruses. In: Horsfall J. G., Cowling E. B. (eds.) Plant disease: an advanced treatise. Academic Press, N.Y., Vol 5, pp. 270–303.Google Scholar
  69. Hammerschlag F. A., Litz R. E. (1992) Biotechnology of perennical fruit crops CAB Intl. Univ. Press, Cambridge.Google Scholar
  70. Harrison D., Mayo M. A., Baulcombe D. C. (1987) Virus plant resistance in transgenic plants that express cucumber mosiac virus satellite RNA. Nature 328: 799–802.CrossRefGoogle Scholar
  71. Harst M., Bornhoff B.-A., Zyprian E., Jach G., Töpfer R. (2000) Regeneration and transformation of different explants of Vitis vinifera spp. Acta Hort. 528: 289–295.Google Scholar
  72. Hartmann W. (1998) Breeding of plums and prunes resistant to Plum Pox Virus. Acta Virologica 42: 230–232.PubMedGoogle Scholar
  73. Härtel O. (1996) Gottlieb Haberlandt-ein Gedenkblatt. Anläßlich der 50. Wiederkehr seines Todestages. Mit. Naturwiss. Ver. Steierm. 126: 21–26.Google Scholar
  74. Hedtrich C. M. (1977) Differentiation of cultivated leaf discs of Prumus mahaleb. Acta. Hort. 78: 177–183.Google Scholar
  75. Herrera G., Rosales M., Hinrichsen P. (1997) Detection of Sharka Disease (Plum Pox Virus) in Chile. Proceedings of the Middle European Meeting 1996 on Plum Pox. Budapest, October 1996: 87–90.Google Scholar
  76. Hilder V. A., Gatehouse A. M., Sheerman S. E., Barker R. F., Boulter D. (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160–163.CrossRefGoogle Scholar
  77. Hirabayashi T., Kozaki I., Akihama T. (1976) In vitro differentiation of shoots from anther callus in Vitis. Hort Sci. 11: 511–512.Google Scholar
  78. Hobhouse H. (1985) Seeds of change. Five plants that transformed mankind. Sidgwick and Jackson, London.Google Scholar
  79. Höfer M., Touraev A., Heberle-Bors E. (1999) Induction of embryogenesis from isolated apple microspores. Plant Cell Rep. 18: 1012–1017.CrossRefGoogle Scholar
  80. Horsch R. B., Fry J. E., Hoffmann N. L., Eichholtz D. A., Rogers S. G., Fraley R. T. (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231.CrossRefGoogle Scholar
  81. Huang S.-C., Millikan D F. (1980) In vitro micrografting of apple shoot tips. Hort. Sci. 15(6): 741–743.Google Scholar
  82. Jach G., Görnhardt B., Mundy J., Logemann J., Pinsdorf E., Leach R., Schell J., Maas C. (1995) Enhanced quantitative resistance against fungal diseases by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8: 97–109.PubMedCrossRefGoogle Scholar
  83. James D. J. (1987) Cell and tissue culture technology for the genetic manipulation of temperate fruit trees. In: Biotechnology and Genetic Engineering Reviews, Intercept Ltd., Dorset, UK, 5: 33–79.Google Scholar
  84. James D. J., Passey A. J., Predieri S., Rugini E. (1988) Regeneration and transformation of apple plants using wild-type and engineered plasmids in Agrobacterium spp. Somatic Cell Genetics of Woody Plants, pp. 65–71.Google Scholar
  85. James C., Krattiger A. F. (1996) Global Review of the Field Testing and Commercialization of Transgenic Plants, 1986 to 1995: The First Decade of Crop Biotechnology. ISAAA Briefs No. 1, ISAAA: Ithaca, NY, pp. 31.Google Scholar
  86. Janse J., Schaart J. G., Puite K. J., Florack D. E., Groenwold R., Pelgrom K., Krens F. A. (2002) Enhanced resistance to Venturia inaequalis in transgenic apple by a gene coding for hordothionin. IAPTC&B Congress, June 2002. Orlando. P1019.Google Scholar
  87. Jaynes J. M., Xanthopoulos K. G., Destefano-Beltran L., Dodds J. H. (1987) Increasing bacterial resistance in plants utilizing antibacterial genes from insects. BioEssays 6: 263–270.CrossRefGoogle Scholar
  88. Jefferson R. A., Kavanagh T. A., Bevan M. V. (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.PubMedGoogle Scholar
  89. Jones O. P., Hopgood M. E., O’Farrell D. (1977) Propagation in vitro of M26 apple rootstocks. J. Hort. Sci. 52: 235–238.Google Scholar
  90. Jones O. P., Pontikis C. A., Hopgood M. E. (1979) Propagation in vitro of five apple scion cultivars. J. Hort. Sci. 54: 155–158.Google Scholar
  91. Kikkert J., Herbert-Soule D., Wallace P., Striem M., Reisch B. (1996) Transgenic plantlets of “Chancellor” grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Rep. 15: 311–316.CrossRefGoogle Scholar
  92. Kikkert J. R., Ali G. S., Wallace P. G., Reustle G. M., Reisch B. I. (2000) Expression of a fungal chitinase in Vitis vinifera L. “Merlot” and “Chardonnay” plants produced by biolistic transformation. Acta Hort. 528: 297–303.Google Scholar
  93. Kikkert J. R., Thomas M. R., Reisch B. I. (2001) Grapevine genetic engineering. Molec Biol & Biotech of Grapevine, 387–404.Google Scholar
  94. Knapp E., da Câmara Machado A., Pühringer H., Wang Q., Hanzer V., Weiss H., Weiss B., Katinger H., Laimer da Câmara M. (1995) Localization of fruit tree viruses by immuno-tissue printing in infected shoots of Malus and Prunus sp. J. Virol. Meth. 55(2): 157–173.CrossRefGoogle Scholar
  95. Kondakova V., Druart Ph. (1997) Factors affecting the yield, viability and development of protoplasts isolated from the mesophyll of sour cherry (Prunus cerasus L `Montmorency’). Biotechnol. & Biotechnol. Eq.11/l: 40–44.Google Scholar
  96. Korte A.M., Maiss E., Kramer I., Casper R. (1995) Biosafety considerations of different plum pox potyvirus (PPV) genes used for transformation of plants. XVI International Symposium on Fruit Tree Virus Diseases. Acta Hort. 368: 280–284.Google Scholar
  97. Krastanova S., Perrin M., Barbier P., Demangeat G., Corneut P., Bardonnet N., Otten L., Pinck L., Walter B. (1995) Transformation of grapevine rootstocks with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Rep. 14: 550–554.CrossRefGoogle Scholar
  98. Krul W. R., Worley J. F. (1977) Formation of adventitious embryos in callus cultures of “Seyval” a French hybrid grape. J. Am. Soc. Hort. Sci. 102: 360–363.Google Scholar
  99. Laimer M. (2003) Detection and elimination of viruses and phytoplasmas from Pome and Stone Fruit Trees. Hort. Reviews 28: 187–236.Google Scholar
  100. Laimer M., da Câmara Machado A., Hanzer V., Himmler G., Mattanovich D., Katinger H. W. D. (1989) Regeneration of shoots from leaf discs of fruit trees as a tool for transformation. Acta Hort. 235: 85–92.Google Scholar
  101. Laimer da Câmara Machado M. (1992) The use of the transgenic approach to improve resistance in perennial fruit crops. IAPTC Newsletter 67, March 1992, Feature Article II: 5–16.Google Scholar
  102. Laimer da Câmara Machado M., da Câmara Machado A., Hanzer V., Weiß H., Regner F., Steinkellner H., Mattanovich D., Plail R., Knapp E., Kalthoff B., Katinger H. (1992) Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of Plum Pox Virus. Plant Cell Reports 11(1): 25–29.Google Scholar
  103. Lambert C., Tepfer D. (1992) Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor. Appl. Genet. 85: 105–109.CrossRefGoogle Scholar
  104. Le Gall O., Torregrosa L., Danglot Y., Candresse T., Bouquet A. (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci. 102: 161–170.CrossRefGoogle Scholar
  105. Li Z., Jayasankar S., Gray D. J. (2001) An improved Enzyme-Linked Immunosorbent Assay Protocol for the detection of small lytic peptides in transgenic grapevines (Vits vinifera). Plant Molecular Biol. Rep. 19: 341–351.Google Scholar
  106. Liu Q., Ingersoll J., Owens L., Salih S., Meng R., Hammerschlag E (2001) Response of transgenic Royal Gala apple (Malus x domestica Borkh.) shoots carrying a modified cecropin MB39 gene, to Erwinia amylovora. Plant Cell Rep. 20: 306–312.CrossRefGoogle Scholar
  107. Lomonossoff G. P. (1995) Pathogen-derived resistance to plant viruses. Ann. Rev. Phytopathol. 33: 323–343.CrossRefGoogle Scholar
  108. Lorito M., Woo S. L., Garcia Fernandes I., Colucci G., Harman G. E., Pintor-Toro J. A., Filippone E., Muccifora S., Lawrence C. B., Zoina A., Tuzun S., Scala F. (1998) Genes from mycoparasitic fungi as a novel source for improving plant resistance to fungal pathogens. Proc National Acad Sci USA 95: 7860–7865.CrossRefGoogle Scholar
  109. Lorito M., Scala F. (1999) Microbial genes expressed in transgenic plants to improve disease resistance. J. Plant Pathol. 81: 73–88.Google Scholar
  110. Maiss E., Varrelmann M., DiFonzo C., Raccah B. (1997) Risk assessment of transgenic plants expressing the coat protein gene of Plum Pox potyvirus. In: Balks E., Tepfer M. (eds.) Virus resistant transgenic plants: potential ecological impact. Springer, Berlin Heidelberg NY, pp. 85–93.Google Scholar
  111. Mante S., Scorza R., Cordts J. M. (1989) Plant regeneration from cotyledons of Prunus persica, Prunus domestica and Prunus cerasus. Plant Cell, Tissue and Organ Culture 19: 1–11.CrossRefGoogle Scholar
  112. Mante S., Morgens R H., Scorza R., Cordts J. M., Callahan A. M. (1991) Agrobacterium-mediated transformation of plum (Prunus domestica) hypocotyl slices and regeneration of transgenic plants. Bio/Techn. 9: 853–857.CrossRefGoogle Scholar
  113. Martinelli L., Gribaudo I. (2001) Somatic embryogenesis in grapevine. Molec. Biol. and Biotechn. Grapevine, 327–346.Google Scholar
  114. Mauro M. C., Toutain S., Walter B., Pinck L., Otten L., Coutos-Thevenot P., Deloire A., Barbier P. (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci. 112: 97–106.CrossRefGoogle Scholar
  115. Matsuta N., Hirabayashi T. (1989) Embryogenic cell lines from somatic embryos of grape (Vitis vinifera L.) PCR 7: 684–687.Google Scholar
  116. McGranahan G. H., Leslie C. A., Uratsu S. L., Martin L. A., Dandekar A. M. (1988) Agrobacteriurn-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology 6: 800–804.CrossRefGoogle Scholar
  117. McKinney H. H. (1929) Mosaic disease in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research 39: 557–578.Google Scholar
  118. Mehlenbacher S. A. (1995) Classical and molecular approaches to breeding fruit and nut crops for disease resistance. Hort. Sci. 30: 466–477.Google Scholar
  119. Mehra A., Mehra R. N. (1974) Organogenesis and plantlet formation in vitro in Almond. Bot. Gaz. 135: 61–73.CrossRefGoogle Scholar
  120. Metz P. L. J., Nap J. P. (1997) A transgene-centered approach to the biosafety of transgenic plants: overview of selection and reporter genes. Acta Bot. Neerl. 46(1): 25–50.Google Scholar
  121. Minafra A., Saldarelli P., Martelli G. P. (1997) Grapevine virus A: nucleotide sequence, genome organization, and relationship in the Trichovirus genus. Arch. Virol. 142: 417–423.Google Scholar
  122. Mourgues F., Chevreau E., Lambert C., DeBondt A. (1996) Efficient Agrobacteriummediated transformation and recovery of transgenic plants from pear (Pyrus communis L.) Plant Cell Rep. 16: 245–249.Google Scholar
  123. Mourgues F., Brisset M. N., Chevreau E. (1998) Activity of different antibacterial peptides on Erwinia amylovora growth, and evaluation of the phytotoxicity and stability of cecropins. Plant Sci. 139: 83–91.CrossRefGoogle Scholar
  124. Mullins M. G., Srinivasan C. (1976) Somatic embryos and plantlets from an ancient clone of the grapevine (cv. Cabernet-Sauvignon) by apomixis in vitro. J. Exp. Bot. 27: 1022–1030.CrossRefGoogle Scholar
  125. Murata M., Haruta M., Murai N., Tanikawa N., Nishimura M., Homma S., Itoh Y. (2000) Transgenic apple (Malus x domestica) shoot showing low browning potential. J. Agric. Food Chem. 48: 5243–5248.PubMedCrossRefGoogle Scholar
  126. Nakano M., Hoshino Y., Mii M. (1994) Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli. J. Exper. Botany 45: 649–656.CrossRefGoogle Scholar
  127. Nuss L., Mahé A., Clark A. J., Grisvard J., Dron M., Cervone F., De Lorenzo G. (1996) Differential accumulation of polygalacturonase-inhibiting protein (PGIP) mRNA in two near isogenic lines of Phaseolus vulgaris L. upon infection with Colletotrichum lindemuthianum. Physiological and Molecular Plant Pathology 48: 83–89.CrossRefGoogle Scholar
  128. Norelli J. L., Aldwinckle H. S., Destéfano-Beltran L., Jaynes J. M. (1994) Transgenic “Malling 26” apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica 77: 123–128.CrossRefGoogle Scholar
  129. Ochatt S. J. (1990) Protoplast technology and top-fruit breeding. Acta Hort. 280: 215–226.Google Scholar
  130. Oliveira M. M., Miguel C. M., Raquel M. H. (1996) Transformation studies in woody fruit species. Plant Tissue Culture and Biotechnology 2(2): 76–93.Google Scholar
  131. Peña L., Séguin A. (2001) Recent advances in the genetic transformation of trees. Trends in Biotechnology, pp. 500–506.Google Scholar
  132. Perl A., Saad S., Sahar N., Holland D. (1995) Establishment of long term embryogenic cultures of seedless Vitis vinifera cultivars — a synergistic effect of auxins and the role of abscisic acid. Plant Sci. 104: 193–200.CrossRefGoogle Scholar
  133. Perl A., Lotan O., Abu-Abeid M., Holland D. (1996) Establishment of an Agrobacterium mediated genetic transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interaction. Bio/ Technology 14: 624–628.Google Scholar
  134. Polito V. S., McGranahan G., Pinney K., Leslie C. (1989) Origin of somatic embryos from repetitive embryogenic cultures of walnut (Juglans regia L.) implications for Agrobacterium-mediated transformation. Plant Cell Reports 8: 219–221.CrossRefGoogle Scholar
  135. Powell W. A., Catranis C. M., Maynard C. A. (1995) Synthetic antimicrobial peptide design. Mol. Plant Microbe Interactions 8: 792–794.CrossRefGoogle Scholar
  136. Powell W. A., Catranis C. M., Maynard C. A. (2000) Design of self-processing antimicrobial peptides for plant protection. Lett. Appl. Microbiol. 31: 163–168.Google Scholar
  137. Pühringer H., Moll D., Hoffmann-Sommergruber K., Watillon B., Katinger H., Laimer da Câmara Machado M. (2000) The promoter of an apple YPR10 gene, encoding the major apple allergen Maldl, is stress and pathogen-inducible. Plant Science 152: 35–50.Google Scholar
  138. Ragan W. H. (1926) Nomenclature of the apple: a catalogue index of the known varieties referred to in American publications from 1804 to 1904. USDA Bur. Plant Ind. Bul. 56.Google Scholar
  139. Ratcliff F., Harrison B. D., Baulcombe D. C. (1997) A similarity between viral defense and gene silencing in plants. Science 276: 1558–1560.PubMedCrossRefGoogle Scholar
  140. Reynoird J. P., Mourgues F., Norelli J., Aldwinckle H. S., Brisset M. N., Chevreau E. (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Science 149: 23–31.CrossRefGoogle Scholar
  141. Rugini E., Pellegrineschi A., Mencuccini M., Mariotti D. (1991) Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep. 10: 291–295.CrossRefGoogle Scholar
  142. Sanford J. C., Johnston S. A. (1985) The concept of parasite-derived resistance — Deriving resistance genes from the parasite’s own genome. J. Theor. Biol. 113: 395–405.CrossRefGoogle Scholar
  143. Schuerman P L, Dandekar A. M. (1991) Potentials of woody plant transformation. Subcellular Biochemistry. In: Biswas and Harris (eds.) Plant Genetic Engineering, Vol. 17. Plenum Press, New York, pp. 81–105.CrossRefGoogle Scholar
  144. Schlumbaum A., Mauch F., Vögeli U., Boller T. (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367.CrossRefGoogle Scholar
  145. Scorza R., Cordts J. M., Ramming D W., Emershad R. L. (1995a) Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep. 14: 589–592.CrossRefGoogle Scholar
  146. Scorza R., Levy L., Damsteegt V., Yepes L. M., Cordts J., Hadidi A., Slightom J., Gonsalves D. (1995b) Transformation of plum with the papaya ringspot virus coat protein gene and reaction of transgenic plants to plum pox virus. J. Amer. Soc. Hort. Sci. 120: 943–952.Google Scholar
  147. Scorza R., Callahan A., Levy L., Damsteegt V., Webb K., Ravelonandro M. (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res. 10: 201–209.PubMedCrossRefGoogle Scholar
  148. Shih-Kin M., Shu-Qiong L., Yue-Kun Z., Nan-Fen Q., Peng Z., Hong-Xun X., Fu-Shou Z., Zhen-Long Y. (1976) Induction of callus from apple endosperm and differentiation of the endosperm plantlet. Scientia Sinica. XX(3): 370–375.Google Scholar
  149. Srinivasan C., Mullins M. G. (1980) High frequency somatic embryo production from unfertilized ovules of grapes. Scientia Hortic. 13: 245–252.CrossRefGoogle Scholar
  150. Stamp J. A., Meredith C. P. (1988) Somatic embryogenesis from leaves and anthers of grapevine. Sci. Hortic. 35: 235–250.CrossRefGoogle Scholar
  151. Steiner H., Hultmark D., Engstrom A., Bennich H., Boman H. G. (1981) Sequence and specificity of 2 anti bacterial proteins involved in insect immunity. Nature 292: 246–248.PubMedCrossRefGoogle Scholar
  152. Steinkellner H., Weinhäusl A., Laimer M., da Câmara Machado A., Katinger H. (1991) Identification of the coat protein gene of arabis mosaic nepovirus and its expression in transgenic plants. Acta Hort. 308: 37–41.Google Scholar
  153. Tao R., Dandekar A. M., Uratsu S. L., Vail P. V., Tebbets J. S. (1997) Engineering genetic resistance against insects in Japanese persimmon using the crylA (c) gene of Bacillus thuringiensis. J. Amer. Soc. Hort. Sci. 122: 764–771.Google Scholar
  154. Thomas M. R., Franks T., Iocco P. (2000) Transgenic grapevines: status and future. Acta Hort. 528: 279–287.Google Scholar
  155. Thompson Klein J., Grossenbacher-Mansuy W., Häberli R., Bill A., Scholz R. W., Welti M. (2001) Transdisciplinarity: Joint problem solving among science, technology, and society. An effective way for managing complexity. Birkhäuser Verlag AG, Switzerland.Google Scholar
  156. Vaek M., Reynaerts A., Höfte H., Jansens S., de Beuckeleer M., Dean C., Zabeau M., van Montagu M., Leemans J. (1987) Transgenic plants protected from insect attack. Nature 328: 33–37.CrossRefGoogle Scholar
  157. Vancanneyt G., Schmidt R., O’Connor Sanchez A., Willmitzer L., Rocha Sosa M. (1990) Construction of an intron containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium — mediated plant transformation. MGG 220: 245–250.PubMedGoogle Scholar
  158. Van den Elzen P. J. M., Jongedijk E., Melchers L. S., Cornelissen B. J. C. (1993) Virus and fungal resistance: from laboratory to field. Phil. Trans. R. Soc. Lond. B 342: 271–278.CrossRefGoogle Scholar
  159. Van der Biezen E. A. (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci. 6: 89–91.PubMedCrossRefGoogle Scholar
  160. Varrelmann M. (1999) Begrenzung von heterologer Enkapsidierung and Rekombination bei pathogen-vermittelter Resistenz gegen das Plum pox virus der Pflaume (PPV). Doct. Thesis, University Hannover.Google Scholar
  161. Vidal J. R., Kikkert J. R., Wallace P. G., Reisch B. I. (2002) Magainin and nptIl-gene co-integration in grapevine genomic DNA via particle co-bombardment. IAPTC&B Congress, June 2002. Orlando. P1276.Google Scholar
  162. Walkey D. G. (1972) Production of apple plantlets from axillary-bud meristems. Can. J. Plant. Sci. 52: 1085–1087.CrossRefGoogle Scholar
  163. Waterhouse P. M., Graham M. W., Wang M. B. (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. PNAS 95: 13959–13964.PubMedCrossRefGoogle Scholar
  164. Waterhouse P. A., Wang M. B., Lough T. (2001) Gene silencing as an adaptive defense against viruses. Nature 411: 834–842.PubMedCrossRefGoogle Scholar
  165. Watillon B., Kettman R., Boxus P., Burny A. (1997) Knotted-like homeobox genes are expressed during apple tree (Malus domestica L. (Burkh) growth and development. Plant Mol. Biol. 33: 757–763.Google Scholar
  166. Yamamoto T., Iketani H., Leki H., Nishizawa Y., Notsuka K., Hibi T., Hayashi T., Matsuta N. (2000) Transgenic grapevine expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19: 639–646.CrossRefGoogle Scholar
  167. Yao J.-L., Cohen D., Atkinson R., Richardson K., Morris B. (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep. 14: 407–412.CrossRefGoogle Scholar
  168. Ye X., Brown S. K., Scorza R., Cordts J. C., Sanford J. (1994) Genetic transformation of peach tissues by particle bombardment. J. Amer. Soc. Hort. Sci. 119: 367–373.Google Scholar
  169. Young M., Gerlach W. L. (1990) Ribozyme activity against plant pathogen RNAs. Workshop on Genome Expression and Pathogenesis of plant RNA Viruses, Madrid, 31.Google Scholar
  170. Zaitlin M., Golemboski D. B., Can J. P., Lomonossoff G. P. (1990) Workshop on Genome Expression and Pathogenesis of plant RNA Viruses, Madrid, 30.Google Scholar
  171. Zasloff M. (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. PNAS 84: 5449–5453.PubMedCrossRefGoogle Scholar
  172. Zimmerman R. H., Broome O. C. (1980) Apple Cultivar Micropropagation in Proc. Conf. Nursery Production of Fruit Plants through Tissue Culture — Applications and Feasibility, U.S. Dept. Agr. — SEA-ARR-NE-11: 54–58.Google Scholar
  173. Zhang Y. X., Boccon-Gibod J., Lespinasse Y. (1987) Obtention d’embryons de pommier (Malus x domestica Borkh.) après culture d’anthères. Comptes Rendus Académie Science, Paris, Séries III 305: 443–448.Google Scholar
  174. Zhu Q., Maher E. A., Masoud S., Dixon R. A., Lamb C. J. (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12: 807–812.CrossRefGoogle Scholar
  175. Zhu L. H., Welander M. (2001) Growth characteristics of the untransformed and transformed apple rootstock M26 with rolA and rolB genes under steady-state nutrient supply conditions. Acta Hort. 521: 139–146.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • M. Laimer

There are no affiliations available

Personalised recommendations