Skip to main content

Somatic embryogenesis — the gate to biotechnology in conifers

  • Chapter
Plant Tissue Culture

Abstract

“I believe [...] one could successfully cultivate artificial embryos from vegetative cells.” With this vision, Gottlieb Haberlandt closed his 1902 publication “Experiments on the culture of isolated cells”. Based on his experiments with cell cultures, his foresight must have sounded bold at the time. Indeed, it took more than 50 years for his vision to be realised. The induction of embryos from vegetative cells, now called somatic embryogenesis, was first demonstrated in the 1950s with two species of the Apiaceae family, Oenanthe aquatica (Waris 1957) and Daucus carota (Reinert 1958, Steward et al. 1958). Yet despite intensive research efforts, it was only in 1985 that somatic embryogenesis was clearly demonstrated for the first time in gymnosperms (Chalupa 1985, Hakman and v. Arnold 1985, Nagmani and Bonga 1985). Somatic embryo-like structures in suspension cultures had been described earlier (Durzan 1982), however, the accuracy of such observations remains questionable. Equally dubious are claims of successfully producing somatic embryos in gymnosperm forest trees, which have even led to patent applications for the technique (Abo El-Nil 1980). Despite these claims, it was only in light of the work published in 1985 that rapid development in basic and applied research in the field of conifer somatic embryogenesis began. The immense potential for clonal propagation, genetic engineering and germplasm preservation soon followed, and within only a few years, all other regeneration and propagation routines in biotechnology were marginalized by somatic embryogenesis. A story of success was launched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo El-Nil M. M. (1980) Embryogenesis of gymnosperm forest trees. United States Patent 4,217,730.

    Google Scholar 

  • Acker J. P., McGann L. E. (2000) Cell ¡ª Cell contact affects membrane integrity after intracellular freezing. Cryobiology 40: 54-63.

    Article  PubMed  CAS  Google Scholar 

  • Aitken-Christie J. (2001) Somatic embryogenesis for large-scale clonal testing and propagation of elite material. Abstract of WBB-conference “Wood, breeding, biotechnology and industrial expectations”, June 2001, Bordeaux,http://www.pierroton.inra.fr/WBB/

  • Aronen T. S., Krajnakova J., Häggman H. M., Ryynanen L. A. (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Science 142: 163–172.

    Article  CAS  Google Scholar 

  • Attree S. M., Budumir S., Fowke L. C. (1990) Somatic embryogenesis and plant regeneration from cultured shoots and cotyledons of seedlings from stored seeds of black and white spruce (Picea mariana and Picea glauca). Canadian Journal of Botany 68: 30–34.

    Article  CAS  Google Scholar 

  • Attree S. M., Fowke L. C. (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue and Organ Culture 35: 1–35.

    Article  CAS  Google Scholar 

  • Attree S. M., Moore D., Sawhney V. K., Fowke L. C. (1991) Enhanced maturation and desiccation tolerance of white spruce [Picea glauca (Moench) Voss] somatic embryos: Effect of non-plasmolysing water stress and abscisic acid. Annals of Botany 68: 519–525.

    Google Scholar 

  • Attree S. M., Pomeroy M. K., Fowke L. C. (1992) Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187: 395–404.

    Article  CAS  Google Scholar 

  • Attree S. M., Pomeroy M. K., Fowke L. C. (1994) Production of vigorous, desiccation tolerant white spruce (Picea glauca [Moench] Voss) synthetic seeds in a bioreactor. Plant Cell Reports 13: 601–606.

    Article  Google Scholar 

  • Attree S. M., Pomeroy M. K., Fowke L. C. (1995) Development of white spruce [Picea glauca (Moench) Voss] somatic embryos during culture with abscisic acid and osmoticum and their tolerance to drying and frozen storage. J. Exp. Bot. 46: 433–439.

    Article  CAS  Google Scholar 

  • Ball E. A. (1987) Tissue culture multiplication of Sequoia. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 3.Martinus Nijhoff Publ., Dordrecht Boston Lancaster, pp. 146–158.

    Google Scholar 

  • Batygina T. B. (ed.) (2000) Embryology of flowering plants. Terminology and concepts. 3rd Vol. Word and Family, St. Peterburg.

    Google Scholar 

  • Behrendt U., Zoglauer K. (1996) Boron controls suspensor development in embryogenic cultures of Larix decidua. Physiologia Plantarum 97: 321–326.

    Article  CAS  Google Scholar 

  • Bewley J. D. (1997) Seed germination and dormancy. Plant Cell 9: 1055-1066. Bewley J. D., Black M. (1994) Seeds. Physiology of development and germination. Plenum Press, New York London.

    Google Scholar 

  • Bigot C., Engelmann F. (1987) Vegetative propagation of Cunninghamia lanceolata (Lamb.) Hook. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 3. Martinus Nijhoff Publ., Dordrecht Boston Lancaster, pp. 114–127.

    Google Scholar 

  • Biondi S., Thorpe T. A. (1982) Clonal propagation of forest tree species. In: Rao A. N. (ed.) Proc. COST Symp. on tissue culture of economically important plants, Singapore, pp. 197–204.

    Google Scholar 

  • Bishir J., Roberds J. H. (1997) Limit theorems and a general framework for risks analysis in clonal forestry. Forest Genetics 6: 149–155.

    Google Scholar 

  • Bonga J. M. (1982) Vegetative propagation in relation to juvenility, maturity and rejuvenation. In: Bonga J. M., Durzan D. J. (eds.) Tissue culture in forestry. The Hague, Boston London, pp. 387–403.

    Google Scholar 

  • Bonga J. M., Klimaszewska K., Lelu M. A., von Aderkas P. (1995) Somatic embryogenesis in Larix. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands, pp. 315–340.

    Chapter  Google Scholar 

  • Bonga J. M., von Aderkas P. (1988) Attempts to micropropagate mature Larix decidua Mill. In: Ahuja M. R. (ed.) Somatic cell genetics of woody plants. Kluwer Academic Publ., Dordrecht, pp. 133–168.

    Google Scholar 

  • Boulay M. (1987) Conifer micropropagation: Applied research and commercial aspects. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 3. Martinus Nijhoff Publ., Dordrecht Boston Lancaster, pp. 185–206.

    Google Scholar 

  • Boulay M. (1989) Redwood (Sequoia sempervirens). In: Bajaj Y. P. S. (ed.) Biotechnology in agriculture and forestry. Vol. 5. Trees II. Springer, Berlin Heidelberg, pp. 549–573.

    Google Scholar 

  • Bozhkov P. V., Ahn I. S., Park Y. G. (1997) Two alternative pathways of somatic embryo origin from polyembryonic mature stored seeds of Pinus koraiensis Sieb et Zucc. Can. J. Bot. 75: 509-512.

    Article  Google Scholar 

  • Buchholz J. T. (1929) The embryogeny of conifers. Proc. Int. Congr. Pl. Sci. 1: 359–392.

    Google Scholar 

  • Carpita N. C., Sabularse D., Montezinos D., Delmer D. R (1979) Determination of the pore size of cell walls of living plant cells. Science 205: 1144–1147.

    Article  PubMed  CAS  Google Scholar 

  • Chalupa V. (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Comm Inst. For. 14: 57–63.

    Google Scholar 

  • Charest R J., Bonga J., Klimaszewska K. (1996a) Cryopreservation of plant tissue cultures: the example of embryogenic tissue cultures from conifers. Plant Tissue Culture Manual C9: 1–27.

    Google Scholar 

  • Charest P. J., Devantier Y., Lachance D. (1996b) Stable genetic transformation of Picea mariana (black spruce) via microprojectile bombardment. In Vitro Cell Dev Biol 32: 91–99.

    Article  Google Scholar 

  • Ching T. M. (1966) Compositional changes of Douglas fir seeds during germination. Plant Physiol. 41: 1313-1319

    Article  PubMed  CAS  Google Scholar 

  • Cyr D. R. (1999) Cryopreservation of embryogenic cultures of conifers and its. application to clonal forestry. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 239–262.

    Google Scholar 

  • DeVerno L. L. (1995) Evaluation of somaclonal variation during somatic embryogenesis. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 361–378.

    Google Scholar 

  • Diener A. M., Karnosky D. F. (1984) A cotyledon culture system for cloning Larix decidua and Pinus banksiana. In Proc. Tappi Res. and Dev. Conf. Atlanta, Georgia, pp. 13–15.

    Google Scholar 

  • Dodeman V. L., Ducreux G., Kreis M. (1997) Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 48: 1493–1509.

    CAS  Google Scholar 

  • Dong J. Z., Perras M. R., Abrams S. R., Dunstan D. I. (1996) Induced gene expression following ABA uptake in embryogenic suspension cultures of Picea glauca. Plant Physiology Biochemistry 34: 579–587.

    CAS  Google Scholar 

  • Dunstan D. I., Tautorus T. E., Thorpe T. A. (1995) Somatic embryogenesis in woody plants. In: Thorpe T. A. (ed.) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp. 471–540.

    Chapter  Google Scholar 

  • Durzan D. J. (1982) Cell and tissue culture in forest industry. In: Bonga J. M., Durzan D. J. (eds.) Tissue culture in forestry. Martinus Nijhoff/Dr. W. Junk Publisher, Dordrecht, Netherlands, pp. 36–71.

    Google Scholar 

  • Ellis D. D., McCabe D. E., McInnes S., Ramachandran R., Russell D. R., Wallace K. M., Martinell B. J., Roberts D. R., Raffa K. F., 38. McCown B. H. (1993) Stable transformation of Picea glauca by particle acceleration. Biotechnology 11: 84–89.

    Article  Google Scholar 

  • Ewald D. (1998) Advances in tissue culture of adult larch. In Vitro Cell. Dev. Biol. Plant 34: 325–330.

    Article  Google Scholar 

  • Ewald D., Suess R. (1993) A system for repetable formation of elongating adventitious buds in Norway spruce tissue cultures. Silvae Genet. 42: 169–175.

    Google Scholar 

  • Favre J. M., Tranvan H., Arnaud Y., Bourgkard F. (1995) Present state of somtaic embryogenesis in Sequoia sempervirens (Lamb.) Endl. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands, pp. 357–370.

    Chapter  Google Scholar 

  • Fischer C., Neuhaus G. (1996) Influence of auxin on the establishment of bilateral symmetry in monocots. Plant J. 10: 659–669.

    Article  Google Scholar 

  • Grossnickle S. C. (1999) Performance of conifer stock produced through somatic embryogenesis. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 97–123.

    Google Scholar 

  • Guevin T. G., Micah V., Kirby E. G. (1994) Somatic embryogenesis in cultured mature zygotic embryo of Abies balsamea. Plant Cell Tissue and Organ Culture 37: 205–208.

    Article  CAS  Google Scholar 

  • Gupta P. K. (2002) Mass propagation of conifer trees in liquid cultures ¡ª possibilities, pitfalls and bottlenecks. In: Abstracts of the First International Symposium on “Liquid systems for in vitro mass propagation of plants” (Cost 843, Working Group 2), Norway, May/June 2002: 16.

    Google Scholar 

  • Gupta P. K., Timmis R., Timmis K. A., Carlson W. C., Welty E. D. E. (1995) Somatic embryogenesis in Douglas-fir (Pseudotsuga menziesii). In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands, pp. 303–314.

    Chapter  Google Scholar 

  • Gupta P. K., Timmis R., Mascarenhas A. F. (1991) Field performance of micropropagated forestry species, In vitro Cell. Dev. Biol. 27P: 159–164.

    Google Scholar 

  • Gutmann M., von Aderkas P., Label P., Lelu M. A. (1996) Effects of abscisic acid on somatic embryo maturation of hybrid larch. J. Exp. Bot. 47: 1905–1917.

    Article  CAS  Google Scholar 

  • Haberlandt G. (1902) Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber. Mat.-Nat. Kl. Kais. Akad. Wiss. Wien 111(1): 69–92.

    Google Scholar 

  • Hadfi K., Speth V., Neuhaus G. (1998) Auxin-induced development pattern in Brassica juncea embryos. Development 125: 879–887.

    PubMed  CAS  Google Scholar 

  • Hakman I., von Arnold S. (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J. Plant Physiol. 121: 149–158.

    Article  CAS  Google Scholar 

  • Halperin W. (1995) In vitro embryogenesis: some historical issue and unresolved problems. In:. Thorpe T. A. (ed.) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 1-16.

    Google Scholar 

  • Hargreaves C. L., Smith D. R. (1994) Cryopreservation of Pinus radiata embryogenic tissue. New Zealand Forest Research Institute, Private Bag 3020, Rotorua.

    Google Scholar 

  • Horgan K. (1987) Radiata pine. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 3. Martinus Nijhoff Publ., Dordrecht Boston Lancaster, pp. 128–145.

    Google Scholar 

  • Hristoforoglu K., Schmidt J., Bolhar-Nordenkampf H. (1995) Development and germination of Abies alba somatic embryos. Plant Cell Tissue and Organ Culture 40: 277–284.

    Article  Google Scholar 

  • Huang Y., Diner A. M., Karnosky D. F. (1991) Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev Biol 27: 201–207.

    Article  Google Scholar 

  • Hübl S., Zoglauer K. (1991) Entwicklung einer In-vitro-Vermehrungsmethode für züchterisch wertvolle Lärchen. Beitr. Forstwirtschaft 25: 18–20.

    Google Scholar 

  • Jain S. M., Gupta P. K., Newton R. J. (eds.) (1995) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Jain S. M., Newton R. J., Soltes E. J. (1988) Enhancement of somatic embryogenesis in Norway spruce (Picea abies L.). Theor. Appl. Genet. 76: 501–506.

    Google Scholar 

  • Jasik J., Salajova T., Kormutak A., Salaj J. (1999) Somatic embryogenesis in Hybrid firs. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 505–523.

    Google Scholar 

  • Jürgens G., Mayer U., Torres Ruiz R.A., Berleth T., Misera S. (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Development Supplement 1: 27–38.

    Google Scholar 

  • Kartha K. K. (1985) Meristem culture and germplasm preservation. In: Kartha K. K. (ed.) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, Florida, pp. 115–134.

    Google Scholar 

  • Kermode A. R. (1990) Regulatory mechanisms involved in the transition from seed development to germination. CRC Critical Reviews in Plant Sci. 9: 155–195.

    Article  CAS  Google Scholar 

  • Kleinschmit J, Khurana D. K., Gerhold H. D., Libby W. J. (1993) Past, present, and anticipated applications of clonal forestry. In: Ahuja M. R., Libby W. J. (eds.) Clonal forestry II. Conservation and application. Springer, Berlin Heidelberg New York, pp. 9–41.

    Chapter  Google Scholar 

  • Kleinschmit J., Müller W., Schmidt J., Racz J. (1973) Entwicklung der Stecklingsvermehrung von Fichte (Picea abies Karst) zur Praxisreife. Silvae Genetica 22: 4–15.

    Google Scholar 

  • Klimaszewska K., Devantier Y., Lachance D., Lelu M. A., Charest P. J. (1997) Larix lariciana (tamarack): somatic embryogenesis and genetic transformation. Can. J. For. Res. 27: 538–550.

    Google Scholar 

  • Klimaszewska K., Ward C., Cheliak W. M. (1992) Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix x eurolepis) and Black Spruce (Picea mariana). Journal of Experimental Botany 43: 73–79.

    Article  CAS  Google Scholar 

  • Kong L., Attree S. M., Evans D. E., Binarova R, Yeung E. C., Fowke L. C. (1999) Somatic embryogenesis in white spruce: Studies of embryo development and cell biology. In: Jain S. M., Gupta R. K., Newton R. (eds.) Somatic embryogenesis in Woody Plants, vol. 4. Kluwer Academic Publishers, Dordrecht, pp. 1–28.

    Google Scholar 

  • Kong L., Yeung E. C. (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Science 104: 71–80.

    Article  CAS  Google Scholar 

  • Korlach J., Zoglauer K. (1995) Developmental patterns during direct somatic embryogenesis in protoplast cultures of European larch (Larix decidua Mill.). Plant Cell Reports 15: 242–247.

    Article  CAS  Google Scholar 

  • Kretschmar U., Ewald D. (1994) Vegetative propagation of 140-year-old Larix decidua trees by different in-vitro-techniques. J. Plant Physiol. 144: 627–630.

    Article  Google Scholar 

  • Krikorian A. D. (2000) Historical insight into some contemporary problems in somatic embryogenesis. In: Jain S. M., Gupta R. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 6. Kluwer Academic Publishers, Netherlands, pp. 17–50.

    Google Scholar 

  • Krogstrup R (1986) Embryolike structures from cotyledons and ripe embryos of Norway spruce (Picea abies). Can J. For. Res. 16: 664–668.

    Google Scholar 

  • Lambardi M. (2000) Somatic embryogenesis in cypress (Cupressus sempervirens L.). In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 6. Kluwer Academic Publishers, Netherlands, pp. 553–568.

    Google Scholar 

  • Lelu M. A., Bornman C. H. (1990) Induction of somatic embryogenesis in exised cotelydons in Picea glauca and Picea mariana. Plant Physiol. Biochem. 28: 785–791.

    CAS  Google Scholar 

  • Lelu M. A., Boulay M., Arnaud Y. (1987) Formation of embryogenic calli from cotyledons of Picea abies L. Karst. Collected from 3 to 7-days-old seedlings. C.R. Acad. Sci. Paris 305, serie 3: 105–109.

    Google Scholar 

  • Lelu M. A., Boulay M., Bornman C. H. (1990) Somatic embryogenesis in cotyledons of Picea abies is enhanced by an adventitious bud-inducing treatment. New Forests4: 125–135.

    Google Scholar 

  • Lelu M. A., Bastien C., Drugeault A., Gouez M. L., Klimaszewksa K. (1999) Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiologia Plantarum 105: 719–728.

    Article  CAS  Google Scholar 

  • Levée V., Garin E., Klimaszewska K., Séguin A. (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryonic tissue with Agrobacterium tumefaciens. Molecular Breeding 5: 429–440.

    Article  Google Scholar 

  • Levée V., Lelu M. A., Jouanin L., Cornu D., Pilate G. (1997) Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi x L. decidua) and transgenic plant regeneration. Plant Cell Rep 16: 680–685.

    Article  Google Scholar 

  • Liu C. M., Xu Z. H., Chua N. H. (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell5: 621–630.

    Google Scholar 

  • Maheswari P. (1979) An introduction to embryology of angiosperms. McGraw Hill Publisher, New Delhi.

    Google Scholar 

  • Mayer U., Büttner G., Jürgens G. (1993) Apical-basal pattern formation in the Arabidopsis embryo: Studies on the role of the gnom gene. Development 117: 149–162.

    Google Scholar 

  • Mayer U., Torres-Ruiz R. A., Berleth T., Misera S., Jürgens G. (1991) Mutationsaffecting body organization in the Arabidopsis embryo. Nature 353: 402–407.

    Article  Google Scholar 

  • Meinke D. W. (1991) Embryonic mutans of Arabidopsis thaliana. Dev. Gen. 12: 382–392.

    Article  Google Scholar 

  • Meinke D. W. (1995) Molecular genetics of plant embryogenesis. Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 46: 369–394.

    Article  CAS  Google Scholar 

  • Meyer P. (2000) Transcriptional transgene silencing and chromatin component. Plant Mol. Biol. 43: 221–234.

    Google Scholar 

  • Misra S. (1994) Conifer zygotic embryogenesis, somatic embryogenesis, and seed germination: Biochemical and molecular advances. Seed Sci. Res. 4: 357–384.

    CAS  Google Scholar 

  • Misson J. P., Channiere C., André P. (1989) Western Red Cedar (Thuja plicata D. Don ex Lambert). In: Bajaj Y. R S. (ed.) Biotechnology in agriculture and forestry, vol. 16, Trees III. Springer, Berlin Heidelberg, pp. 479–490.

    Google Scholar 

  • Mo L. H., von Arnold S. (1991) Origin and development of embryogenic cultures fromseedlings of Norway spruce (Picea abies). J. Plant Physiol. 138: 223–230.

    Article  Google Scholar 

  • Money N. P. (1989) Osmotic pressure of polyethylene glycols. Plant Physiol. 91: 766-769.

    Article  PubMed  CAS  Google Scholar 

  • Monteuuis O. (1991) Rejuvenation of a 100-year-old Sequoiadendron giganteum through in vitro meristem culture. I. Organogenic and morphological arguments. Physiol. Plant. 81: 111–115.

    Article  Google Scholar 

  • Muday G. K., Brunn S. A., Haworth P., Subramanian M. (1993) Evidence for a single Naphthylphthalamic acid binding site on the zucchini plasma membrane. Plant Physiology 103: 449–456.

    PubMed  CAS  Google Scholar 

  • Muday G. K., Hu S., Brady S. R. (2000) The actin cytoskeleton may control the polar distribution of an auxin transport protein. Gravitational and Space Biology Bulletin 13: 75–83.

    PubMed  CAS  Google Scholar 

  • Murashige T. (1977) Clonal crops through tissue culture. In: Barz W., Reinhard E., Zenk M. H. (eds.) Plant tissue culture and its bio-technological application. Pro. 1st Int. Cong. Medicina, Plant Research, Sec B, Munich, pp. 392–402.

    Chapter  Google Scholar 

  • Nagmani R., Becwar M. R., Wann S. R. (1987) Single-cell origin and development of somatic embryos in Picea abies (L.) Karst (Norway spruce) and Picea glauca (Moench) Voss (white spruce). Plant Cell Reports 6: 157–159.

    Google Scholar 

  • Nagmani R., Bonga J. M. (1985) Embryogenesis in subcultured callus of Larix decidua. Can. J. For. Res. 15: 1088–1091.

    Article  Google Scholar 

  • Newton R. J., Puryear J. D., Bhaskaran S., Smith R. H. (1990) Polyethylen glycol content of osmotically stressed callus cultures. J. Plant Physiol. 135: 646-652. Norgaard J. V. (1997) Somatic embryomaturation and plant regeneration in Abiesnordmanniana Lk. Plant Science 124: 211–221.

    Google Scholar 

  • N¢rgaard J. V., Krogstrup P. (1991) Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmanniana Lk. Plant Cell Reports 9: 509-513.

    Google Scholar 

  • N¢rgaard J. V., Krogstrup P (1995) Somatic embryogenesis in Abies spp. In: Jain S. M., Gupta R K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands, pp. 341–355.

    Google Scholar 

  • Ohba K. (1993) Clonal forestry with Sugi (Cryptomeria japonica). In: Ahuja M. R., Libby W. J. (eds.) Clonal forestry II. Conservation and application. Springer, Stuttgart Jena New York, pp. 66–90.

    Chapter  Google Scholar 

  • Palme K., Gälweiler L. (1999) PIN-pointing the molecular basis of auxin transport, Current Opinion in Plant Biology 2:375–381.

    Article  PubMed  CAS  Google Scholar 

  • Pages M.,Harvengt L.,Reymond I.(1998)Somatic embryogenesis:a technology underway to value old selected Norway spruce. Abstract Joint COST Action 822 &824.

    Google Scholar 

  • Park Y. S., Bonga J. M., Cameron S. I., Barrett J. D., Forbes K., DeVerno L. L., Klimaszewska K. (1999) Somatic embryogenesis in Jack pine (Pinus banksiana Lamb.). In: Jain S. M., Gupta R. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 491-504.

    Google Scholar 

  • Park Y. S. (2001) Implementation of somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Proceedings of the WBB Conference “Wood, Breeding, Biotechnology and industrial expectations”, June 2001, Bordeaux, http://www.pierroton.inra.fr/WBB/

  • Pierik R. L. M. (1991) Commercial micropropagation in Western Europe and Israel. In: Debergh R C., Zimmermann R. H. (eds.) Micropropagation, technology and application. Kluwer Academic Publ., Amsterdam, pp. 155-166.

    Google Scholar 

  • 104. Pullman G. S., Gupta R. K. (1994) Method for reproducing conifers by somatic embryogenesis using mixed growth hormones for embryo culture. U.S. Pat. No. 5,294,549.

    Google Scholar 

  • RahmatA.,Zoglauer K.(2001) Somatic embryogenesis and Agrobacterium tumefaciens mediated genetic transformation of Abies nordmanniana. Proceedings of the WBB Conference “Wood,Breeding,Biotechnology and industrialexpectations”,June 2001,Bordeaux, http://www.pierroton.inra.fr/WBB/

  • Redenbaugh K., Fujii J. A. A., Slade D. (1993) Hydrated coatings for synthetic seeds. In: Redenbaugh K. (ed.) ynseeds: Applications of synthetic seeds to crop improvement. CRC Press, Boca Raton, pp. 35–46.

    Google Scholar 

  • Reinert J. (1958) Morphogenese and ihre Kontrolle and Gewebekulturen aus Karotten. Naturwissenschaften 45: 344–345.

    Article  CAS  Google Scholar 

  • Roberts D. R., Flinn B. S., Webb D. T., Webster F. B., Sutton B. C. S. (1990) Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiologia Plantarum 78: 355–360.

    Article  CAS  Google Scholar 

  • Salajova T., Salaj J. (2001) Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and Schopf J. M. (1943) The embryology of Larix. The University of Illinois Press, Urbana.

    Google Scholar 

  • Schuller A., Kirchner-Neß R., Reuther G. (2000) Interaction of plant growth regulators and organic C and N components in the formation and maturation of Abies alba somatic embryos. Plant Cell Tissue and Organ Culture 60: 23–31.

    CAS  Google Scholar 

  • Schuller A., Reuther G., Geier T. (1989) Somatic embryogenesis from seed explants of Abies alba. Plant Cell Tissue and Organ Culture 17: 53–58.

    Google Scholar 

  • Sharma K. K., Thorpe T. A. (1995) Asexual embryogenesis in vascular plants in nature. In: Thorpe T. A. (ed.) In vitro embryogenesis in plants. Kluwer Academic Publisher, Dordrecht, pp. 17–72.

    Chapter  Google Scholar 

  • Silveira V., dos Santos A. L. W., Astarita L. V., Nodari R. O. (2000) Somatic embryogenesis in Araucaria angustifolia (Bert) O. Ktze. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 6. Kluwer Academic Publishers, Netherlands, pp. 457–478.

    Google Scholar 

  • Skirvin R. M., McPheeters K. D., Norton M. (1994) Sources and frequency of somaclonal variation. Hort Science 29: 1232–1237.

    Google Scholar 

  • Skoklefald S. (1993) Naturlig foryngelse av gran of furu. Aktuelt fra Skogforsk 5: 3–6.

    Google Scholar 

  • Smith D. R. (1989) Radiata pine (Pinus radiata D. Don) in Biotechnology. In: Bajaj Y. P. S. (ed.) Agriculture and forestry, vol. 1, Trees I. Springer, Berlin Heidelberg, pp. 274–291.

    Google Scholar 

  • Steward F., Mapes M., Maars K. (1958) Growth and organized development of cultured cell II. Organization in cultures from freely suspended cells. Amer. J. Bot. 45: 705–708.

    Article  Google Scholar 

  • Stone S. L., Kwong L. W., Yee K. M., Pelletier J., Lepiniec L., Fischer R. L., Goldberg R. B., Harada J. J. (2001) LEAFY COTYLEDON encodes a B3 domain transcription factor that induces embryo development. PNAS 98 (no.20): 11806-11811.

    Article  PubMed  CAS  Google Scholar 

  • Sutton B. (2001) Commercial delivery of generic improvement to conifer plantations using somatic embryogenesis. Abstract of WBB-Conference “Wood, breeding, biotechnology and industrial expectations”, June 2001, Bordeaux,http://www.pierroton.inra.fr/WBB.

  • Sutton B., Polonenko D. R. (1999) Commercialization of plant somatic embryogenesis. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 263–292.

    Google Scholar 

  • Tang W., Sederoff R., Whetten R. (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213: 981–989.

    Article  PubMed  CAS  Google Scholar 

  • Taryono (2000) Somatische Embryogenese und Transformation bei der Europäischen Lärche (Larix decidua Mill.). Dissertation, Humboldt-Universität zu Berlin.

    Google Scholar 

  • Tautorus T. E., Attree S. M., Fowke L. C., Dunstan D. I. (1990) Somatic embryogenesis from immature and mature zygotic embryos and embryo regeneration from protoplasts in black spruce (Picea mariana Mill.). Plant Science 67: 115–124.

    Article  Google Scholar 

  • Tautorus T. E., Fowke L. C., Dunstan D. I. (1991) Somatic embryogenesis in conifers. Can. J. Bot. 69: 1873–1899.

    Article  Google Scholar 

  • Thein M., Michalke W. (1988) Bisulfite interacts with binding sites of the auxin-transport inhibitor N-1-naphthylphthalamic acid. Planta 176: 343–350.

    Article  CAS  Google Scholar 

  • Thorpe T. A., Stasolla C. (2001) Somatic embryogenesis. In: Bhojwani S. S., Soh W. Y. (eds.) Current trends in the embryology of angiosperms. Kluwer Academic Publisher, Dordrecht, Netherlands, pp. 279–336.

    Google Scholar 

  • Uggla C., Moritz T., Sandberg G., Sandberg C. (1996) Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA 93: 9282–9286.

    Google Scholar 

  • van Groenendael J., De Kroon H. (eds.) (1990) Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.

    Google Scholar 

  • von Aderkas P., Bonga J. M. (1993) Plants from haploid tissue culture of Larix decidua. Theoretical and Applied Genetics 87: 225–228.

    Article  Google Scholar 

  • von Aderkas P., Bonga J.M., Klimaszewska K., Owens J. (1991) Comparison of Larch embryogeny in vitro and in vivo. In: Ahuja M. R. (ed.) Woody plant biotechnology. Plenum Press, New York, pp. 139–155.

    Chapter  Google Scholar 

  • von Aderkas P., Bonga J. M., Nagmani R. (1987) Promotion of embryogenesis in cultured megagametophytes of Larix decidua. Can. J. Res. 17: 1293–1296.

    Google Scholar 

  • von Arnold S. (1987) Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. J. Plant Physiol. 128: 233–244.

    Article  Google Scholar 

  • von Arnold S., Hakman I. (1988) Regulation of somatic embryo development in Picea abies by Abscisic Acid (ABA). J. Plant Physiol. 132: 164–169.

    Article  Google Scholar 

  • von Arnold S., Sabala I., Bozkov P., Dyachok J., Filonova L. (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue and Organ Culture 69: 233–249.

    Article  Google Scholar 

  • von Arnold S., Hakman I. (1986) Effect of sucrose on initiation of embryogenenic callus cultures from mature zygotic embryos of Picea abies (L.) Karst. (Norway spruce). J. Plant Physiol. 122: 261–265.

    Article  Google Scholar 

  • Walter C., Grace L., Donaldson S. S., Moody J., Gemmell J. E., van der Maos S., Kvaalen H., Lonneborg A. (1999) An efficient biolistic transformation protocol for Picea abies embryogenic tissue and regeneration of transgenic plants. Can. J. For. Res. 29: 1539–1546.

    Google Scholar 

  • Walter C., Grace L. J., Wagner A., White D. W. R., Walden A. R., Donaldson S. S., Hinton H., Gardner R. C., Smith D. R. (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D.Don. Plant Cell Rep. 17: 460–469.

    Article  CAS  Google Scholar 

  • Waris H. (1957) A chemical-induced change in the morphogenesis of a flowering plant. Cited in: Simola L. K. (2000) Harry Waris, a pioneer in somatic embryogenesis. In: Jain S. M., Gupta R K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 6. Kluwer Academic Publishers, Netherlands, pp. 1–16.

    Google Scholar 

  • Wenck A. R., Quinn M., Whetten R. W., Pullmanm G., Sederoff R. (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39: 407–416.

    CAS  Google Scholar 

  • Westcott R. J. (1994) Production of embryogenic callus from nonembryogenic explants of norway spruce Picea abies (L.) Karst. Plant Cell Reports 14: 47-49. Yarbrough J. A. (1932) Anatomical and developmental studies of the foliar embryos of Bryophyllum calycinum. Amer. J. Bot. 19: 443–453.

    Google Scholar 

  • Zacharissen K. E., Kristiansen E. (2000) Ice nucleation and antinucleation in nature. Cryobiology 41: 257–279.

    Article  CAS  Google Scholar 

  • Zoglauer K., Reuther G. (1996) Somatische Embryogenese bei der Weißtanne (Abies alba Mill). Mitteilungen der Landesanstalt für Wald-und Forstwirtschaft (Gotha) 11/1996: 123–135.

    Google Scholar 

  • Zoglauer K., Dembny H., Behrendt U., Korlach J. (1995) Developmental patterns and regulating factors in direct somatic embryogenesis of European larch (Larix decidua Mill.). Med. Fac. Landbouww. Univ. Gent, 60/4a: 1627–1637.

    Google Scholar 

  • Address of the author: Dr. Kurt Zoglauer, Humboldt-Universität zu Berlin, Institut für Biologie, AG Angewandte Botanik, Invalidenstrasse 42, D — 10115 Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Zoglauer, K., Behrendt, U., Rahmat, A., Ross, H., Taryono (2003). Somatic embryogenesis — the gate to biotechnology in conifers. In: Laimer, M., Rücker, W. (eds) Plant Tissue Culture. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6040-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6040-4_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83839-6

  • Online ISBN: 978-3-7091-6040-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics