Advertisement

Somatic embryogenesis — the gate to biotechnology in conifers

  • Kurt Zoglauer
  • U. Behrendt
  • A. Rahmat
  • H. Ross
  • Taryono

Abstract

“I believe [...] one could successfully cultivate artificial embryos from vegetative cells.” With this vision, Gottlieb Haberlandt closed his 1902 publication “Experiments on the culture of isolated cells”. Based on his experiments with cell cultures, his foresight must have sounded bold at the time. Indeed, it took more than 50 years for his vision to be realised. The induction of embryos from vegetative cells, now called somatic embryogenesis, was first demonstrated in the 1950s with two species of the Apiaceae family, Oenanthe aquatica (Waris 1957) and Daucus carota (Reinert 1958, Steward et al. 1958). Yet despite intensive research efforts, it was only in 1985 that somatic embryogenesis was clearly demonstrated for the first time in gymnosperms (Chalupa 1985, Hakman and v. Arnold 1985, Nagmani and Bonga 1985). Somatic embryo-like structures in suspension cultures had been described earlier (Durzan 1982), however, the accuracy of such observations remains questionable. Equally dubious are claims of successfully producing somatic embryos in gymnosperm forest trees, which have even led to patent applications for the technique (Abo El-Nil 1980). Despite these claims, it was only in light of the work published in 1985 that rapid development in basic and applied research in the field of conifer somatic embryogenesis began. The immense potential for clonal propagation, genetic engineering and germplasm preservation soon followed, and within only a few years, all other regeneration and propagation routines in biotechnology were marginalized by somatic embryogenesis. A story of success was launched.

Keywords

Somatic Embryo Somatic Embryogenesis Woody Plant Zygotic Embryo Embryogenic Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abo El-Nil M. M. (1980) Embryogenesis of gymnosperm forest trees. United States Patent 4,217,730.Google Scholar
  2. Acker J. P., McGann L. E. (2000) Cell ¡ª Cell contact affects membrane integrity after intracellular freezing. Cryobiology 40: 54-63.PubMedCrossRefGoogle Scholar
  3. Aitken-Christie J. (2001) Somatic embryogenesis for large-scale clonal testing and propagation of elite material. Abstract of WBB-conference “Wood, breeding, biotechnology and industrial expectations”, June 2001, Bordeaux,http://www.pierroton.inra.fr/WBB/
  4. Aronen T. S., Krajnakova J., Häggman H. M., Ryynanen L. A. (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Science 142: 163–172.CrossRefGoogle Scholar
  5. Attree S. M., Budumir S., Fowke L. C. (1990) Somatic embryogenesis and plant regeneration from cultured shoots and cotyledons of seedlings from stored seeds of black and white spruce (Picea mariana and Picea glauca). Canadian Journal of Botany 68: 30–34.CrossRefGoogle Scholar
  6. Attree S. M., Fowke L. C. (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue and Organ Culture 35: 1–35.CrossRefGoogle Scholar
  7. Attree S. M., Moore D., Sawhney V. K., Fowke L. C. (1991) Enhanced maturation and desiccation tolerance of white spruce [Picea glauca (Moench) Voss] somatic embryos: Effect of non-plasmolysing water stress and abscisic acid. Annals of Botany 68: 519–525.Google Scholar
  8. Attree S. M., Pomeroy M. K., Fowke L. C. (1992) Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187: 395–404.CrossRefGoogle Scholar
  9. Attree S. M., Pomeroy M. K., Fowke L. C. (1994) Production of vigorous, desiccation tolerant white spruce (Picea glauca [Moench] Voss) synthetic seeds in a bioreactor. Plant Cell Reports 13: 601–606.CrossRefGoogle Scholar
  10. Attree S. M., Pomeroy M. K., Fowke L. C. (1995) Development of white spruce [Picea glauca (Moench) Voss] somatic embryos during culture with abscisic acid and osmoticum and their tolerance to drying and frozen storage. J. Exp. Bot. 46: 433–439.CrossRefGoogle Scholar
