Skip to main content

Tissue culture of broad-leafed forest tree species

  • Chapter
Plant Tissue Culture
  • 789 Accesses

Abstract

Since the first work on culture of isolated plant cells and tissues in artificial nutrient solutions attempted by Gottlieb Haberlandt (1902) in Graz, Austria, 100 years ago, several practical applications have been derived by combining classical forest tree improvement programmes and tissue culture techniques, in particular for conifers and eucalyptus species, which are today the basis of a forest tree biotechnology industry, e.g. Silvagen and Arborgen. Many reviews are covering the topics of forest tree biotechnology and micropropagation (Ahuja 1988; 1993, Bonga and Durzan 1982, 1987a-c; Bajaj 1986, 1989, 1991 Jain et al. 1995a-c, 1999). In this context, new silvicultural concepts such as plantation or clonal forestry are widely discussed to cope with the expected increasing demand for wood during the next few decades (Fenning and Gershenzon 2002). Experiments with tissue cultures of woody species have been ongoing for decades. Research on tissue culture of forest tree species started very early in the 1930s, with callus and cell suspensions. The first successful callus proliferation and adventitious bud regeneration from cambial tissue was achieved by Gautheret in 1940 with English elm (Ulmus campestris). The first complete plants from tissue culture of a tree species were regenerated by Winton in 1968 from leaf explants of black cottonwood (Populus trichocarpa). Although there are some examples of successful regeneration of trees via protoplasts (reviewed by Tibok et al. 1995), the importance of this technology is negligible. Thorpe et al. (1991)counting the number of trees which can be micropropagated found about 70 angiosperm species and 30 gymnosperm species. This is a small fraction, compared to the total number of 1000 plant species which were accessible for micropropagation at that time. Today, the most efficient culture techniques for trees are somatic embryogenesis and organogenesis, i.e. axillary shoot regeneration. In addition to general tissue culture-related challenges (e.g. production of chimeras, somaclonal variation, endogenous bacterial contamination), regeneration of woody plant species is still considered recalcitrant because of effects related to ontogenetic ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja M. R., Krusche D., Melchior G. H. (1988) Determination of plantlet regeneration capacity of selected aspen clones in vitro. In: Ahuja M. R. (ed.) Somatic cell genetics of woody plants. Kluwer Academic Publishers, Dordrecht, pp. 127–135.

    Chapter  Google Scholar 

  • Ahuja M. R. (ed.) (1988) Somatic cell genetics of woody plants. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Ahuja M. R. (ed.) (1993) Micropropagation of woody plants. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Ake S., Grillet L., Labert C. (1991) Plane trees (Platanus spp.). In: Bajaj Y. P. S. (ed.) Biotechnology in agriculture and forestry, vol. 16, Trees III. Springer, Berlin Heidelberg, pp. 191–210.

    Google Scholar 

  • Bajaj Y. P. S. (ed.) (1986, 1989, 1991) Biotechnology in agriculture and forestry, trees I, II, III Springer, Berlin Heidelberg.

    Google Scholar 

  • Ballester A., Sanchez M. C., San-Jose M. C., Vieitez F. J., Vieitez A. M. (1990) Development of rejuvenation methods for in vitro establishment, multiplication and rooting of mature trees. In: Rodriguez R., Sanchez T. R., Durzan D. (eds.) Plant aging: basic and applied approaches. Plenum Press, New York, pp. 43–49.

    Google Scholar 

  • Ballester A., Sanchez M. C., Vieitez A. M. (1996) Combination of ex vitro and in vitro manipulations for rejuvenation of hardwood species. In: Thomson D., Welander M. (eds.) Annual Report of CA AIR3–CT94–2202: Molecular and morphological markers for juvenility, maturity, rejuvenation and somatic embryogenesis in woody plant species — the biotechnological approach. EC DG XII-E, pp. AIR3–CT94.

    Google Scholar 

  • Bayliss M. W. (1980) Chromosomal variation in plant tissue culture. Int. Rev. Cytol. 11A: 113–143.

    Google Scholar 

  • Berros B., Albuerne M., Rodriguez R. (1994) Biochemical and morphological markers in hazelnut asexual embryogenesis. Proceedings of the IUFRO Working Party S2.04–07 Somatic Cell Genetics, Valsain, Spain, 04–07 Oct. 1993, 04–07.

    Google Scholar 

  • Bonga J. M. (1987) Clonal propagation of mature trees: problems and possible solutions. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in Forestry. Vol. 1. General principles and biotechnology. Martinus Nijhoff Publishers, Dordrecht, pp. 249–271.

    Google Scholar 

  • Bonga J. M., Durzan D. J. (1982) Tissue culture in forestry, vol. 1. General principles and biotechnology. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Bonga J. M., Durzan D. J. (1987a) Cell and tissue culture in forestry, vol. 1. General principles and biotechnology. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Bonga J. M., Durzan D. J. (1987b) Cell and tissue culture in forestry, vol. 2. Specific principles and methods: growth and developments. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Bonga J. M., Durzan D. J. (1987c) Cell and tissue culture in forestry, vol. 3. Case histories: Gymnosperms, angiosperms and palms. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Bowles D. J. (1990) Defense related proteins in higher plants. Annual Reviews of Biochemistry 59: 873–907.

    Article  CAS  Google Scholar 

  • Chalupa V. (1987) European Hardwoods. In: Bonga J. M., Durzan, D. J. (eds.) Cell and tissue culture in forestry, vol. 3. Nijhoff Publishers, Dordrecht, pp. 224–246.

    Google Scholar 

  • Chalupa A. V. (1990) Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Quercus robur L.) and linden (Tilia cordata Mill.). Plant Cell Rep. 9: 398–401.

    Article  CAS  Google Scholar 

  • Chaturvedi H. C., Mitra G. C. (1975) A shift in morphogenetic pattern in Citrus callus tissue during prolonged culture. Ann. Bot. 39: 683–687.

    Google Scholar 

  • Corredoira E., Vieitez A. M., Ballester A. (2002) Somatic embryogenesis in elm. Ann. Bot. 89: 637–644.

    Article  PubMed  CAS  Google Scholar 

  • Cvikrova M., Mala J., Eder J., Hrubcova M., Vagner M. (1998) Abscisic acid, polyamines and phenolic acids in sessile oak somatic embryos in relation to their conversion potential. Plant Physiol. Biochem. 36: 247–255.

    CAS  Google Scholar 

  • Cuenca B., San-Jose M. C., Martinez M. T., Ballester A., Vieitez A. M. (1999) Somatic embryogenesis from stem and leaf explants of Quercus robur L. Plant Cell Rep 18: 538–543.

    Article  CAS  Google Scholar 

  • DeVerno L. L. (1995) An evaluation of somaclonal variation during somatic embryogenesis. In: Jain S., Gupta P., Newton R. (eds.) Somatic embryogenesis in woody plants. vol. 1: 361–377.

    Google Scholar 

  • Druart P. (1980) Plant regeneration from root callus of different Prunus species. Scientia Hort. 12: 339–342.

    Article  CAS  Google Scholar 

  • Diner A. M., Karnosky D. F. (1987) Tissue culture application to forest pathology and pest control. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 2. Martinus Mijhoff Publishers, Dordrecht, pp. 351–373.

    Chapter  Google Scholar 

  • Endemann M., Wilhelm E. (1999) Factors influencing the induction and viability of somatic embryos of Quercus robur L. Biologia Plantarum 42: 499–504.

    Article  Google Scholar 

  • Endemann M., Hristoforoglu K., Stauber T., Wilhelm E. (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biologia Plantarum 44(3): 339–343.

    Article  Google Scholar 

  • Einspahr D. W., Wann S. R. (1985) Use if tissue culture techniques in a hardwood tree improvement program. In: Schmidtling R. C., Griggs M. (eds.) Proc. 18th South. For. Tree Improv. Conf. May 21–23, 1985, Long Beach, MS, 21–23.

    Google Scholar 

  • Evers P., Donkers J., Prat A., Vermeer E. (1988) Micropropagation of forest trees through tissue culture. Pudoc Wageningen, The Netherlands.

    Google Scholar 

  • Evers P., Haanstra L., Vermeer E., Van Eeeden S. (1996) Influence of reversed phase change on micropropagation of Quercus robur. Plant Tissue Culture and Biotechn. 2(3): 148–154.

    Google Scholar 

  • Fenning T. M., Gershenzon J. (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends in Biotechnology (in press).

    Google Scholar 

  • Filanova L. H., Bozhkov P. V., Brukhin V. B., Daniel G., Zhivotovsky B., Von Arnold S. (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J. Cell Science 113: 4399–4411.

    Google Scholar 

  • Gautheret R. J. (1940) Nouvelles recherches sur le bourgeonnement du tissu cambial d’ Ulmus campestris cultive in vitro. C.R. Acad. Sci. Paris 210: 744–746.

    Google Scholar 

  • Giannino D., Ticconi C., Frugis G., Mele G., Florio S., Santini L., Cozza R., Bitonti M. B., Innocenti A. M., Mariotti D. (1999) Characterisation of juvenile and adult stages in woody species by means of ddRT-PCR markers and genes from heterologous species. Congress on “Applications of Biotechnology to Forest Genetics” in Vitoria-Gasteiz, Spain, 22–25 September 1999. Book of Abstracts.

    Google Scholar 

  • Gingas V. M., Lineberger R. D. (1989) Asexual embryogenesis and plant regeneration in Quercus. Plant Cell, Tissue and Organ Culture 1: 191–203.

    Article  Google Scholar 

  • Greenwood M. S. (1987) Rejuvenation of forest trees. Plant Growth Reg. 6: 1–12.

    Article  CAS  Google Scholar 

  • Gresshoff P. M., Doy C. H. (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107: 161–170.

    Article  Google Scholar 

  • Haberlandt G. (1902) Culturversuche mit isolierten Pflanzenzellen. Sitzungsber. Akad. Wiss. Wien. Math. Nat. Cl. 111, Abt.1: 69–91.

    Google Scholar 

  • Hackett R W., Murray J. R. (1996) Maturation or phase change. In: Thompson D., Welander M. (eds.) Annual Report of CA AIR3–CT94–2202: Molecular and morphological markers for juvenility, maturity, rejuvenation and somatic embryogenesis in woody plant species — the biotechnological approach EC DG XII-E, pp. AIR3–CT94.

    Google Scholar 

  • Hebard F. V., Kaufman R B. (1978) Chestnut callus cultures: Tannin content and colonization by Endothia parasitica. Proc. Am. Chestnut Symp. Morgantown. WV West Virginia. Univ. Vooks, pp. 63–79.

    Google Scholar 

  • Jain S., Gupta P., Newton R. (eds.) (1995a) Somatic embryogenesis in woody plants, vol. 1: History, molecular and biochemical aspects and applications. Kluwer Adademic Publishers, Dordrecht.

    Google Scholar 

  • Jain S., Gupta R, Newton R. (eds.) (1995b) Somatic embryogenesis in woody plants, vol. 2: Angiosperms. Kluwer Adademic Publishers, Dordrecht.

    Google Scholar 

  • Jain S., Gupta P., Newton R. (eds.) (1995c) Somatic embryogenesis in woody plants, vol. 3: Gymnosperms. Kluwer Adademic Publishers, Dordrecht.

    Google Scholar 

  • Jain S., Gupta P., Newton R. (eds.) (1999) Somatic embryogenesis in woody plants vol. 4: Gymnosperms. Kluwer Adademic Publishers, Dordrecht.

    Google Scholar 

  • Jones O. P. (1993) Propagation of apple in vitro. In: Ahuja M. R. (ed.) Micropropagation of woody plants. Kluwer Academic Publishers, Netherlands, pp. 169–186.

    Google Scholar 

  • Kendurkar S. V., Nadgauda R. S., Phadke C. H., Jana M. M., Shirke S. V., Mascarenhas A. F. (1995) Somatic Embryogenesis in some woody angiosperms. vol. 1. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp. 49–80.

    Google Scholar 

  • Kim Y. W., Youn Y., Noh E. R., Kim J. C. (1997) Somatic embryogenesis and plant regeneration from immature embryos of five families of Quercus acutissima. Plant Cell Rep. 16: 869–873.

    Article  CAS  Google Scholar 

  • Jörgensen J. (1989) Embryogenesis in Quercus petraea and Fagus sylvatica. J. Plant Physiol. 132: 638–640.

    Article  Google Scholar 

  • Larkin P. J., Scowcroft W. R. (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197–214.

    Google Scholar 

  • Lloyd G., McCown B. (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc. Int. Plant Propagators Soc. 30, pp. 421–427.

    Google Scholar 

  • Malá J., Cvikrova H., Brezinov A., Hrubcová M., Eder J., Vagner M., Cvikrova M. (1999) Biochemical characteristics of oak somatic embryos. Book of Abstracts. Congress on “Applications of Biotechnology to Forest Genetics” in Vitoria­Gasteiz, Spain, 22–25 September 1999.

    Google Scholar 

  • McComb J. A., Hinch J. M., Clarke A. E. (1987) Expression of field resistance in callus tissue inoculated with Phytophthora cinnamomi. Phytopathology 77: 347–351.

    Article  Google Scholar 

  • Merkle S. A. (1995) Strategies for dealing with limitations of somatic embryogenesis in hardwood trees. Plant Tissue Cult. Biotechn. 1(3): 112–121.

    Google Scholar 

  • Merkle S. A., Parrot W. A., Flinn B. S. (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe T. A. (ed.) In vitro embryogenesis in plants. Kluwer Adademic Publishers, Dordrecht, pp. 155–203.

    Chapter  Google Scholar 

  • Morel G. (1944) Le développement du mildiou sur des tissus de vigne cultures in vitro. Compt. Rend. Hebdom. des Séances de l’Academie des Sciences, Paris 218: 50–52.

    Google Scholar 

  • Morel G. (1948) XXX Recherches sur la culture associée de parasites obligatoires et de tissus végétaux Annales des éphiphyties (série Pathologie Végétale) 14:1–112.

    Google Scholar 

  • Morselli M. F. (1989) Maple (Acer spp.) In: Bajaj Y. P. S. (ed.) Biotechnology in agriculture and forestry 5, Trees II. Springer, Berlin Heidelberg, pp. 246–274.

    Google Scholar 

  • Murray J. R., Smith A. G., Hackett W. P. (1994) Differential dihydroflavonol reductase transcription and anthocyanin pigmentation in the juvenile and mature phases of ivy (Hedera helix L.). Planta 194: 102–109.

    Article  CAS  Google Scholar 

  • Novak J. (1998) Benefits of in vitro “Biotization” of plant tissue cultures with microbial inoculants. Review. In vitro Cell. Dev. Biol. Plant 34: 122–130.

    Article  Google Scholar 

  • Ostry M. E., Skilling D. D. (1992) Applications of tissue culture for studying tree defense mechanisms. In: Blanchette R. A., Biggs A. R. (eds.) Defense mechanisms of woody plants against fungi. Springer, Berlin, pp. 405–423.

    Google Scholar 

  • Park Y. S., Barret, J. D., Bonga J. M. (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control and stability of cryopreserved clones. In vitro Cell. Dev. Biol. Plant 34: 231–239.

    Article  Google Scholar 

  • Pijut P. M., Domir S. C., Lineberger R. D., Schreiber L. R. (1990) Use of culture filtrates of Ceratocystis ulmi as a bioassay to screen for disease tolerant Ulmus americana. Plant Sci. 70: 191–196.

    Article  Google Scholar 

  • Rahmann M. H., Rajora O. P. (2001) Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides). Plant Cell. Rep. 20: 531–536.

    Google Scholar 

  • Rani V., Raina S. N. (2000) Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal. In vitro Cell. Dev. Biol. Plant 36: 319–330.

    Article  CAS  Google Scholar 

  • Richards E. J. (1997) DNA methylation and plant development. Trends in Genetics 13: 319–323

    Google Scholar 

  • Ruaud J. N., Paques M. (1995) Somatic embryogenesis and rejuvenation of trees. In: Jain S., Gupta P., Newton R. (eds.) Somatic embryogenesis in woody plants. Kluwer Academic Publisher, Dordrecht, vol. 1: 99–118.

    Google Scholar 

  • Sanchez M. C., Ballester A., Vieitez A. M. (1997) Reinvigoration treatments for the micropropagation of mature chestnut trees. Ann. Sci. For. 54: 359–370.

    Article  Google Scholar 

  • Sauer U., Wilhelm E. (2002) Somatic embryogenesis from ovaries, developing ovules and immature zygotic embryos of European chestnut Castanea sativa Mill. (in prep).

    Google Scholar 

  • Schafleitner R., Wilhelm E. (1997) Effect of virulent and hypovirulent Cryphonectria parasitica (Murr.) barr on the intercellular pathogen related proteins and on total protein pattern of chestnut (Castanea sativa mill.). Phys. Mol. Plant Pathol. 51: 323–332.

    CAS  Google Scholar 

  • Schafleitner R., Wilhelm E. (1999a) Chestnut blight: Monitoring the host response with heterologous cDNA probes. Acta Hort. 494: 481–486.

    Google Scholar 

  • Schafleitner R., Buchala A., Wilhelm E. (1999b) Class III chitinase expression and salicylic acid accumulation in chestnut (Castanea sativa L) after challenge with hypovirulent and virulent Cryphonectria parasitica (Muff.) barr. Phyton. 39: 191–196.

    CAS  Google Scholar 

  • Schafleitner R., Wilhelm E. (2002a) Isolation of wound inducible genes from Castanea sativa stems and expression analysis in the bark tissue. Plant Physiol. Biochem. 40(3): 235–245.

    CAS  Google Scholar 

  • Schafleitner R., Wilhelm E. (2002b) Assessment of stress gene expression in chestnut (Castanea sativa mill.) upon pathogen infection (C. parasitica (Murr.) barr.) and wounding. Forest Snow and Landscape Research (in press).

    Google Scholar 

  • Schafleitner R., Wilhelm E. (2002c) Isolation of wound-responsive genes from chestnut (Castanea sativa Mill.) microstems by mRNA display and their differential expression upon wounding and infection with the chestnut blight fungus (Chryphonectria parasitica (Murr.) Barr.) (submitted).

    Google Scholar 

  • Sotak R. J., Sommer H. E., Merkle S. A. (1991) Relation of the developmental stage of zygotic embryos of yellow-poplar to their somatic embryogenic potential. Plant Cell Reports 10(4): 175–178.

    Article  Google Scholar 

  • Stermer B. A., Scheffer R. P., Hart J. H. (1984) Isolation of toxins of Hypoxylon mammatum and demonstration of some toxic effects on selected clones of Populus tremuloides. Phytopathology 74: 654–658.

    Article  CAS  Google Scholar 

  • Sunderlikova V., Wilhelm E. (2002) High accumulation of legumin and Lea mRNAs during maturation are associated with increased conversion frequency of somatic embryos from pedunculate oak (Quercus robur L.) Protoplasma (in press).

    Google Scholar 

  • Thorpe T. A., Harry I. S., Kumar P. P. (1991) Application of micropropagation to forestry. In: Debergh P. C., Zimmerman P H (eds.) Micropropgation: technology and application. Kluwer Academic Publishers, Dordrecht, pp. 311–336.

    Google Scholar 

  • Tibok A., Power J. B., Davey M. R. (1995) Progress in protoplast technology for woody angiosperms. In: Jain S., Gupta P., Newton R. (eds.) Somatic embryogen­esis in woody plants. vol. 1. Kluwer Adademic Publishers, Dordrecht, pp. 143–166.

    Google Scholar 

  • Toribio M., Celestino C., Gallego J., Martinez I. (1998) Induction of somatic embryogenesis in tissues from mature oak trees. COST 822, WG 1 “Physiology and Control of Plant Propagation in vitro”. Meeting in Lisse, The Netherlands.

    Google Scholar 

  • Valentine F., Baker S., Belanger R., Manion P., Griffin D. (1988) Screening for resistance to Hypoxylon mammatum in Populus tremuloides callus and micro­propagted plantlets. In: Ahuja M. A. (ed.) Somatic cell genetics of woody plants. Kluwer Academic Publishers, Dordrecht, p. 181.

    Chapter  Google Scholar 

  • Van der Linden C. G. W., Rus-Kortekaas M. J. M., Smulders R. (1999) MADS-box genes as putative markers for juvenile and mature phase in woody species. Congress on “Applications of Biotechnology to Forest Genetics” in Vitoria­Gasteiz, Spain, 22–25 September 1999, Book of Abstracts.

    Google Scholar 

  • Vardi A., Epstein E., Breiman A. (1986) Is the Phytophthtora citrophthora culture filtrate a reliable tool for the in vitro selection of resistant Citrus variants? Theor. Appl. Genet. 72: 569–574.

    Google Scholar 

  • Vieitez A. M., Ballester A., Vieitez M. L., Vieitez E. (1983) In vitro plantlet regeneration of mature chestnut. J. Hort. Sci. 58: 457–463.

    Google Scholar 

  • Welander M. (1993) Micropropagation of birch. In: Ahuja M. A. (ed.) Micropropaga­tion of woody plants. Kluwer Adademic Publishers, Dordrecht.

    Google Scholar 

  • Wilhelm E., Arthofer W., Schafleitner R., Krebs B. (1998) Bacillus subtilis an endophyte of chestnut (Castanea sativa) as antagonist against chestnut blight (Cryphonectria parasitica). Plant Cell, Tissue and Organ Culture 52: 105–108.

    Article  Google Scholar 

  • Wilhelm E. (1999) Micropropagation of juvenile Acer pseudoplatanus via adventitious shoot formation by use of thidiazuron. Plant Cell, Tissue and Organ Culture 57: 57–60.

    Article  CAS  Google Scholar 

  • Wilhelm E. (2000) Somatic embryogenesis in oak (Quercus spp.). In vitro Cell. Dev. Biol. Plant 36: 349–357.

    Article  CAS  Google Scholar 

  • Winton L. W. (1968) The rooting of liquid grown aspen cultures. Am. J. Bot. 55: 159–167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Wilhelm, E. (2003). Tissue culture of broad-leafed forest tree species. In: Laimer, M., Rücker, W. (eds) Plant Tissue Culture. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6040-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6040-4_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83839-6

  • Online ISBN: 978-3-7091-6040-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics