Advertisement

Tissue culture of broad-leafed forest tree species

  • Eva Wilhelm

Abstract

Since the first work on culture of isolated plant cells and tissues in artificial nutrient solutions attempted by Gottlieb Haberlandt (1902) in Graz, Austria, 100 years ago, several practical applications have been derived by combining classical forest tree improvement programmes and tissue culture techniques, in particular for conifers and eucalyptus species, which are today the basis of a forest tree biotechnology industry, e.g. Silvagen and Arborgen. Many reviews are covering the topics of forest tree biotechnology and micropropagation (Ahuja 1988; 1993, Bonga and Durzan 1982, 1987a-c; Bajaj 1986, 1989, 1991 Jain et al. 1995a-c, 1999). In this context, new silvicultural concepts such as plantation or clonal forestry are widely discussed to cope with the expected increasing demand for wood during the next few decades (Fenning and Gershenzon 2002). Experiments with tissue cultures of woody species have been ongoing for decades. Research on tissue culture of forest tree species started very early in the 1930s, with callus and cell suspensions. The first successful callus proliferation and adventitious bud regeneration from cambial tissue was achieved by Gautheret in 1940 with English elm (Ulmus campestris). The first complete plants from tissue culture of a tree species were regenerated by Winton in 1968 from leaf explants of black cottonwood (Populus trichocarpa). Although there are some examples of successful regeneration of trees via protoplasts (reviewed by Tibok et al. 1995), the importance of this technology is negligible. Thorpe et al. (1991)counting the number of trees which can be micropropagated found about 70 angiosperm species and 30 gymnosperm species. This is a small fraction, compared to the total number of 1000 plant species which were accessible for micropropagation at that time. Today, the most efficient culture techniques for trees are somatic embryogenesis and organogenesis, i.e. axillary shoot regeneration. In addition to general tissue culture-related challenges (e.g. production of chimeras, somaclonal variation, endogenous bacterial contamination), regeneration of woody plant species is still considered recalcitrant because of effects related to ontogenetic ageing.

Keywords

Somatic Embryo Somatic Embryogenesis Woody Plant Zygotic Embryo Somaclonal Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja M. R., Krusche D., Melchior G. H. (1988) Determination of plantlet regeneration capacity of selected aspen clones in vitro. In: Ahuja M. R. (ed.) Somatic cell genetics of woody plants. Kluwer Academic Publishers, Dordrecht, pp. 127–135.CrossRefGoogle Scholar
  2. Ahuja M. R. (ed.) (1988) Somatic cell genetics of woody plants. Kluwer Academic Publishers, Dordrecht.Google Scholar
  3. Ahuja M. R. (ed.) (1993) Micropropagation of woody plants. Kluwer Academic Publishers, Dordrecht.Google Scholar
  4. Ake S., Grillet L., Labert C. (1991) Plane trees (Platanus spp.). In: Bajaj Y. P. S. (ed.) Biotechnology in agriculture and forestry, vol. 16, Trees III. Springer, Berlin Heidelberg, pp. 191–210.Google Scholar
  5. Bajaj Y. P. S. (ed.) (1986, 1989, 1991) Biotechnology in agriculture and forestry, trees I, II, III Springer, Berlin Heidelberg.Google Scholar
  6. Ballester A., Sanchez M. C., San-Jose M. C., Vieitez F. J., Vieitez A. M. (1990) Development of rejuvenation methods for in vitro establishment, multiplication and rooting of mature trees. In: Rodriguez R., Sanchez T. R., Durzan D. (eds.) Plant aging: basic and applied approaches. Plenum Press, New York, pp. 43–49.Google Scholar
  7. Ballester A., Sanchez M. C., Vieitez A. M. (1996) Combination of ex vitro and in vitro manipulations for rejuvenation of hardwood species. In: Thomson D., Welander M. (eds.) Annual Report of CA AIR3–CT94–2202: Molecular and morphological markers for juvenility, maturity, rejuvenation and somatic embryogenesis in woody plant species — the biotechnological approach. EC DG XII-E, pp. AIR3–CT94.Google Scholar
  8. Bayliss M. W. (1980) Chromosomal variation in plant tissue culture. Int. Rev. Cytol. 11A: 113–143.Google Scholar
  9. Berros B., Albuerne M., Rodriguez R. (1994) Biochemical and morphological markers in hazelnut asexual embryogenesis. Proceedings of the IUFRO Working Party S2.04–07 Somatic Cell Genetics, Valsain, Spain, 04–07 Oct. 1993, 04–07.Google Scholar
  10. Bonga J. M. (1987) Clonal propagation of mature trees: problems and possible solutions. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in Forestry. Vol. 1. General principles and biotechnology. Martinus Nijhoff Publishers, Dordrecht, pp. 249–271.Google Scholar
  11. Bonga J. M., Durzan D. J. (1982) Tissue culture in forestry, vol. 1. General principles and biotechnology. Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  12. Bonga J. M., Durzan D. J. (1987a) Cell and tissue culture in forestry, vol. 1. General principles and biotechnology. Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  13. Bonga J. M., Durzan D. J. (1987b) Cell and tissue culture in forestry, vol. 2. Specific principles and methods: growth and developments. Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  14. Bonga J. M., Durzan D. J. (1987c) Cell and tissue culture in forestry, vol. 3. Case histories: Gymnosperms, angiosperms and palms. Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  15. Bowles D. J. (1990) Defense related proteins in higher plants. Annual Reviews of Biochemistry 59: 873–907.CrossRefGoogle Scholar
  16. Chalupa V. (1987) European Hardwoods. In: Bonga J. M., Durzan, D. J. (eds.) Cell and tissue culture in forestry, vol. 3. Nijhoff Publishers, Dordrecht, pp. 224–246.Google Scholar
  17. Chalupa A. V. (1990) Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Quercus robur L.) and linden (Tilia cordata Mill.). Plant Cell Rep. 9: 398–401.CrossRefGoogle Scholar
  18. Chaturvedi H. C., Mitra G. C. (1975) A shift in morphogenetic pattern in Citrus callus tissue during prolonged culture. Ann. Bot. 39: 683–687.Google Scholar
  19. Corredoira E., Vieitez A. M., Ballester A. (2002) Somatic embryogenesis in elm. Ann. Bot. 89: 637–644.PubMedCrossRefGoogle Scholar
  20. Cvikrova M., Mala J., Eder J., Hrubcova M., Vagner M. (1998) Abscisic acid, polyamines and phenolic acids in sessile oak somatic embryos in relation to their conversion potential. Plant Physiol. Biochem. 36: 247–255.Google Scholar
  21. Cuenca B., San-Jose M. C., Martinez M. T., Ballester A., Vieitez A. M. (1999) Somatic embryogenesis from stem and leaf explants of Quercus robur L. Plant Cell Rep 18: 538–543.CrossRefGoogle Scholar
  22. DeVerno L. L. (1995) An evaluation of somaclonal variation during somatic embryogenesis. In: Jain S., Gupta P., Newton R. (eds.) Somatic embryogenesis in woody plants. vol. 1: 361–377.Google Scholar
  23. Druart P. (1980) Plant regeneration from root callus of different Prunus species. Scientia Hort. 12: 339–342.CrossRefGoogle Scholar
  24. Diner A. M., Karnosky D. F. (1987) Tissue culture application to forest pathology and pest control. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 2. Martinus Mijhoff Publishers, Dordrecht, pp. 351–373.CrossRefGoogle Scholar
  25. Endemann M., Wilhelm E. (1999) Factors influencing the induction and viability of somatic embryos of Quercus robur L. Biologia Plantarum 42: 499–504.CrossRefGoogle Scholar
  26. Endemann M., Hristoforoglu K., Stauber T., Wilhelm E. (2001) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biologia Plantarum 44(3): 339–343.CrossRefGoogle Scholar
  27. Einspahr D. W., Wann S. R. (1985) Use if tissue culture techniques in a hardwood tree improvement program. In: Schmidtling R. C., Griggs M. (eds.) Proc. 18th South. For. Tree Improv. Conf. May 21–23, 1985, Long Beach, MS, 21–23.Google Scholar
  28. Evers P., Donkers J., Prat A., Vermeer E. (1988) Micropropagation of forest trees through tissue culture. Pudoc Wageningen, The Netherlands.Google Scholar
  29. Evers P., Haanstra L., Vermeer E., Van Eeeden S. (1996) Influence of reversed phase change on micropropagation of Quercus robur. Plant Tissue Culture and Biotechn. 2(3): 148–154.Google Scholar
  30. Fenning T. M., Gershenzon J. (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends in Biotechnology (in press).Google Scholar
  31. Filanova L. H., Bozhkov P. V., Brukhin V. B., Daniel G., Zhivotovsky B., Von Arnold S. (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J. Cell Science 113: 4399–4411.Google Scholar
  32. Gautheret R. J. (1940) Nouvelles recherches sur le bourgeonnement du tissu cambial d’ Ulmus campestris cultive in vitro. C.R. Acad. Sci. Paris 210: 744–746.Google Scholar
  33. Giannino D., Ticconi C., Frugis G., Mele G., Florio S., Santini L., Cozza R., Bitonti M. B., Innocenti A. M., Mariotti D. (1999) Characterisation of juvenile and adult stages in woody species by means of ddRT-PCR markers and genes from heterologous species. Congress on “Applications of Biotechnology to Forest Genetics” in Vitoria-Gasteiz, Spain, 22–25 September 1999. Book of Abstracts.Google Scholar
  34. Gingas V. M., Lineberger R. D. (1989) Asexual embryogenesis and plant regeneration in Quercus. Plant Cell, Tissue and Organ Culture 1: 191–203.CrossRefGoogle Scholar
  35. Greenwood M. S. (1987) Rejuvenation of forest trees. Plant Growth Reg. 6: 1–12.CrossRefGoogle Scholar
  36. Gresshoff P. M., Doy C. H. (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107: 161–170.CrossRefGoogle Scholar
  37. Haberlandt G. (1902) Culturversuche mit isolierten Pflanzenzellen. Sitzungsber. Akad. Wiss. Wien. Math. Nat. Cl. 111, Abt.1: 69–91.Google Scholar
  38. Hackett R W., Murray J. R. (1996) Maturation or phase change. In: Thompson D., Welander M. (eds.) Annual Report of CA AIR3–CT94–2202: Molecular and morphological markers for juvenility, maturity, rejuvenation and somatic embryogenesis in woody plant species — the biotechnological approach EC DG XII-E, pp. AIR3–CT94.Google Scholar
  39. Hebard F. V., Kaufman R B. (1978) Chestnut callus cultures: Tannin content and colonization by Endothia parasitica. Proc. Am. Chestnut Symp. Morgantown. WV West Virginia. Univ. Vooks, pp. 63–79.Google Scholar
  40. Jain S., Gupta P., Newton R. (eds.) (1995a) Somatic embryogenesis in woody plants, vol. 1: History, molecular and biochemical aspects and applications. Kluwer Adademic Publishers, Dordrecht.Google Scholar
  41. Jain S., Gupta R, Newton R. (eds.) (1995b) Somatic embryogenesis in woody plants, vol. 2: Angiosperms. Kluwer Adademic Publishers, Dordrecht.Google Scholar
  42. Jain S., Gupta P., Newton R. (eds.) (1995c) Somatic embryogenesis in woody plants, vol. 3: Gymnosperms. Kluwer Adademic Publishers, Dordrecht.Google Scholar
  43. Jain S., Gupta P., Newton R. (eds.) (1999) Somatic embryogenesis in woody plants vol. 4: Gymnosperms. Kluwer Adademic Publishers, Dordrecht.Google Scholar
  44. Jones O. P. (1993) Propagation of apple in vitro. In: Ahuja M. R. (ed.) Micropropagation of woody plants. Kluwer Academic Publishers, Netherlands, pp. 169–186.Google Scholar
  45. Kendurkar S. V., Nadgauda R. S., Phadke C. H., Jana M. M., Shirke S. V., Mascarenhas A. F. (1995) Somatic Embryogenesis in some woody angiosperms. vol. 1. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp. 49–80.Google Scholar
  46. Kim Y. W., Youn Y., Noh E. R., Kim J. C. (1997) Somatic embryogenesis and plant regeneration from immature embryos of five families of Quercus acutissima. Plant Cell Rep. 16: 869–873.CrossRefGoogle Scholar
  47. Jörgensen J. (1989) Embryogenesis in Quercus petraea and Fagus sylvatica. J. Plant Physiol. 132: 638–640.CrossRefGoogle Scholar
  48. Larkin P. J., Scowcroft W. R. (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197–214.Google Scholar
  49. Lloyd G., McCown B. (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc. Int. Plant Propagators Soc. 30, pp. 421–427.Google Scholar
  50. Malá J., Cvikrova H., Brezinov A., Hrubcová M., Eder J., Vagner M., Cvikrova M. (1999) Biochemical characteristics of oak somatic embryos. Book of Abstracts. Congress on “Applications of Biotechnology to Forest Genetics” in Vitoria­Gasteiz, Spain, 22–25 September 1999.Google Scholar
  51. McComb J. A., Hinch J. M., Clarke A. E. (1987) Expression of field resistance in callus tissue inoculated with Phytophthora cinnamomi. Phytopathology 77: 347–351.CrossRefGoogle Scholar
  52. Merkle S. A. (1995) Strategies for dealing with limitations of somatic embryogenesis in hardwood trees. Plant Tissue Cult. Biotechn. 1(3): 112–121.Google Scholar
  53. Merkle S. A., Parrot W. A., Flinn B. S. (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe T. A. (ed.) In vitro embryogenesis in plants. Kluwer Adademic Publishers, Dordrecht, pp. 155–203.CrossRefGoogle Scholar
  54. Morel G. (1944) Le développement du mildiou sur des tissus de vigne cultures in vitro. Compt. Rend. Hebdom. des Séances de l’Academie des Sciences, Paris 218: 50–52.Google Scholar
  55. Morel G. (1948) XXX Recherches sur la culture associée de parasites obligatoires et de tissus végétaux Annales des éphiphyties (série Pathologie Végétale) 14:1–112.Google Scholar
  56. Morselli M. F. (1989) Maple (Acer spp.) In: Bajaj Y. P. S. (ed.) Biotechnology in agriculture and forestry 5, Trees II. Springer, Berlin Heidelberg, pp. 246–274.Google Scholar
  57. Murray J. R., Smith A. G., Hackett W. P. (1994) Differential dihydroflavonol reductase transcription and anthocyanin pigmentation in the juvenile and mature phases of ivy (Hedera helix L.). Planta 194: 102–109.CrossRefGoogle Scholar
  58. Novak J. (1998) Benefits of in vitro “Biotization” of plant tissue cultures with microbial inoculants. Review. In vitro Cell. Dev. Biol. Plant 34: 122–130.CrossRefGoogle Scholar
  59. Ostry M. E., Skilling D. D. (1992) Applications of tissue culture for studying tree defense mechanisms. In: Blanchette R. A., Biggs A. R. (eds.) Defense mechanisms of woody plants against fungi. Springer, Berlin, pp. 405–423.Google Scholar
  60. Park Y. S., Barret, J. D., Bonga J. M. (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control and stability of cryopreserved clones. In vitro Cell. Dev. Biol. Plant 34: 231–239.CrossRefGoogle Scholar
  61. Pijut P. M., Domir S. C., Lineberger R. D., Schreiber L. R. (1990) Use of culture filtrates of Ceratocystis ulmi as a bioassay to screen for disease tolerant Ulmus americana. Plant Sci. 70: 191–196.CrossRefGoogle Scholar
  62. Rahmann M. H., Rajora O. P. (2001) Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides). Plant Cell. Rep. 20: 531–536.Google Scholar
  63. Rani V., Raina S. N. (2000) Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal. In vitro Cell. Dev. Biol. Plant 36: 319–330.CrossRefGoogle Scholar
  64. Richards E. J. (1997) DNA methylation and plant development. Trends in Genetics 13: 319–323Google Scholar
  65. Ruaud J. N., Paques M. (1995) Somatic embryogenesis and rejuvenation of trees. In: Jain S., Gupta P., Newton R. (eds.) Somatic embryogenesis in woody plants. Kluwer Academic Publisher, Dordrecht, vol. 1: 99–118.Google Scholar
  66. Sanchez M. C., Ballester A., Vieitez A. M. (1997) Reinvigoration treatments for the micropropagation of mature chestnut trees. Ann. Sci. For. 54: 359–370.CrossRefGoogle Scholar
  67. Sauer U., Wilhelm E. (2002) Somatic embryogenesis from ovaries, developing ovules and immature zygotic embryos of European chestnut Castanea sativa Mill. (in prep).Google Scholar
  68. Schafleitner R., Wilhelm E. (1997) Effect of virulent and hypovirulent Cryphonectria parasitica (Murr.) barr on the intercellular pathogen related proteins and on total protein pattern of chestnut (Castanea sativa mill.). Phys. Mol. Plant Pathol. 51: 323–332.Google Scholar
  69. Schafleitner R., Wilhelm E. (1999a) Chestnut blight: Monitoring the host response with heterologous cDNA probes. Acta Hort. 494: 481–486.Google Scholar
  70. Schafleitner R., Buchala A., Wilhelm E. (1999b) Class III chitinase expression and salicylic acid accumulation in chestnut (Castanea sativa L) after challenge with hypovirulent and virulent Cryphonectria parasitica (Muff.) barr. Phyton. 39: 191–196.Google Scholar
  71. Schafleitner R., Wilhelm E. (2002a) Isolation of wound inducible genes from Castanea sativa stems and expression analysis in the bark tissue. Plant Physiol. Biochem. 40(3): 235–245.Google Scholar
  72. Schafleitner R., Wilhelm E. (2002b) Assessment of stress gene expression in chestnut (Castanea sativa mill.) upon pathogen infection (C. parasitica (Murr.) barr.) and wounding. Forest Snow and Landscape Research (in press).Google Scholar
  73. Schafleitner R., Wilhelm E. (2002c) Isolation of wound-responsive genes from chestnut (Castanea sativa Mill.) microstems by mRNA display and their differential expression upon wounding and infection with the chestnut blight fungus (Chryphonectria parasitica (Murr.) Barr.) (submitted).Google Scholar
  74. Sotak R. J., Sommer H. E., Merkle S. A. (1991) Relation of the developmental stage of zygotic embryos of yellow-poplar to their somatic embryogenic potential. Plant Cell Reports 10(4): 175–178.CrossRefGoogle Scholar
  75. Stermer B. A., Scheffer R. P., Hart J. H. (1984) Isolation of toxins of Hypoxylon mammatum and demonstration of some toxic effects on selected clones of Populus tremuloides. Phytopathology 74: 654–658.CrossRefGoogle Scholar
  76. Sunderlikova V., Wilhelm E. (2002) High accumulation of legumin and Lea mRNAs during maturation are associated with increased conversion frequency of somatic embryos from pedunculate oak (Quercus robur L.) Protoplasma (in press).Google Scholar
  77. Thorpe T. A., Harry I. S., Kumar P. P. (1991) Application of micropropagation to forestry. In: Debergh P. C., Zimmerman P H (eds.) Micropropgation: technology and application. Kluwer Academic Publishers, Dordrecht, pp. 311–336.Google Scholar
  78. Tibok A., Power J. B., Davey M. R. (1995) Progress in protoplast technology for woody angiosperms. In: Jain S., Gupta P., Newton R. (eds.) Somatic embryogen­esis in woody plants. vol. 1. Kluwer Adademic Publishers, Dordrecht, pp. 143–166.Google Scholar
  79. Toribio M., Celestino C., Gallego J., Martinez I. (1998) Induction of somatic embryogenesis in tissues from mature oak trees. COST 822, WG 1 “Physiology and Control of Plant Propagation in vitro”. Meeting in Lisse, The Netherlands.Google Scholar
  80. Valentine F., Baker S., Belanger R., Manion P., Griffin D. (1988) Screening for resistance to Hypoxylon mammatum in Populus tremuloides callus and micro­propagted plantlets. In: Ahuja M. A. (ed.) Somatic cell genetics of woody plants. Kluwer Academic Publishers, Dordrecht, p. 181.CrossRefGoogle Scholar
  81. Van der Linden C. G. W., Rus-Kortekaas M. J. M., Smulders R. (1999) MADS-box genes as putative markers for juvenile and mature phase in woody species. Congress on “Applications of Biotechnology to Forest Genetics” in Vitoria­Gasteiz, Spain, 22–25 September 1999, Book of Abstracts.Google Scholar
  82. Vardi A., Epstein E., Breiman A. (1986) Is the Phytophthtora citrophthora culture filtrate a reliable tool for the in vitro selection of resistant Citrus variants? Theor. Appl. Genet. 72: 569–574.Google Scholar
  83. Vieitez A. M., Ballester A., Vieitez M. L., Vieitez E. (1983) In vitro plantlet regeneration of mature chestnut. J. Hort. Sci. 58: 457–463.Google Scholar
  84. Welander M. (1993) Micropropagation of birch. In: Ahuja M. A. (ed.) Micropropaga­tion of woody plants. Kluwer Adademic Publishers, Dordrecht.Google Scholar
  85. Wilhelm E., Arthofer W., Schafleitner R., Krebs B. (1998) Bacillus subtilis an endophyte of chestnut (Castanea sativa) as antagonist against chestnut blight (Cryphonectria parasitica). Plant Cell, Tissue and Organ Culture 52: 105–108.CrossRefGoogle Scholar
  86. Wilhelm E. (1999) Micropropagation of juvenile Acer pseudoplatanus via adventitious shoot formation by use of thidiazuron. Plant Cell, Tissue and Organ Culture 57: 57–60.CrossRefGoogle Scholar
  87. Wilhelm E. (2000) Somatic embryogenesis in oak (Quercus spp.). In vitro Cell. Dev. Biol. Plant 36: 349–357.CrossRefGoogle Scholar
  88. Winton L. W. (1968) The rooting of liquid grown aspen cultures. Am. J. Bot. 55: 159–167.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Eva Wilhelm
    • 1
  1. 1.Division of Environmental and Life SciencesARC Seibersdorf Research GmbHSeibersdorfAustria

Personalised recommendations