  11. Ball E. A. (1987) Tissue culture multiplication of Sequoia. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 3.Martinus Nijhoff Publ., Dordrecht Boston Lancaster, pp. 146–158.Google Scholar
  12. Batygina T. B. (ed.) (2000) Embryology of flowering plants. Terminology and concepts. 3rd Vol. Word and Family, St. Peterburg.Google Scholar
  13. Behrendt U., Zoglauer K. (1996) Boron controls suspensor development in embryogenic cultures of Larix decidua. Physiologia Plantarum 97: 321–326.CrossRefGoogle Scholar
  14. Bewley J. D. (1997) Seed germination and dormancy. Plant Cell 9: 1055-1066. Bewley J. D., Black M. (1994) Seeds. Physiology of development and germination. Plenum Press, New York London.Google Scholar
  15. Bigot C., Engelmann F. (1987) Vegetative propagation of Cunninghamia lanceolata (Lamb.) Hook. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 3. Martinus Nijhoff Publ., Dordrecht Boston Lancaster, pp. 114–127.Google Scholar
  16. Biondi S., Thorpe T. A. (1982) Clonal propagation of forest tree species. In: Rao A. N. (ed.) Proc. COST Symp. on tissue culture of economically important plants, Singapore, pp. 197–204.Google Scholar
  17. Bishir J., Roberds J. H. (1997) Limit theorems and a general framework for risks analysis in clonal forestry. Forest Genetics 6: 149–155.Google Scholar
  18. Bonga J. M. (1982) Vegetative propagation in relation to juvenility, maturity and rejuvenation. In: Bonga J. M., Durzan D. J. (eds.) Tissue culture in forestry. The Hague, Boston London, pp. 387–403.Google Scholar
  19. Bonga J. M., Klimaszewska K., Lelu M. A., von Aderkas P. (1995) Somatic embryogenesis in Larix. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands, pp. 315–340.CrossRefGoogle Scholar
  20. Bonga J. M., von Aderkas P. (1988) Attempts to micropropagate mature Larix decidua Mill. In: Ahuja M. R. (ed.) Somatic cell genetics of woody plants. Kluwer Academic Publ., Dordrecht, pp. 133–168.Google Scholar
  21. Boulay M. (1987) Conifer micropropagation: Applied research and commercial aspects. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 3. Martinus Nijhoff Publ., Dordrecht Boston Lancaster, pp. 185–206.Google Scholar
  22. Boulay M. (1989) Redwood (Sequoia sempervirens). In: Bajaj Y. P. S. (ed.) Biotechnology in agriculture and forestry. Vol. 5. Trees II. Springer, Berlin Heidelberg, pp. 549–573.Google Scholar
  23. Bozhkov P. V., Ahn I. S., Park Y. G. (1997) Two alternative pathways of somatic embryo origin from polyembryonic mature stored seeds of Pinus koraiensis Sieb et Zucc. Can. J. Bot. 75: 509-512.CrossRefGoogle Scholar
  24. Buchholz J. T. (1929) The embryogeny of conifers. Proc. Int. Congr. Pl. Sci. 1: 359–392.Google Scholar
  25. Carpita N. C., Sabularse D., Montezinos D., Delmer D. R (1979) Determination of the pore size of cell walls of living plant cells. Science 205: 1144–1147.PubMedCrossRefGoogle Scholar
  26. Chalupa V. (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Comm Inst. For. 14: 57–63.Google Scholar
  27. Charest R J., Bonga J., Klimaszewska K. (1996a) Cryopreservation of plant tissue cultures: the example of embryogenic tissue cultures from conifers. Plant Tissue Culture Manual C9: 1–27.Google Scholar
  28. Charest P. J., Devantier Y., Lachance D. (1996b) Stable genetic transformation of Picea mariana (black spruce) via microprojectile bombardment. In Vitro Cell Dev Biol 32: 91–99.CrossRefGoogle Scholar
  29. Ching T. M. (1966) Compositional changes of Douglas fir seeds during germination. Plant Physiol. 41: 1313-1319PubMedCrossRefGoogle Scholar
  30. Cyr D. R. (1999) Cryopreservation of embryogenic cultures of conifers and its. application to clonal forestry. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 239–262.Google Scholar
  31. DeVerno L. L. (1995) Evaluation of somaclonal variation during somatic embryogenesis. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 361–378.Google Scholar
  32. Diener A. M., Karnosky D. F. (1984) A cotyledon culture system for cloning Larix decidua and Pinus banksiana. In Proc. Tappi Res. and Dev. Conf. Atlanta, Georgia, pp. 13–15.Google Scholar
  33. Dodeman V. L., Ducreux G., Kreis M. (1997) Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 48: 1493–1509.Google Scholar
  34. Dong J. Z., Perras M. R., Abrams S. R., Dunstan D. I. (1996) Induced gene expression following ABA uptake in embryogenic suspension cultures of Picea glauca. Plant Physiology Biochemistry 34: 579–587.Google Scholar
  35. Dunstan D. I., Tautorus T. E., Thorpe T. A. (1995) Somatic embryogenesis in woody plants. In: Thorpe T. A. (ed.) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp. 471–540.CrossRefGoogle Scholar
  36. Durzan D. J. (1982) Cell and tissue culture in forest industry. In: Bonga J. M., Durzan D. J. (eds.) Tissue culture in forestry. Martinus Nijhoff/Dr. W. Junk Publisher, Dordrecht, Netherlands, pp. 36–71.Google Scholar
  37. Ellis D. D., McCabe D. E., McInnes S., Ramachandran R., Russell D. R., Wallace K. M., Martinell B. J., Roberts D. R., Raffa K. F., 38. McCown B. H. (1993) Stable transformation of Picea glauca by particle acceleration. Biotechnology 11: 84–89.CrossRefGoogle Scholar
  38. Ewald D. (1998) Advances in tissue culture of adult larch. In Vitro Cell. Dev. Biol. Plant 34: 325–330.CrossRefGoogle Scholar
  39. Ewald D., Suess R. (1993) A system for repetable formation of elongating adventitious buds in Norway spruce tissue cultures. Silvae Genet. 42: 169–175.Google Scholar
  40. Favre J. M., Tranvan H., Arnaud Y., Bourgkard F. (1995) Present state of somtaic embryogenesis in Sequoia sempervirens (Lamb.) Endl. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands, pp. 357–370.CrossRefGoogle Scholar
  41. Fischer C., Neuhaus G. (1996) Influence of auxin on the establishment of bilateral symmetry in monocots. Plant J. 10: 659–669.CrossRefGoogle Scholar
  42. Grossnickle S. C. (1999) Performance of conifer stock produced through somatic embryogenesis. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 97–123.Google Scholar
  43. Guevin T. G., Micah V., Kirby E. G. (1994) Somatic embryogenesis in cultured mature zygotic embryo of Abies balsamea. Plant Cell Tissue and Organ Culture 37: 205–208.CrossRefGoogle Scholar
  44. Gupta P. K. (2002) Mass propagation of conifer trees in liquid cultures ¡ª possibilities, pitfalls and bottlenecks. In: Abstracts of the First International Symposium on “Liquid systems for in vitro mass propagation of plants” (Cost 843, Working Group 2), Norway, May/June 2002: 16.Google Scholar
  45. Gupta P. K., Timmis R., Timmis K. A., Carlson W. C., Welty E. D. E. (1995) Somatic embryogenesis in Douglas-fir (Pseudotsuga menziesii). In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands, pp. 303–314.CrossRefGoogle Scholar
  46. Gupta P. K., Timmis R., Mascarenhas A. F. (1991) Field performance of micropropagated forestry species, In vitro Cell. Dev. Biol. 27P: 159–164.Google Scholar
  47. Gutmann M., von Aderkas P., Label P., Lelu M. A. (1996) Effects of abscisic acid on somatic embryo maturation of hybrid larch. J. Exp. Bot. 47: 1905–1917.CrossRefGoogle Scholar
  48. Haberlandt G. (1902) Culturversuche mit isolierten Pflanzenzellen. Sitz-Ber. Mat.-Nat. Kl. Kais. Akad. Wiss. Wien 111(1): 69–92.Google Scholar
  49. Hadfi K., Speth V., Neuhaus G. (1998) Auxin-induced development pattern in Brassica juncea embryos. Development 125: 879–887.PubMedGoogle Scholar
  50. Hakman I., von Arnold S. (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J. Plant Physiol. 121: 149–158.CrossRefGoogle Scholar
  51. Halperin W. (1995) In vitro embryogenesis: some historical issue and unresolved problems. In:. Thorpe T. A. (ed.) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 1-16.Google Scholar
  52. Hargreaves C. L., Smith D. R. (1994) Cryopreservation of Pinus radiata embryogenic tissue. New Zealand Forest Research Institute, Private Bag 3020, Rotorua.Google Scholar
  53. Horgan K. (1987) Radiata pine. In: Bonga J. M., Durzan D. J. (eds.) Cell and tissue culture in forestry, vol. 3. Martinus Nijhoff Publ., Dordrecht Boston Lancaster, pp. 128–145.Google Scholar
  54. Hristoforoglu K., Schmidt J., Bolhar-Nordenkampf H. (1995) Development and germination of Abies alba somatic embryos. Plant Cell Tissue and Organ Culture 40: 277–284.CrossRefGoogle Scholar
  55. Huang Y., Diner A. M., Karnosky D. F. (1991) Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev Biol 27: 201–207.CrossRefGoogle Scholar
  56. Hübl S., Zoglauer K. (1991) Entwicklung einer In-vitro-Vermehrungsmethode für züchterisch wertvolle Lärchen. Beitr. Forstwirtschaft 25: 18–20.Google Scholar
  57. Jain S. M., Gupta P. K., Newton R. J. (eds.) (1995) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands.Google Scholar
  58. Jain S. M., Newton R. J., Soltes E. J. (1988) Enhancement of somatic embryogenesis in Norway spruce (Picea abies L.). Theor. Appl. Genet. 76: 501–506.Google Scholar
  59. Jasik J., Salajova T., Kormutak A., Salaj J. (1999) Somatic embryogenesis in Hybrid firs. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 505–523.Google Scholar
  60. Jürgens G., Mayer U., Torres Ruiz R.A., Berleth T., Misera S. (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Development Supplement 1: 27–38.Google Scholar
  61. Kartha K. K. (1985) Meristem culture and germplasm preservation. In: Kartha K. K. (ed.) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, Florida, pp. 115–134.Google Scholar
  62. Kermode A. R. (1990) Regulatory mechanisms involved in the transition from seed development to germination. CRC Critical Reviews in Plant Sci. 9: 155–195.CrossRefGoogle Scholar
  63. Kleinschmit J, Khurana D. K., Gerhold H. D., Libby W. J. (1993) Past, present, and anticipated applications of clonal forestry. In: Ahuja M. R., Libby W. J. (eds.) Clonal forestry II. Conservation and application. Springer, Berlin Heidelberg New York, pp. 9–41.CrossRefGoogle Scholar
  64. Kleinschmit J., Müller W., Schmidt J., Racz J. (1973) Entwicklung der Stecklingsvermehrung von Fichte (Picea abies Karst) zur Praxisreife. Silvae Genetica 22: 4–15.Google Scholar
  65. Klimaszewska K., Devantier Y., Lachance D., Lelu M. A., Charest P. J. (1997) Larix lariciana (tamarack): somatic embryogenesis and genetic transformation. Can. J. For. Res. 27: 538–550.Google Scholar
  66. Klimaszewska K., Ward C., Cheliak W. M. (1992) Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix x eurolepis) and Black Spruce (Picea mariana). Journal of Experimental Botany 43: 73–79.CrossRefGoogle Scholar
  67. Kong L., Attree S. M., Evans D. E., Binarova R, Yeung E. C., Fowke L. C. (1999) Somatic embryogenesis in white spruce: Studies of embryo development and cell biology. In: Jain S. M., Gupta R. K., Newton R. (eds.) Somatic embryogenesis in Woody Plants, vol. 4. Kluwer Academic Publishers, Dordrecht, pp. 1–28.Google Scholar
  68. Kong L., Yeung E. C. (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Science 104: 71–80.CrossRefGoogle Scholar
  69. Korlach J., Zoglauer K. (1995) Developmental patterns during direct somatic embryogenesis in protoplast cultures of European larch (Larix decidua Mill.). Plant Cell Reports 15: 242–247.CrossRefGoogle Scholar
  70. Kretschmar U., Ewald D. (1994) Vegetative propagation of 140-year-old Larix decidua trees by different in-vitro-techniques. J. Plant Physiol. 144: 627–630.CrossRefGoogle Scholar
  71. Krikorian A. D. (2000) Historical insight into some contemporary problems in somatic embryogenesis. In: Jain S. M., Gupta R. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 6. Kluwer Academic Publishers, Netherlands, pp. 17–50.Google Scholar
  72. Krogstrup R (1986) Embryolike structures from cotyledons and ripe embryos of Norway spruce (Picea abies). Can J. For. Res. 16: 664–668.Google Scholar
  73. Lambardi M. (2000) Somatic embryogenesis in cypress (Cupressus sempervirens L.). In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 6. Kluwer Academic Publishers, Netherlands, pp. 553–568.Google Scholar
  74. Lelu M. A., Bornman C. H. (1990) Induction of somatic embryogenesis in exised cotelydons in Picea glauca and Picea mariana. Plant Physiol. Biochem. 28: 785–791.Google Scholar
  75. Lelu M. A., Boulay M., Arnaud Y. (1987) Formation of embryogenic calli from cotyledons of Picea abies L. Karst. Collected from 3 to 7-days-old seedlings. C.R. Acad. Sci. Paris 305, serie 3: 105–109.Google Scholar
  76. Lelu M. A., Boulay M., Bornman C. H. (1990) Somatic embryogenesis in cotyledons of Picea abies is enhanced by an adventitious bud-inducing treatment. New Forests4: 125–135.Google Scholar
  77. Lelu M. A., Bastien C., Drugeault A., Gouez M. L., Klimaszewksa K. (1999) Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators. Physiologia Plantarum 105: 719–728.CrossRefGoogle Scholar
  78. Levée V., Garin E., Klimaszewska K., Séguin A. (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryonic tissue with Agrobacterium tumefaciens. Molecular Breeding 5: 429–440.CrossRefGoogle Scholar
  79. Levée V., Lelu M. A., Jouanin L., Cornu D., Pilate G. (1997) Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi x L. decidua) and transgenic plant regeneration. Plant Cell Rep 16: 680–685.CrossRefGoogle Scholar
  80. Liu C. M., Xu Z. H., Chua N. H. (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell5: 621–630.Google Scholar
  81. Maheswari P. (1979) An introduction to embryology of angiosperms. McGraw Hill Publisher, New Delhi.Google Scholar
  82. Mayer U., Büttner G., Jürgens G. (1993) Apical-basal pattern formation in the Arabidopsis embryo: Studies on the role of the gnom gene. Development 117: 149–162.Google Scholar
  83. Mayer U., Torres-Ruiz R. A., Berleth T., Misera S., Jürgens G. (1991) Mutationsaffecting body organization in the Arabidopsis embryo. Nature 353: 402–407.CrossRefGoogle Scholar
  84. Meinke D. W. (1991) Embryonic mutans of Arabidopsis thaliana. Dev. Gen. 12: 382–392.CrossRefGoogle Scholar
  85. Meinke D. W. (1995) Molecular genetics of plant embryogenesis. Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 46: 369–394.CrossRefGoogle Scholar
  86. Meyer P. (2000) Transcriptional transgene silencing and chromatin component. Plant Mol. Biol. 43: 221–234.Google Scholar
  87. Misra S. (1994) Conifer zygotic embryogenesis, somatic embryogenesis, and seed germination: Biochemical and molecular advances. Seed Sci. Res. 4: 357–384.Google Scholar
  88. Misson J. P., Channiere C., André P. (1989) Western Red Cedar (Thuja plicata D. Don ex Lambert). In: Bajaj Y. R S. (ed.) Biotechnology in agriculture and forestry, vol. 16, Trees III. Springer, Berlin Heidelberg, pp. 479–490.Google Scholar
  89. Mo L. H., von Arnold S. (1991) Origin and development of embryogenic cultures fromseedlings of Norway spruce (Picea abies). J. Plant Physiol. 138: 223–230.CrossRefGoogle Scholar
  90. Money N. P. (1989) Osmotic pressure of polyethylene glycols. Plant Physiol. 91: 766-769.PubMedCrossRefGoogle Scholar
  91. Monteuuis O. (1991) Rejuvenation of a 100-year-old Sequoiadendron giganteum through in vitro meristem culture. I. Organogenic and morphological arguments. Physiol. Plant. 81: 111–115.CrossRefGoogle Scholar
  92. Muday G. K., Brunn S. A., Haworth P., Subramanian M. (1993) Evidence for a single Naphthylphthalamic acid binding site on the zucchini plasma membrane. Plant Physiology 103: 449–456.PubMedGoogle Scholar
  93. Muday G. K., Hu S., Brady S. R. (2000) The actin cytoskeleton may control the polar distribution of an auxin transport protein. Gravitational and Space Biology Bulletin 13: 75–83.PubMedGoogle Scholar
  94. Murashige T. (1977) Clonal crops through tissue culture. In: Barz W., Reinhard E., Zenk M. H. (eds.) Plant tissue culture and its bio-technological application. Pro. 1st Int. Cong. Medicina, Plant Research, Sec B, Munich, pp. 392–402.CrossRefGoogle Scholar
  95. Nagmani R., Becwar M. R., Wann S. R. (1987) Single-cell origin and development of somatic embryos in Picea abies (L.) Karst (Norway spruce) and Picea glauca (Moench) Voss (white spruce). Plant Cell Reports 6: 157–159.Google Scholar
  96. Nagmani R., Bonga J. M. (1985) Embryogenesis in subcultured callus of Larix decidua. Can. J. For. Res. 15: 1088–1091.CrossRefGoogle Scholar
  97. Newton R. J., Puryear J. D., Bhaskaran S., Smith R. H. (1990) Polyethylen glycol content of osmotically stressed callus cultures. J. Plant Physiol. 135: 646-652. Norgaard J. V. (1997) Somatic embryomaturation and plant regeneration in Abiesnordmanniana Lk. Plant Science 124: 211–221.Google Scholar
  98. N¢rgaard J. V., Krogstrup P. (1991) Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmanniana Lk. Plant Cell Reports 9: 509-513.Google Scholar
  99. N¢rgaard J. V., Krogstrup P (1995) Somatic embryogenesis in Abies spp. In: Jain S. M., Gupta R K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 3. Kluwer Academic Publishers, Netherlands, pp. 341–355.Google Scholar
  100. Ohba K. (1993) Clonal forestry with Sugi (Cryptomeria japonica). In: Ahuja M. R., Libby W. J. (eds.) Clonal forestry II. Conservation and application. Springer, Stuttgart Jena New York, pp. 66–90.CrossRefGoogle Scholar
  101. Palme K., Gälweiler L. (1999) PIN-pointing the molecular basis of auxin transport, Current Opinion in Plant Biology 2:375–381.PubMedCrossRefGoogle Scholar
  102. Pages M.,Harvengt L.,Reymond I.(1998)Somatic embryogenesis:a technology underway to value old selected Norway spruce. Abstract Joint COST Action 822 &824.Google Scholar
  103. Park Y. S., Bonga J. M., Cameron S. I., Barrett J. D., Forbes K., DeVerno L. L., Klimaszewska K. (1999) Somatic embryogenesis in Jack pine (Pinus banksiana Lamb.). In: Jain S. M., Gupta R. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 491-504.Google Scholar
  104. Park Y. S. (2001) Implementation of somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Proceedings of the WBB Conference “Wood, Breeding, Biotechnology and industrial expectations”, June 2001, Bordeaux, http://www.pierroton.inra.fr/WBB/
  105. Pierik R. L. M. (1991) Commercial micropropagation in Western Europe and Israel. In: Debergh R C., Zimmermann R. H. (eds.) Micropropagation, technology and application. Kluwer Academic Publ., Amsterdam, pp. 155-166.Google Scholar
  106. 104. Pullman G. S., Gupta R. K. (1994) Method for reproducing conifers by somatic embryogenesis using mixed growth hormones for embryo culture. U.S. Pat. No. 5,294,549.Google Scholar
  107. RahmatA.,Zoglauer K.(2001) Somatic embryogenesis and Agrobacterium tumefaciens mediated genetic transformation of Abies nordmanniana. Proceedings of the WBB Conference “Wood,Breeding,Biotechnology and industrialexpectations”,June 2001,Bordeaux, http://www.pierroton.inra.fr/WBB/
  108. Redenbaugh K., Fujii J. A. A., Slade D. (1993) Hydrated coatings for synthetic seeds. In: Redenbaugh K. (ed.) ynseeds: Applications of synthetic seeds to crop improvement. CRC Press, Boca Raton, pp. 35–46.Google Scholar
  109. Reinert J. (1958) Morphogenese and ihre Kontrolle and Gewebekulturen aus Karotten. Naturwissenschaften 45: 344–345.CrossRefGoogle Scholar
  110. Roberts D. R., Flinn B. S., Webb D. T., Webster F. B., Sutton B. C. S. (1990) Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiologia Plantarum 78: 355–360.CrossRefGoogle Scholar
  111. Salajova T., Salaj J. (2001) Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and Schopf J. M. (1943) The embryology of Larix. The University of Illinois Press, Urbana.Google Scholar
  112. Schuller A., Kirchner-Neß R., Reuther G. (2000) Interaction of plant growth regulators and organic C and N components in the formation and maturation of Abies alba somatic embryos. Plant Cell Tissue and Organ Culture 60: 23–31.Google Scholar
  113. Schuller A., Reuther G., Geier T. (1989) Somatic embryogenesis from seed explants of Abies alba. Plant Cell Tissue and Organ Culture 17: 53–58.Google Scholar
  114. Sharma K. K., Thorpe T. A. (1995) Asexual embryogenesis in vascular plants in nature. In: Thorpe T. A. (ed.) In vitro embryogenesis in plants. Kluwer Academic Publisher, Dordrecht, pp. 17–72.CrossRefGoogle Scholar
  115. Silveira V., dos Santos A. L. W., Astarita L. V., Nodari R. O. (2000) Somatic embryogenesis in Araucaria angustifolia (Bert) O. Ktze. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 6. Kluwer Academic Publishers, Netherlands, pp. 457–478.Google Scholar
  116. Skirvin R. M., McPheeters K. D., Norton M. (1994) Sources and frequency of somaclonal variation. Hort Science 29: 1232–1237.Google Scholar
  117. Skoklefald S. (1993) Naturlig foryngelse av gran of furu. Aktuelt fra Skogforsk 5: 3–6.Google Scholar
  118. Smith D. R. (1989) Radiata pine (Pinus radiata D. Don) in Biotechnology. In: Bajaj Y. P. S. (ed.) Agriculture and forestry, vol. 1, Trees I. Springer, Berlin Heidelberg, pp. 274–291.Google Scholar
  119. Steward F., Mapes M., Maars K. (1958) Growth and organized development of cultured cell II. Organization in cultures from freely suspended cells. Amer. J. Bot. 45: 705–708.CrossRefGoogle Scholar
  120. Stone S. L., Kwong L. W., Yee K. M., Pelletier J., Lepiniec L., Fischer R. L., Goldberg R. B., Harada J. J. (2001) LEAFY COTYLEDON encodes a B3 domain transcription factor that induces embryo development. PNAS 98 (no.20): 11806-11811.PubMedCrossRefGoogle Scholar
  121. Sutton B. (2001) Commercial delivery of generic improvement to conifer plantations using somatic embryogenesis. Abstract of WBB-Conference “Wood, breeding, biotechnology and industrial expectations”, June 2001, Bordeaux,http://www.pierroton.inra.fr/WBB.
  122. Sutton B., Polonenko D. R. (1999) Commercialization of plant somatic embryogenesis. In: Jain S. M., Gupta P. K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic Publishers, Netherlands, pp. 263–292.Google Scholar
  123. Tang W., Sederoff R., Whetten R. (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213: 981–989.PubMedCrossRefGoogle Scholar
  124. Taryono (2000) Somatische Embryogenese und Transformation bei der Europäischen Lärche (Larix decidua Mill.). Dissertation, Humboldt-Universität zu Berlin.Google Scholar
  125. Tautorus T. E., Attree S. M., Fowke L. C., Dunstan D. I. (1990) Somatic embryogenesis from immature and mature zygotic embryos and embryo regeneration from protoplasts in black spruce (Picea mariana Mill.). Plant Science 67: 115–124.CrossRefGoogle Scholar
  126. Tautorus T. E., Fowke L. C., Dunstan D. I. (1991) Somatic embryogenesis in conifers. Can. J. Bot. 69: 1873–1899.CrossRefGoogle Scholar
  127. Thein M., Michalke W. (1988) Bisulfite interacts with binding sites of the auxin-transport inhibitor N-1-naphthylphthalamic acid. Planta 176: 343–350.CrossRefGoogle Scholar
  128. Thorpe T. A., Stasolla C. (2001) Somatic embryogenesis. In: Bhojwani S. S., Soh W. Y. (eds.) Current trends in the embryology of angiosperms. Kluwer Academic Publisher, Dordrecht, Netherlands, pp. 279–336.Google Scholar
  129. Uggla C., Moritz T., Sandberg G., Sandberg C. (1996) Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA 93: 9282–9286.Google Scholar
  130. van Groenendael J., De Kroon H. (eds.) (1990) Clonal growth in plants: regulation and function. SPB Academic Publishing, The Hague.Google Scholar
  131. von Aderkas P., Bonga J. M. (1993) Plants from haploid tissue culture of Larix decidua. Theoretical and Applied Genetics 87: 225–228.CrossRefGoogle Scholar
  132. von Aderkas P., Bonga J.M., Klimaszewska K., Owens J. (1991) Comparison of Larch embryogeny in vitro and in vivo. In: Ahuja M. R. (ed.) Woody plant biotechnology. Plenum Press, New York, pp. 139–155.CrossRefGoogle Scholar
  133. von Aderkas P., Bonga J. M., Nagmani R. (1987) Promotion of embryogenesis in cultured megagametophytes of Larix decidua. Can. J. Res. 17: 1293–1296.Google Scholar
  134. von Arnold S. (1987) Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. J. Plant Physiol. 128: 233–244.CrossRefGoogle Scholar
  135. von Arnold S., Hakman I. (1988) Regulation of somatic embryo development in Picea abies by Abscisic Acid (ABA). J. Plant Physiol. 132: 164–169.CrossRefGoogle Scholar
  136. von Arnold S., Sabala I., Bozkov P., Dyachok J., Filonova L. (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue and Organ Culture 69: 233–249.CrossRefGoogle Scholar
  137. von Arnold S., Hakman I. (1986) Effect of sucrose on initiation of embryogenenic callus cultures from mature zygotic embryos of Picea abies (L.) Karst. (Norway spruce). J. Plant Physiol. 122: 261–265.CrossRefGoogle Scholar
  138. Walter C., Grace L., Donaldson S. S., Moody J., Gemmell J. E., van der Maos S., Kvaalen H., Lonneborg A. (1999) An efficient biolistic transformation protocol for Picea abies embryogenic tissue and regeneration of transgenic plants. Can. J. For. Res. 29: 1539–1546.Google Scholar
  139. Walter C., Grace L. J., Wagner A., White D. W. R., Walden A. R., Donaldson S. S., Hinton H., Gardner R. C., Smith D. R. (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D.Don. Plant Cell Rep. 17: 460–469.CrossRefGoogle Scholar
  140. Waris H. (1957) A chemical-induced change in the morphogenesis of a flowering plant. Cited in: Simola L. K. (2000) Harry Waris, a pioneer in somatic embryogenesis. In: Jain S. M., Gupta R K., Newton R. J. (eds.) Somatic embryogenesis in woody plants, vol. 6. Kluwer Academic Publishers, Netherlands, pp. 1–16.Google Scholar
  141. Wenck A. R., Quinn M., Whetten R. W., Pullmanm G., Sederoff R. (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39: 407–416.Google Scholar
  142. Westcott R. J. (1994) Production of embryogenic callus from nonembryogenic explants of norway spruce Picea abies (L.) Karst. Plant Cell Reports 14: 47-49. Yarbrough J. A. (1932) Anatomical and developmental studies of the foliar embryos of Bryophyllum calycinum. Amer. J. Bot. 19: 443–453.Google Scholar
  143. Zacharissen K. E., Kristiansen E. (2000) Ice nucleation and antinucleation in nature. Cryobiology 41: 257–279.CrossRefGoogle Scholar
  144. Zoglauer K., Reuther G. (1996) Somatische Embryogenese bei der Weißtanne (Abies alba Mill). Mitteilungen der Landesanstalt für Wald-und Forstwirtschaft (Gotha) 11/1996: 123–135.Google Scholar
  145. Zoglauer K., Dembny H., Behrendt U., Korlach J. (1995) Developmental patterns and regulating factors in direct somatic embryogenesis of European larch (Larix decidua Mill.). Med. Fac. Landbouww. Univ. Gent, 60/4a: 1627–1637.Google Scholar
  146. Address of the author: Dr. Kurt Zoglauer, Humboldt-Universität zu Berlin, Institut für Biologie, AG Angewandte Botanik, Invalidenstrasse 42, D — 10115 Berlin.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Kurt Zoglauer
    • 1
  • U. Behrendt
  • A. Rahmat
  • H. Ross
  • Taryono
  1. 1.Institute für Biologie, AG Angewandte BotanikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations