Skip to main content

Abstract

Pyrrole was discovered in the coal tar by Friedlieb Ferdinand Runge (1794–1867) in May 1834. Only 24 years later — in 1858 — it was obtained in a pure state by Thomas Anderson (1819–1874) by distillation of bone oil. The actual structure of pyrrole, which was suggested by Adolf von Baeyer (1835–1917) in 1870 on the basis of his work on the elucidation of the structure of indigo (1), was proved later (1877) by synthesis by Chichester A. Bell (2). The later development of synthetic methods for the preparation of pyrrole derivatives by Ludwig Knorr in 1884 and Carl Ludwig Paal in 1885 paved the way for Hans Fischer’s overwhelming work on the synthesis of naturally occurring pyrrolic pigments, which culminated in 1929 with the total synthesis of haemin. The relationship of the latter with pyrrole had been already established, at the beginning of the 20th century, by the Russian physician Marceli Nencki (1847–1901) and by William Küster (1863—1929). On the other hand, Leon Pavel Teodor Marchlewski (1869–1946), in collaboration with Nencki, proved in 1901 that haemin and chlorophyll are structurally related. The enormous biological significance of the tetrapyrrolic pigments — the so-called pigments of life (3) — delayed manifestly the search for more simple derivatives of pyrrole in nature. Of great significance, therefore, was the observation made by Sachs in 1931 that the urine of patients affected by acute porphyria gives a positive Ehrlich reaction, which is characteristic for pyrrole and its derivatives (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeyer A, Emmerling A (1870) Reduction des Isatins zu Indigoblau. Chem Ber 3: 514

    Article  Google Scholar 

  2. (a) Bell CA, Lapper E (1877) Über die trockene Destillation der Ammoniumsalze der Zuckersäure. Chem Ber 10: 1961; (b) Bell CA (1880) Einwirkung von Zinkstaub auf Succinimid. Chem Ber 13: 877 (cf. Bernthsen A (1880) Über das Verhalten des Succinimids gegen Phosphorpentachlorid und gegen Zinkstaub. Chem Ber 13: 1047

    Google Scholar 

  3. Battersby AR (1987) Nature’s pathways to the pigments of life. Nat. Prod Rep 4: 77

    Article  CAS  Google Scholar 

  4. Sachs P (1931) Ein Fall von akuter Porphyrie mit hochgradiger Muskelatrophie. Klin Wschr 10: 1123

    Article  Google Scholar 

  5. Westall RG (1952) Isolation of phorphobilinogen from the urine of a patient with acute porphyria. Nature 170: 614

    Article  CAS  Google Scholar 

  6. Cookson GH, Rimington C (1954) Porphobilinogen. Biochem J 57: 476

    CAS  Google Scholar 

  7. A comprehensive review on pyrrole alkaloids has appeared recently: Le Quesne PW, Dong Y, Blythe TA (1999) Recent Research on Pyrrole Alkaloids. In: Pelletier SW (ed) Alkaloids: Chemical & Biological Perspectives, vol 13, ch 3. Pergamon, Amsterdam, pp. 237–287

    Google Scholar 

  8. Jarrah MY, Thaller V (1983) Isolation and partial synthesis of 3-methoxycarbonyl-7-formyl-1-benzoxepin-5(2H)-one, the ester of a metabolite from shake cultures of the fungus Marasmiellus ramealis (Bull. ex Fr.) Singer. J Chem Soc Perkin Trans I, 1719

    Google Scholar 

  9. Corpe WA (1967) Extracellular accumulation of pyrroles in bacterial cultures. App Microbiol 11: 145

    Google Scholar 

  10. Granick S, Bogorad L (1953) Porphobilinogen a monopyrrole. J Am Chem Soc 75: 3610

    Article  CAS  Google Scholar 

  11. (a) Waldenström J, Vahlquist B (1939) Studien über die Entstehung der roten Harnpigmente (Uroporphyrin und Porphobilin) bei der akuten Porphyrie aus ihrer farblosen Vorstufe (Porphobilinogen). Hoppe-Seyler’s Z Physiol Chem 260: 189; Brockman PE, Gray CH (1953) Studies on porphobilinogen. Biochem J 54: 22; Mauzerall D (1960) The thermodynamic stability of porphobilinogen. J Am Chem Soc 82: 2601

    Google Scholar 

  12. (a) Mauzerall D (1960) The condensation of porphobilinogen to uroporphyrinogen. J Am Chem Soc 82: 2605; (b) Frydman RB, Reil S, Frydman B (1971) Relation between structure and reactivity of porphobilinogen and related pyrroles. Biochemistry 10: 1154

    Google Scholar 

  13. (a) Gossauer A (1974) Die Chemie der Pyrrole. Springer, Berlin, p 202 ff; (b) Frydmann RB, Frydman B, Valasinas A (1979) Protoporphyrin: Synthesis and Biosynthesis of its Metabolic Intermediates. In: Dolphin D (ed) The Porphyrins. vol IV, ch 1. Academic Press, New York, p 24 ff

    Google Scholar 

  14. (a) Bobal P, Neier R (1997) The chemical synthesis of porphobilinogen an important intermediate of the biosynthesis of the “pigments of live”. Trends Org Chem 6: 125; (b) Neier R (2000) A novel synthesis of porphobilinogen: Synthetic and biosynthetic studies. J Heterocycl Chem 37: 487

    Google Scholar 

  15. Jackson AH, MacDonald SF (1957) A synthesis of porphobilinogen. Canad J Chem 35: 715

    Article  CAS  Google Scholar 

  16. Battersby AR, McDonald E, Wurziger HKW, James KJ (in part) (1975) Stereo-chemistry of biosynthesis of the vinyl groups of protoporphyrin-IX: A short synthesis of porphobilinogen. J Chem Soc Chem Commun 493

    Google Scholar 

  17. Battersby AR, Hunt E, McDonald E, Moron J (1973) Biosynthesis of porphyrins and related macrocycles. Part II. Synthesis of S-amino[5–13C]laevulinic acid and [11–13C]porphobilinogen: Incorporation of the latter into protoporphyrin-IX. J Chem Soc Perkin Trans 1, 2917

    Google Scholar 

  18. Sancovich HA, Ferramola AM, Batlle AM del C, Grinstein M (1970) Preparation of porphobilinogen. Methods Enzymol A17: 220

    Article  Google Scholar 

  19. (a) Müller G, Bezold G (1969) Gewinnung von Porphobilinogen aus S-Aminolävulinsäure mit Zellsuspensionen von Propiobacterium shermanii. Z Naturforsch 24b: 47; (b) Müller G (1972) Zur Gewinnung von Porphobilinogen aus S-Aminolävulinsäure mittels P. shermanii: Bemerkenswerter Effekt einer Hitzebehandlung der Zellen. Z Naturforsch 27b: 473

    Google Scholar 

  20. Gurne D, Shemin D (1973) Synthesis of the pyrrole porphobilinogen by sepharoselinked S-aminolevulinic acid dehydratase. Science 180: 1188

    Article  CAS  Google Scholar 

  21. Scott JJ (1956) Synthesis of crystallizable porphobilinogen. Biochem J 62: 6 P

    Google Scholar 

  22. Jordan PM (1991) Biosynthesis of Tetrapyrroles, ch 1 and 5. Elsevier, Amsterdam

    Google Scholar 

  23. (a) Irvine DG, Bayne W, Miyashita H, Majer JR (1969) Identification of kryptopyrrole in human urine and its relation to psychosis. Nature (London) 224: 811; (b) Irvine DG, Bayne W, Majer JR (1970) Autotransfer chromatography combined with mass spectroscopy, for the characterization of pyrroles and indoles. J Chromatogr 48: 334; (c) Sohler A, Beck R, Noval JJ (1970) Mauve factor reidentified as 2,4dimethyl-3-ethylpyrrole and its sedative effect on the CNS. Nature (London) 228: 1318

    Google Scholar 

  24. (a) Yamaguchi M, Mori Y, Nishimura N (1966) The specific fluorescent compound, f2, for collagen disease. Wakayama Med Rep 11: 119 [Chem Abstr (1968) 68: 11169]; (b) Yamaguchi M, Matsukawa S, Ura A, Koyama M, Imura T, Nishimura N (1969) Specificity of pyrrole-1,2-dicarboimide for collagen diseases. Wakayama Med Rep 13: 169 [Chem Abstr (1970) 73: 64176]

    Google Scholar 

  25. Tittlemier SA, Simon M, Jarman WM, Elliot JE, Norstrom RJ (1999) Identification of a novel C10H6N2Br4C12 heterocyclic compound in seabird eggs. A bioaccumulating marine natural product? Environ Sci Technol 33: 26

    Article  CAS  Google Scholar 

  26. Gribble GW (1996) Naturally occurring organohalogen compounds — A comprehensive survey. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm C (eds) Progress in the chemistry of organic natural compounds, vol 68. Springer, Wien, pp 133–141

    Google Scholar 

  27. Gribble GW, Blank DH, Jasinski JP (1999) Synthesis and identification of two halogenated bipyrroles present in seabird eggs. J Chem Soc Chem Commun 2195

    Google Scholar 

  28. Letellier G, Bouthillier LP (1956) The formation of 2-pyrrolecarboxylic acid from hydroxy-D- and allohydroxy-D-proline. Canad J Biochem and Physiol 34: 1123

    Article  CAS  Google Scholar 

  29. (a) Wolf G, Berger CRA (1958) The metabolism of hydroxyproline in the intact rat. Incorporation of hydroxyproline into protein and urinary metabolites. J Biol Chem 230: 231; (b) Radhakrishnan AN, Meister A (1957) Conversion of hydroxyproline to pyrrole-2-carboxylic acid. J Biol Chem 226: 559

    Google Scholar 

  30. Tokuyama T, Daly J, Witkop B, Karle IL, Karle J (1968) The structure of batrachotoxinin A, a novel steroidal alkaloid from Colombian arrow poison frog Phyllobates aureotaenia. J Am Chem Soc 90: 1917

    Article  CAS  Google Scholar 

  31. Tokuyama T, Daly J, Witkop B (1969) The structure of batrachotoxin, a steroidal alkaloid from the Colombian arrow poison frog Phyllobates aureotaenia, and partial synthesis of batrachotoxin and its analogs and homologs. J Am Chem Soc 91: 3931 and references given therein

    Google Scholar 

  32. Witkop B (1971) New directions in the chemistry of natural products: The organic chemist as a pathfinder for biochemistry and medicine. Experientia 27: 1121

    Article  CAS  Google Scholar 

  33. Tokuyama T, Daly JW (1983) Steroidal alkaloids (batrachotoxins and 4-ß-hydroxybatrachotoxins), “indole alkaloids” (calycanthine and chimonanthine) and a piperidinyldipyridine alkaloid (noranabasamine) in skin extracts from the Colombian poison-dart frog Phylobates terribilis (Dendrobatidae). Tetrahedron 39: 41

    Article  CAS  Google Scholar 

  34. Dumbacher JP, Beehler BM, Spande TF, Garraffo HM, Daly JW (1992) Homobatrachotoxin in the genus Pitohui: chemical defense in birds? Science (Washington) 258: 799

    Article  CAS  Google Scholar 

  35. Karle IL, Karle J (1969) The structural formula and crystal structure of the O-pbromobenzoate derivative of batrachotoxinin A, C31H38NO6Br, a frog venom and steroidal alkaloid. Acta Crystallogr B25: 428

    Google Scholar 

  36. Gilardi RD (1970) The absolute configuration of a steroidal substance, the O-pbromobenzoate derivative of batrachotoxinin A. Acta Crystallogr B26: 440

    Google Scholar 

  37. Imhof R, Gössinger E, Graf W, Berner-Fenz L, Berner H, Schaufelberger R, Wehrli H (1973) Die Partialsynthese von Batrachotoxinin A. Helv Chim Acta 56: 139

    Article  CAS  Google Scholar 

  38. Daly JW (1982) Alkaloids of neotropical poison frogs (Dendrobatidae). Progr Chem Org Nat Prod 41, Springer Wien, pp 211–234

    Google Scholar 

  39. Albuquerque EX, Daly JW, Witkop B (1971) Batrachotoxin: Chemistry and pharmacology. Science 172: 995

    Article  CAS  Google Scholar 

  40. (a) Tumlinson JH, Silverstein RM, Moser JC, Brownlee RG, Ruth JM (1971) Identification of the trail pheromone of a leaf-cutting ant, Atta texana. Nature (London) 234: 348 (b) Tumlinson JH, Silverstein RM, Moser JC, Brownlee RG, Ruth JM (1972) A volatile trail pheromone of the leaf-cutting ant, Atta texana. J Insect Physiol 18: 809

    Google Scholar 

  41. Riley RG, Silverstein RM, Carroll B, Carroll R (1974) Methyl 4-methylpyrrole-2carboxylate: A volatile trail pheromone from the leaf-cutting ant, Atta cephalotes. J Insect Physiol 20: 651

    Article  CAS  Google Scholar 

  42. Do Nascimento RR, Morgan ED, Moreira DDO, Della Lucia TMC (1971) Trail pheromone of leaf-cutting ant Acromyrmex subterraneus (Forel). J Chem Ecol 20: 1719

    Article  Google Scholar 

  43. Rapoport H, Bordner J (1964) Synthesis of substituted 2,2’-bipyrroles. J Org Chem 29: 2727

    Article  CAS  Google Scholar 

  44. (a) Sonnet PE (1972) Synthesis of the trail marker of the Texas leaf-cutting ant, Atta texana (Buckley). J Med Chem 15: 97; (b) Sonnet PE, Moser JC (1972) Synthetic analogs of the trail pheromone of the leaf-cutting ant, Atta texana (Buckley). J Agr Food Chem 6: 1191; (c) Walizei GH, Breitmaier E (1989) Pyrrole aus 3-Alkoxyacroleinen and CH-aciden a-Aminoessigsäure-Derivaten. Synthesis 337; (d) Barton DHR, Kervagoret J, Zard SZ (1990) A useful synthesis of pyrroles from nitroolefins. Tetrahedron 46: 7587; (e) Cornforth J, Ming-hui D (1990) Synthesis of 3-methylpyrrole via 4-methylpyrrole-2-carboxylate. A thermal oxazolone-pyrone rearrangement. J Chem Soc Perkin Trans 1, 1459; (f) Zimmer R, Collas M, Roth MM, Reißig H-U (1992) 6-Siloxy-substituted 5,6-dihydro-4H-1,2-oxazines as key building blocks for natural products. Liebigs Ann Chem 709; (g) Xiao D, Schreier JA, Cook JH, Seybold PG, Ketcha DM (1996) Reversible Friedel-Crafts acylations of 3-alkyl-1(phenylsulfon)pyrroles: Application to the synthesis of an ant trail pheromone. Tetrahedron Lett 37: 1523; (h) Abbaspour Tehrani K, Borremans D, De Kimpe N (1999) Synthesis of 2-Acyl-3-chloropyroles: Application to the synthesis of the trail pheromone of the ant Atta texana. Tetrahedron 55: 4133

    Google Scholar 

  45. Francke W, Schröder F, Walter F, Sinnwell V, Baumann H, Kaib M (1995) New alkaloids from ants: Identification and synthesis of (3R,5S,9R)-3-butyl-5-(1-oxopropyl)indolizidine and (3R,5R,9R)-3-butyl-5-(1-oxopropyl)indolizidine constituents of the poison gland secretion in Myrmicaria eumenoides. Liebigs Ann 965

    Google Scholar 

  46. Schröder F, Francke S, Francke W, Baumann H, Kaib M, Pasteels JM, Daloze D (1996) A new family of tricyclic alkaloids from Myrmicaria ants. Tetrahedron 52: 13539

    Article  Google Scholar 

  47. Schröder F, Francke W (1998) Synthesis of myrmicarin 217, a pyrrolo[2.1.5-cd] indolizine from ants. Tetrahedron 54: 5259

    Article  Google Scholar 

  48. Sayah B, Pelloux-Léon N, Vallée Y (2000) First synthesis of nonracemic (R)-(+)myrmicarin 217. J Org Chem 65: 2824

    Article  CAS  Google Scholar 

  49. Schröder F, Sinnwell V, Baumann H, Kaib M (1996) Myrmicarin 430A: A new heptacyclic alkaloid from Myrmicaria ants. J Chem Soc Chem Commun 2139

    Google Scholar 

  50. Schröder F, Sinnwell V, Baumann H, Kaib M, Francke W (1997) Myrmicarin 663: A new decacyclic alkaloid from ants. Angew Chem 109: 161; Angew Chem Int Ed Engl 36: 77

    Article  Google Scholar 

  51. Timmermans M, Braeckman J-C, Daloze D, Pasteels JM, Merlin J, Declercq J-P (1992) Exochomine, a dimeric ladybird alkaloid, isolated from Exochromus quadripustulatus (Coleoptera: Coccinellide). Tetrahedron Lett 33: 1281

    Article  CAS  Google Scholar 

  52. McCormick KD, Attygalle AB, Xu S-C, Svatos A, Meinwald J, Houck MA, Blankespoor CL, Eisner T (1994) Chilocorine: Heptacyclic alkaloid from a coccinellid beetle. Tetrahedron 50: 2365

    Article  CAS  Google Scholar 

  53. Shi X, Attygalle AB, Meinwald J, Houck MA, Eisner T (1995) Spirocyclic defensive alkaloid from a coccinellid beetle. Tetrahedron 51: 8711

    Article  CAS  Google Scholar 

  54. Meinwald J, Meinwald YC, Wheeler JW, Eisner T, Brower LP (1966) Major components in the exocrine secretion of a male butterfly (Lycorea). Science 151: 583

    Article  CAS  Google Scholar 

  55. Meinwald J, Meinwald YC (1966) Structure and synthesis of the major components in the hair-pencil secretion of a male butterfly Lycorea ceres ceres (Cramer). J Am Chem Soc 88: 1305

    Article  CAS  Google Scholar 

  56. Pliske TE, Eisner T (1969) Sex pheromone of the queen butterfly: Biology. Science 164: 1170

    Article  CAS  Google Scholar 

  57. Meinwald J, Meinwald YC, Mazzocchi PH (1969) Sex pheromone of the queen butterfly: Chemistry. Science 164: 1174

    Article  CAS  Google Scholar 

  58. Meinwald J, Thompson WR, Eisner T (1971) Pheromones. VII. African monarch. Major components of the hair-pencil secretion. Tetrahedron Lett 3485

    Google Scholar 

  59. Edgar JA, Culvenor CCJ, Smith LW (1971) Dihyropyrrolizine derivatives in the “hair-pencil” secretions of Danaid butterflies. Experientia 27: 761

    Article  CAS  Google Scholar 

  60. Meinwald J, Boriack CJ, Schneider D, Boppré M, Wood WF, Eisner T (1974) Volatile ketones in the hairpencil secretion of danaid butterflies (Amauris and Danaus). Experientia 30: 721

    Article  CAS  Google Scholar 

  61. Röder E, Wiedenfeld H, Bourauel T (1985) Synthese von 2,3-Dihydro-7-methyl-1Hpyrrolizin-l-on, dem Sexualpheromon Danaidon. Liebigs Ann Chem 1708

    Google Scholar 

  62. (a) Schneider D, Boppré M, Schneider H, Thompson WR, Boriak CJ, Petty RL, Meinwald J (1975) A pheromone precursor and its uptake in male Danais butterflies. J Comp Physiol 97: 245; (b) Boppré M, Petty RL, Schneider D, Meinwald J (1978) Behaviorally mediated contacts between scent organs: Another prerequisite for pheromone production in Danaus chysippus males (Lepidoptera). J Comp Physiol Al26: 97

    Google Scholar 

  63. Conner WE, Eisner T, Vander Meer RK, Guerrero A, Meinwald J (1981) Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): Role of pheromone derived from dietary alkaloids. Behav Ecol Sociobiol 9: 227

    Article  Google Scholar 

  64. (a) Schneider D, Boppre M, Zweig J, Horsley SB, Bell TW, Meinwald J, Hansen K, Diehl EW (1982) Scent organ development in Creatonotos moths: Regulation by pyrrolizidine alkaloids. Science 215: 1264; (b) Bell TW, Meinwald J (1986) Pheromones of two arctiid moths (Creatonotos transiens and C. gangis): chiral components from both sexes and achiral female components. J Chem Ecol 12: 385

    Google Scholar 

  65. Tada H, Tozyo T (1988) Two bromopyrroles from a marine sponge Agelas sp. Chem Lett 803

    Google Scholar 

  66. Emrich R, Weyland H, Weber K (1990) 2,3,4-Tribromopyrrole from the marine polychaete Polyphysia crassa. J Nat Prod 53: 703

    Google Scholar 

  67. Barrow RA, Capon RJ (1993) Brominated pyrrole carboxylic acids from an Australian marine sponge, Axinella sp. Nat Prod Lett 1: 243

    Article  CAS  Google Scholar 

  68. Schmitz FJ, Gunasekera SP, Lakshmi V, Tillekeratne LMV (1985) Marine natural products: Pyrrololactams from several sponges. J Nat Prod 48: 47

    Article  CAS  Google Scholar 

  69. Reddy NS, Ramesh P, Rao TP, Rao JV, Venkateswarlu Y (1999) Chemical investigation of the marine sponge Axinalla tenuidigitata. Indian J. Chem., Sect. B: Org Chem Incl Med Chem 38B: 1145

    CAS  Google Scholar 

  70. (a) Anderson HJ, Lee S-F (1965) Pyrrole chemistry. IV. The preparation and some reactions of brominated pyrrole derivatives. Can J Chem 43: 409; (b) Hodge P, Rickards RW (1965) The halogenation of methyl pyrrole-2-carboxylate and some related pyrroles. J Chem Soc 459

    Google Scholar 

  71. Forenza S, Minale L, Riccio R, Fattorusso E (1971) New bromopyrrole derivatives from the sponge Agelas oroides. J Chem Soc D 1129

    Google Scholar 

  72. König GM, Wright AD, Linden A (1998) Antiplasmodial and cytotoxic metabolites from the Maltese sponge Agelas oroides. Planta Med 64: 443

    Article  Google Scholar 

  73. Gunasekera SP, Cranick S, Longley RE (1989) Immunosuppressive compounds from a deep water marine sponge, Agelas flabelliformis. J Nat Prod 52: 757

    Article  CAS  Google Scholar 

  74. Utkina NK, Fedoreev SA, Maksimov OB (1985) Pyrrole derivatives from the marine sponge Axinellidae. Khim Prir Soedin 578 [Chem Abstr (1986) 104: 145784]

    Google Scholar 

  75. Rinkes IJ (1941) Untersuchungen über Pyrolderivate. 5. Mitteilung. Recl Tray Chim Pays-Bas 60: 303

    Article  CAS  Google Scholar 

  76. Chevolot L, Padua S, Ravi BN, Blyth PC, Sheuer PJ (1977) Isolation of 1-methyl-4,5dibromopyrrole-2-carboxylic acid and its 3’-(hydantoyl)propylamide (midpacamide) from a marine sponge. Heterocycles 7: 891

    Article  CAS  Google Scholar 

  77. Fathi-Afshar R, Allen TM (1988) Biologically active metabolites from Agelas mauritania. Canad J Chem 66: 45

    Article  CAS  Google Scholar 

  78. Fu X, Ng P-L, Schmitz FJ, Hossain MB, van der Helm D, Kelly-Borges M (1996) Makaluvic acids A and B: Novel alkaloids from the marine sponge Zyzzya fuliginosus. J Nat Prod 59: 1104

    Article  CAS  Google Scholar 

  79. Cafieri F, Fattorusso E, Mangoni A, Taglialatela-Scafati O, Carnuccio R (1995) A novel bromopyrrole alkaloid from the sponge Agelas longissima with antiserotonergic activity. Bioorg Med Chem Lett 5: 799

    Article  CAS  Google Scholar 

  80. Kobayashi J, Kanda F, Ishibashi M, Shigemori H (1991) Manzacidins A-C, novel tetrahydropyrimidine alkaloids from the Okinawan marine sponge Hymeniacidon sp. J Org Chem 56: 4574

    Article  CAS  Google Scholar 

  81. Sensi P, Ballota R, Gallo GG (1959) Matamycin, a new antibiotic. II. Isolation and characterization. Antibiot Chemother 9: 76

    CAS  Google Scholar 

  82. Kunze B, Reichenbach H, Augustiniak H, Höfle G (1983) Isolation and identification of althiomycin from Cystobacter fuscus (Myxobacteriales). J Antibiot 35: 635

    Article  Google Scholar 

  83. Cram DJ, Theander O, Jager H, Stanfield MK (1963) Mold metabolites. IX. Contribution to the elucidation of the structure of althiomycin. J Am Chem Soc 85: 1430

    Article  CAS  Google Scholar 

  84. Bycroft BW, Pinchin R (1975) Structure of althiomycin, a highly modified peptide antibiotic. J Chem Soc Chem Commun 121

    Google Scholar 

  85. (a) Nakamura H, Iitaka Y, Sakakibara H, Umezawa H (1974) The molecular and crystal structure determination of bisanhydroalthiomycin by the X-ray diffraction method. J Antibiot 27: 894; (b) Sakakibara H, Naganawa H Ohno M, Maeda K, Umezawa H (1974) The structure of althiomycin. J Antibiot 27: 897

    Google Scholar 

  86. Kirst H, Szymanski EF, Dorman DE, Occolowitz JL, Jones ND, Chaney MO, Hamill RL, Hoehn MM (1975) Structure of althiomycin. J Antibiot 28: 286

    Article  CAS  Google Scholar 

  87. (a) Inami K, Shiba T (1984) Total synthesis of antibiotic althiomycin. Tetrahedron Lett: 25: 2009; (b) Inami K, Shiba T (1985) Total synthesis of antibiotic althiomycin. Bull Chem Soc Jpn 58: 352

    Google Scholar 

  88. Toogood PL, Hollenbeck JJ, Lam HM, Li L (1998) A formal synthesis of althiomycin. Bioorg Med Chem Lett 6: 1543

    Article  Google Scholar 

  89. (a) Fujimoto H, Kinoshita T, Suzuki H, Umezawa H (1970) Studies on the mode of action of althiomycin. J Antibiot 23: 271; (b) Pestka S, Brot N (1971) Studies on the formation of transfer ribonucleic acid-ribosome complexes. XV. Effects of antibiotics on steps of bacterial protein synthesis: some new ribosomal inhibitors of translocation. J Biol Chem 246: 7715; (c) Burns DJ, Cundliffe E (1973) Bacterial-protein synthesis. A novel system for studying antibiotic action in vivo. Eur J Biochem 37: 570

    Google Scholar 

  90. Batelaan JG, Barnick JWFK, van der Baan JL, Bickelhaupt F (1972) Structure of the antibiotic K 16: I. The dipeptide side chain. Tetrahedron Lett 3103; II. Chromophore and total structure. Ibid 3107

    Google Scholar 

  91. Van der Baan JL, Barnick JWFK, Bickelhaupt F (1978) The total synthesis of the antibiotic malonomicin (K16). Tetrahedron 34: 223

    Article  Google Scholar 

  92. Shigemori H, Bae M-A, Yazawa K, Sasaki T, Kobayashi J (1992) Alteramide A. a new tetracyclic alkaloid from a bacteriumAlteromonas sp. associated with the marine sponge Halichondria okadai. J Org Chem 57: 4317

    Article  CAS  Google Scholar 

  93. Bae M-A, Yamada K, Ijuin Y, Tsuji T, Yazawea K, Tomono Y, Uemura D (1996) Aburatubolactam A, a novel inhibitor of superoxide anion generation from a marine microorganism. Heterocycl Comm 2: 315

    Article  CAS  Google Scholar 

  94. (a) Aizawa S, Akutsu H, Satomi T, Nagatsu T, Taguchi R, Seino A (1979) Capsimyicin, a new antibiotic. I. Production, isolation and properties. J Antibiot 32: 193; (b) Seto H, Yonehara H, Aizawa S, Akutsu H, Clardy J, Arnold E, Tanabe M, Urano S (1979) Structural studies of capsimycin and biosynthetic studies of ikarugamycin. Koen Yoshishu-Tennen Yuki Kagobutsu Toronkai, 22nd. p 394 [Chem Abstr (1980) 92: 211459]

    Google Scholar 

  95. Jomon K, Kuroda Y, Ajisaka M, Sasaki H (1972) A new antibiotic, ikarugamycin. J Antibiot 25: 271

    Article  CAS  Google Scholar 

  96. (a) Ito S, Hirata Y (1972) Ikarugamycin: I. Chromophore and partial structure. Tetrahedron Lett 1181; II. Structure of ikarugamycin. Ibid 1185; III. Stereochemistry of ikarugamycin. Ibid 2557; (b) Ito S, Hirata Y (1977) Structure of ikarugamycin, an acyltetramic acid antibiotic possesing a unique as-hydrindacene skeleton. Bull Chem Soc Jpn 50: 1813

    Google Scholar 

  97. Boeckman Jr RK, Napier JJ, Thomas EW, Sato RI (1983) Stereocontrol in the intramolecular Diels-Alder Reaction. 5. Preparation of a tetracyclic intermediate for ikarugamycin. J Org Chem 48: 4152

    Article  CAS  Google Scholar 

  98. (a) Kurth MJ, Burns DH, O’Brien MJ (1984) Ikaguramycin: Total snthesis of the decahydro-as-indacene portion. J Org Chem 49: 731; (b) Whitesell JK, Minton MA (1987) A novel synthesis of ikaguramycin: The carbocyclic portion. J Am Chem Soc 109: 6403

    Google Scholar 

  99. Paquette LA, Romine JL, Lin H-S, Wright J (1990) Total synthesis of (+)-ikarugamycin. 1. Stereocontrolled construction of the decahydro-as-indacene subunit. J Am Chem Soc 112: 9284

    Article  CAS  Google Scholar 

  100. Roush WR, Wada CK (1994) Application of rio-diene iron tricarbonyl complexes in acyclic stereocontrol: Asymmetric synthesis of the as-indacene unit of ikaguramycin (a formal total synthesis). J Am Chem Soc 116: 2151

    Article  CAS  Google Scholar 

  101. Boeckman Jr RK, Weidner CH, Perni RB, Napier JJ (1989) An enantioselective and highly convergent synthesis of (+)-ikarugamycin. J Am Chem Soc 111: 8036

    Article  CAS  Google Scholar 

  102. Paquette LA, Macdonald D, Anderson L, Wright J (1989) A triply convergent enantioselective total synthesis of (+)-ikarugamycin. J Am Chem Soc 111: 8037

    Article  CAS  Google Scholar 

  103. Paquette LA, Macdonald D, Anderson L (1990) Total synthesis of (+)-ikarugamycin. 2. Elaboration of the macrocyclic lactam and tetramic acid substructures and complete assembly of tha antibiotic. J Am Chem Soc 112: 9292

    Article  CAS  Google Scholar 

  104. Schwarz O, Schmalz H-G (2000) Total synthesis of Ikaguramycin. Org Synth Highlights IV: 207

    Google Scholar 

  105. (a) Hayakawa Y, Kanamaru N, Morisaki N, Seto H, Furihata K (1991) Structure of lydicamycin, a new antibiotic of a novel skeletal type. Tetrahedron Lett 32: 213; (b) Hayakawa Y, Kanamaru N, Shimazu H, Seto H (1991) Lydicamycin, a new antibiotic of a novel skeletal type. I. Taxonomy, fermentation, isolation and biological activity. J Antibiot 44: 282

    Google Scholar 

  106. Hayakawa Y, Kanamaru N, Morisaki N, Furihata K, Seto H (1991) Lydicamycin, a new antibiotic of a novel skeletal type. II. Physico-chemical properties and structure elucidation. J Antibiot 44: 288

    Article  CAS  Google Scholar 

  107. Kunze B, Schabacher K, Zähner H, Zeeck A (1972) Stoffwechselprodukte von Mikroorganismen. 111. Mitteilung. Lipomycine. I. Isolierung, Charakterisierung und erste Untersuchungen zur Konstitution und Wirkungsweise. Arch Microbiol 86: 147

    CAS  Google Scholar 

  108. Gyimesi J, Ott I, Horv¨¤th I, Koczka I, Magyar K (1971) Antibiotics produced by Streptomyces. VIII. A new polyenic antibiotic, oleficin, exhibiting antibacterial activity. J Antibiot 24: 277

    Article  CAS  Google Scholar 

  109. Schabacher K, Zeeck A (1973) Lipomycins. II. Structure of a- and 0-lipomycin. Tetrahedron Lett 2691

    Google Scholar 

  110. Zeeck A (1975) Lipomycine. III. Isolierung und Zuordnung der Methyl-2,6-didesoxy-D-ribohexoside. Justus Liebigs Ann Chem 2079

    Google Scholar 

  111. Gyimesi J, M¨¦hesfalvi-Vajna Z, Horv¨¤th G (1978) Reinvestigation of structure of the polyenic antibiotic oleficin. J Antibiot 31: 626

    Article  CAS  Google Scholar 

  112. Horv¨¤th G, Gyimesi J, Mehesfalvi-Vajna Z (1973) The structure of oleficin, a new antibiotic exhibiting antibacterial activity. Tetrahedron Lett 3643

    Google Scholar 

  113. Barashkova NP, Shenin YuD, Myasnikova LG (1976) Actinomyces pneumonicus var. nov. ¡ª a producer of new altamycin antibiotics. Antibiotiki (Moscow) 21: 487 [Chem Abstr (1976) 85: 106442]

    CAS  Google Scholar 

  114. Shenin YuD (1986) Physicochemical properties and structure of altamycin A, a nonmacrolide polyenic antibiotic. Antibiot Med Biotekhnol 31: 835 [Chem Abstr 106 (1987): 66971]

    CAS  Google Scholar 

  115. Reusser F (1979) Tirandamycin. In: Hahn FE (ed) Antibiotics. Mechanism of action of antibacterial agents, vol 5/1. Springer, New York, p 361

    Google Scholar 

  116. Rinehart Jr KL, Beck JR, Epstein WW, Spicer LD (1963) Streptolydigin. I. Streptolic acid. J Am Chem Soc 85: 4035

    Article  CAS  Google Scholar 

  117. Eble TE, Large CM, DeVries WH, Crum GF, Shell JW (1956) Streptolydigin: A new antimicrobial antibiotic. II. Isolation and characterization. Antibiot Ann 1955–1956, 893

    Google Scholar 

  118. Rinehart Jr KL, Borders DB (1963) Streptolydigin. II. Ydiginic acid. J Am Chem Soc 85: 4037

    Article  CAS  Google Scholar 

  119. Rinehart Jr KL, Beck JR, Borders DB, Kinstle TH, Krauss D (1963) Streptolydigin. III. Chromophore and Structure. J Am Chem Soc 85: 4038

    Article  CAS  Google Scholar 

  120. Lee VJ, Branfman AR, Herrin TR, Rinehart Jr KL (1978) Synthesis of 3-dienoyl tetramic acids related to streptolydigin and tirandamycin. J Am Chem Soc 100: 4225

    Article  CAS  Google Scholar 

  121. Lee VJ, Rinehart Jr KL (1980) 13C NMR spectra of streptolydigin, tirandamycin and related degradation products. J Antibiot 33: 408

    Article  CAS  Google Scholar 

  122. Karwowski JP, Jackson M, Theriault RJ, Barlow GJ, Coen L, Hensey DM, Humphrey PE (1992) Tirandalydigin, a novel tetramic acid of the tirandamycin-streptolydigin type. I. Taxonomy of the producing organism, fermentation and biological activity. J Antibiot 45: 1125

    Article  CAS  Google Scholar 

  123. Brill GM, McAlpine JB, Whittern D (1988) Tirandalydigin, a novel tetramic acid of the tirandamycin-streptolydigin type. II. Isolation and structure characterization. J Antibiot 41: 36

    Article  CAS  Google Scholar 

  124. MacKellar FA, Grostic MF, Olson EC, Wnuk RJ, Branfman AR, Rinehart Jr KL (1971) Tirandamycin. I. Structure assignment. J Am Chem Soc 93: 4943

    Article  CAS  Google Scholar 

  125. Meyer CE (1971) Tirandymycin, a new antibiotic isolation and characterization. J Antibiot 24: 558

    Article  CAS  Google Scholar 

  126. Hagenmaier H, Jaschke KH, Santo L, Scheer M, Zaehner H (1976) Stoffwechselprodukte von Mikroorganismen. 158. Mitteilung. Tyrandamycin B. Arch Microbiol 109: 65

    Article  CAS  Google Scholar 

  127. Duchamp DJ, Branfman AP, Button AC, Rinehart Jr KL (1973) X-ray structure of tirandamycic acid p-bromophenacyl ester. Complete stereochemical assignments of tirandamycin and streptolydigin. J Am Chem Soc 95: 4077

    Article  CAS  Google Scholar 

  128. Pearce CJ, Rinehart Jr KL (1983) The use of doubly-labeled 13C-acetate in the study of streptolydigin biosynthesis. J Antibiot 36: 1536

    Article  CAS  Google Scholar 

  129. Brazhnikova MG, Konstantinova NV, Potatova NP, Tolstykh IV (1977) Physicochemical characteristics of nocamycin, a new antitumor antibiotic. Antibiotiki (Moscow) 22: 486 [Chem Abstr (1977) 87: 100613]

    CAS  Google Scholar 

  130. Horv¨¤th G, Brazhnikova MG, Konstantinova NV, Tolstykh IV, Potatova NP (1979) The structure of nocamycin, a new antitumor antibiotic. J Antibiot 32: 555

    Article  Google Scholar 

  131. Brazhnikova MG, Konstantinova NV, Potatova NP, Tolstykh IV, Rubasheva LM, Rozynov BV, Horv¨¤th G (1981) Structure of the antitumor antibiotics nocarmycin I and II. Bioorg Khim 7: 298 [Chem Abstr (1981) 95: 62092]

    CAS  Google Scholar 

  132. Nakagawa S, Naito T, Kawaguchi H (1979) Structures of Bu-2313 A and B, new anti-anaerobic antibiotics and syntheses of their analogs. Heterocycles 13: 477

    Article  CAS  Google Scholar 

  133. Tsukiura H, Tomita K, Hanada M, Kobaru S, Tsunakawa M, Fujisawa K, Kawaguchi H (1980) Bu-2313, a new antibiotic complex active against anaerobes. I. Production, isolation and properties of Bu-2313 A and B. J Antibiot 33: 157

    Article  CAS  Google Scholar 

  134. Toda S, Nakagawa S, Naito T, Kawaguchi H (1980) Bu-2313, a new antibiotic complex active against anaerobes. III. Semisynthesis of Bu-2313 A and B, and their analogs. J Antibiot 33: 173

    Article  CAS  Google Scholar 

  135. Tsunakawa M, Toda S, Okita T, Hanada M, Nakagawa S, Tsukiura H, Naito T, Kawaguchi H (1980) Bu-2313, a new antibiotic complex active against anaerobes. II. Structure determination of Bu-2313 A and B. J Antibiot 33: 166

    Article  CAS  Google Scholar 

  136. Meyers E, Cooper R, Dean L, Johnson JH, Slusarchyk DS, Trejo WH, Singh PD (1985) Catacandins, novel anticandidal antibiotics of bacterial origin. J Antibiot 38: 1642

    Article  CAS  Google Scholar 

  137. Namba K, Shinada T, Teramoto T, Ohfune Y (2000) Total synthesis and absolute structure of manzacidin A and C. J Am Chem Soc 122: 10708

    Article  CAS  Google Scholar 

  138. Jahn T, König GM, Wright AD, Wörheide G, Reitner J (1997) Manzacidin D: An unprecedented secondary metabolite from “living fossil” sponge Astrosclera willeyana. Tetrahedron Lett 38: 3883

    Article  CAS  Google Scholar 

  139. Ishida K, Ishibashi M, Shigemori H, Sasaki T, Kobayashi J (1992) Agelasine G, a new antileukemic alkaloid from the Okinawan marine sponge Agelas sp. Chem Pharm Bull 40: 766

    Article  CAS  Google Scholar 

  140. Capon RJ, Faulkner DJ (1984) Antimicrobial metabolites from a pacific sponge, Agelas sp. J Am Chem Soc 106: 1819

    Article  CAS  Google Scholar 

  141. Shoji N, Umeyama A, Teranaka M, Arihara S (1996) Four novel diterpenoids, including nakamurol A with unique thelepogane skeleton, from the marine sponge Agelas nakamurai. J Nat Prod 59: 448

    Article  CAS  Google Scholar 

  142. König GM, Wright AD (1994) Two new naturally occurring pyrrole derivatives from the tropical marine sponge Agelas oroides. Nat Prod Lett 5: 141

    Article  Google Scholar 

  143. Iwagawa T, Kaneko M, Okamura H, Nakatani M, Van Soest RWM (1998) New alkaloids from the Papua New Guninean Sponge Agelas nakamurai. J Nat Prod 61: 1310

    Article  CAS  Google Scholar 

  144. Umeyama A, Ito S, Yuasa E, Arihara S, Yamada T (1998) A new bromopyrrole alkaloid and the optical resolution of the racemate from the marine sponge Homaxinella sp. J Nat Prod 61: 1433

    Article  CAS  Google Scholar 

  145. Mancini I, Guella G, Amade P, Roussakis C, Pietra F (1997) Hanishin, a semiracemic, bioactive C9 alkaloid of the axinellid sponge Acanthella carteri from the Hanish Islands. A shunt metabolite? Tetrahedron Lett 38: 6271

    Article  CAS  Google Scholar 

  146. Tsukamoto S, Kato H, Hirota H, Fusetani N (1996) Ceratinamides A and B: New antifouling dibromotyrosine derivatives from the marine sponge Pseudoceratina purpurea. Tetrahedron 52: 8181

    Article  CAS  Google Scholar 

  147. Tsukamoto S, Kato H, Hirota H, Fusetani N (1996) Mauritiamine, a new antifoulding oroidin dimer from the marine sponge Agelas mauritiana. J Nat Prod 59: 501

    Article  CAS  Google Scholar 

  148. Stempien Jr. MF, Nigrelli RF, Chib JS (1972) Isolation and synthesis of physiologically active substances from sponges of the genus Agelas. 164th. ACS National Meeting, New York, 21 MEDI Abstract

    Google Scholar 

  149. Clark WD, Corbett T, Valeriote F, Crews P (1997) Cyclocinamide A. An unusual cytotoxic halogenated hexapeptide from the marine sponge Psammocinia. J Am Chem Soc 119: 9285

    Article  CAS  Google Scholar 

  150. Grieco PA, Reilly M (1998) Studies related to the absolute configuration of cyclocinamide A: Total synthesis of 4(R),11(R)-cyclocinamide A. Tetrahedron Lett 39: 8925

    Article  CAS  Google Scholar 

  151. Rudi A, Stein Z, Green S, Goldberg I, Kashman Y, Benayahu Y, Schleyer M (1994) Phorbazoles A—D, novel chlorinated phenylpyrrolyloxazoles from the marine sponge Phorbas aff. clathrata. Tetrahedron Lett 35: 2589

    Article  CAS  Google Scholar 

  152. Tsukamoto S, Kato H, Hirota H, Fusetani N (1996) Pseudoceratidine: A new antifouling spermidine derivative from the marine sponge Pseudoceratina purpurea. Tetrahedron Lett 37: 1439

    Article  CAS  Google Scholar 

  153. Ponasik JA, Kassab DJ, Ganem B (1996) Synthesis of the antifouling polyamine pseudoceratidine and its analogs: Factors influencing biocidal activity. Tetrahedron Lett 37: 6041;

    Article  Google Scholar 

  154. Ponasik JA, Conova S, Kinghorn D, Kinney WA, Rittschof D, Ganem B (1998) Pseudoceratidine, a marine natural product with antifouling activity: Synthetic and biological studies. Tetrahedron 54: 6977

    Article  CAS  Google Scholar 

  155. Behrens C, Chistoffersen MW, Gram L, Nielsen PH (1997) A convenient synthesis of pseudoceratidine and three analogs for biological evaluation. Bioorg Med Chem Lett 7: 321

    Article  CAS  Google Scholar 

  156. Cafieri F, Fattorusso E, Mangoni A, Taglialatela-Scafati O (1996) Clathramides, unique bromopyrrole alkaloids from the caribbean sponge Agelas clathrodes. Tetrahedron 52: 13713

    Article  CAS  Google Scholar 

  157. Cafieri F, Fattorusso E, Taglialatela-Scafati O (1998) Novel bromopyrrole alkaloids from the sponge Agelas dispar. J Nat Prod 61: 122

    Article  CAS  Google Scholar 

  158. Cafieri F, Carnuccio R, Fattorusso E, Taglialatela-Scafati O, Vallefucco T (1997) Antihistaminic activity of bromopyrrole alkaloids isolated from Caribbean Agelas Sponges. Bioorg Med Chem Lett 7: 2283

    Article  CAS  Google Scholar 

  159. Cimino G, De Stefano S, Minale L, Sodano G (1975) Metabolism in Porifera — III. Chemical patterns and the classification of the desmospongiae. Comp Biochem and Physiol B50: 279

    Google Scholar 

  160. Supriyono A, Schwarz B, Wray V, Witte L, Müller WEG, van Soest R, Sumaryono W, Proksch P (1995) Bioactive alkaloids from the tropical marine sponge Axinella carteri. Z Naturforsch 50c: 669

    Google Scholar 

  161. Cimino G, De Rosa S, De Stefano S, Mazzarella L, Puliti R, Sodano G (1982) Isolation and X-ray crystal structure of a novel bromocompound from two marine sponges. Tetrahedron Lett 23: 767

    Article  CAS  Google Scholar 

  162. De Nanteuil G, Ahond A, Guilhem J, Poupat C, Tran Huu Dau E, Potier P, Pusset M, Pusset J, Laboute P (1985) Invertébrés marins du lagon néocalédonien. Isolement et identification des métabolites d’une nouvelle espèce de spongiaire, Pseudaxinyssa cantharella. Tetrahedron 41: 6019

    Article  Google Scholar 

  163. Rinehart KL (1989) Biologically active marine natural products. Pure Appl Chem 61: 525

    Article  CAS  Google Scholar 

  164. Assmann M, Lichte E, Pawlik JR, Köck M (2000) Chemical defenses of the Caribbean sponges Agelas wiedenmayeri and Agelas conifera. Mar Ecol Progr Ser 207: 255

    Article  CAS  Google Scholar 

  165. Lindel T, Hoffmann H, Hochgürtel M, Pawlik JR (2000) Structure-activity relationship of inhibition of fish feeding by sponge-derived and synthetic pyrrole-imidazole alkaloids. J Chem Ecol 26: 1477, and references given therein

    Article  CAS  Google Scholar 

  166. Garcia EE, Benjamin LE, Fryer RI (1973) Reinvestigation into the structure of oroidin, a bromopyrrole derivative from marine sponge. J Chem Soc Chem Commun 78

    Google Scholar 

  167. Walker RP, Faulkner DJ, Van Engen D, Clardy J (1981) Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum. J Am Chem Soc 103: 6772

    Article  CAS  Google Scholar 

  168. de Nanteuil G, Ahond A, Poupat C, Thoison O, Potier P (1986) Synthèse de l’oroidine. Bull Soc Chim Fr 813;

    Google Scholar 

  169. Little TL, Webber SE (1994) A simple and practical synthesis of 2-aminoimidazoles. J Org Chem 59: 7299;

    Article  CAS  Google Scholar 

  170. Berrée F, Girard-Le Bleis P, Carboni B (2002) Synthesis of the marine sponge alkaloid oroidin and its analogues via Suzuki cross-coupling reactions. Tetrahedron Lett 43: 4935

    Article  Google Scholar 

  171. Daninos-Zeghal S, Al Mourabit A, Ahond A, Poupat C, Potier P (1997) Synthèse de métabolites marins 2-aminoimidazoliques: Hyménidine, oroidine et kéramadine. Tetrahedron 53: 7605

    Article  CAS  Google Scholar 

  172. Olofson A, Yakushijin K, Horne DA (1998) Synthesis of marine sponge alkaloids oroidin, clathrodin, and dispacamides. Preparation and transformation of 2-amino4,5-dialkoxy-4,5-dihydroimidazolines from 2-aminoimidazoles. J Org Chem 63: 1248

    Article  CAS  Google Scholar 

  173. Lindel T, Hochgürtel M (2000) Synthesis of the marine natural product oroidin and its Z-isomer. J Org Chem 65: 2806

    Article  CAS  Google Scholar 

  174. Kobayashi J, Ohizumi Y, Nakamura H, Hirata Y (1986) A novel antagonist of serotonergic receptors, hymenidin, isolated from the Okinawan marine sponge Hymeniacidon sp. Experientia 42: 1176

    Article  CAS  Google Scholar 

  175. Morales JJ, Rodriguez AD (1991) The structure of clathrodin, a novel alkaloid isolated from the Caribbean sea sponge Agelas clathrodes. J Nat Prod 34: 629

    Article  Google Scholar 

  176. Nakamura H, Ohizumi Y, Kobayashi J, Hirata Y (1984) Keramadine, a novel antagonist of serotonergic receptors isolated from the Okinawan sea sponge Agelas sp. Tetrahedron Lett 25: 2475

    Article  CAS  Google Scholar 

  177. Lindel T, Hochgürtel M (1998) The alkyne pathway to keramadine from the marine sponge Agelas sp. Tetrahedron Lett 39: 2541

    Article  CAS  Google Scholar 

  178. Daninos S, Al Mourabit A, Ahond A, Zurita MB, Poupat C, Potier P (1994) Synthèse de métabolites marins 2-aminoimidazoliques: clathrodine et 3’-amino-l’-[2-aminoimidazol-4(5)-y1]-prop-2’-ène. Bull Soc Chim Fr 131: 590

    CAS  Google Scholar 

  179. Lindel T, Hoffmann H, Hochgürtel M (1999) Chemistry of marine pyrroleimidazole alkaloids. Bioorg Chem 8

    Google Scholar 

  180. Mourabit AA, Potier P (2001) Sponge’s molecular diversity through the ambivalent reactivity of 2-aminoimidazole: A universal chemical pathway to the oroidin-based pyrrole-imidazole alkaloids and their Palau’ amine congeners. Eur J Org Chem 237

    Google Scholar 

  181. Braekman J-C, Daloze D, Stoller C, van Soest RWM (1992) Chemotaxonomy of Agelas (Porifera: Demospongiae). Biochem Syst Ecol 20: 417 and references given therein

    Article  CAS  Google Scholar 

  182. Wright AE, Chiles SA, Cross SS (1991) 3-Amino-l-(2-aminoimidazolyl)prop-1-ene from the marine sponges Teichaxinella morchella and Ptilocaulis walpersi. J Nat Prod 54: 1684

    Article  CAS  Google Scholar 

  183. Assmann M, Lichte E, van Soest RWM, Köck M (1999) New bromopyrrole alkaloid from the marine sponge Agelas iedenmayeri. Org Lett 1: 455

    CAS  Google Scholar 

  184. Cafieri F, Fattorusso E, Mangoni A, Taglialatela-Scafati O (1996) Dispacamides, antihistamine alkaloids from Caribbean Agelas sponges. Tetrahedron Lett 37: 3587

    Article  CAS  Google Scholar 

  185. Lindel T, Hoffmann H (1997) Synthesis of dispacamide from the marine sponge Agelas dispar. Tetrahedron Lett 38: 8935

    Article  CAS  Google Scholar 

  186. Fresneda PM, Molina P, Sanz MA (2001) A convergent approach to midpacamide and dispacamide pyrrole-imidazole marine alkaloids. Tetrahedron Lett 42: 851

    Article  Google Scholar 

  187. Uemoto H, Tsuda M, Kobayashi J (1999) Mukanadins A-C, new bromopyrrole alkaloids from marine sponges Agelas nakamurai. J Nat Prod 62: 1581. Erratum (2000) ibid 63: 1045

    Google Scholar 

  188. Lindel T, Hoffmann H (1997) Synthesis of rac-midcapamide and spiro-cyclization of its precursor. Liebigs Ann/Recueil 7: 1525

    Article  Google Scholar 

  189. Jiménez C, Crews P (1994) Mauritamide A and accompanying oroidin alakaloids from the sponge Agelas mauritiana. Tetrahedron Lett 35: 1375

    Article  Google Scholar 

  190. Fattorusso E, Taglialatela-Scafati O (2000) Two novel pyrrole-imidazole alkaloids from the Mediterranean sponge Agelas oroides. Tetrahedron Lett 41: 9917

    Article  CAS  Google Scholar 

  191. Kobayashi J, Inaba K, Tsuda M (1997) Tauroacidins A and B, new bromopyrrole alkaloids possessing a taurine residue from Hymeniacidon sponge. Tetrahedron 53: 16679

    Article  CAS  Google Scholar 

  192. Tsuda M, UemotoH Kobayashi J (1999) Slangenins A-C. novel bromopyrrole alkaloids from marine sponge Agelas nakamurai. Tetrahedron Lett 40:5709

    Article  CAS  Google Scholar 

  193. Barrios Sosa AC, Yakushijin K, Horne DA (2000) Synthesis of slagenins A, B, and C. Org Lett 2: 3443 148 A. Gossauer

    Google Scholar 

  194. Jiang B, Liu J-F, Zhao S-Y (2001) Enantioselective synthesis for the antipodes of slagenins B and C: Establishment of absolute stereochemistry. Org Lett 3: 4011

    Article  CAS  Google Scholar 

  195. Reddy NS, Venkateswarlu Y (2000) S-(+)-Methyl ester of hanishin from the marine sponge Agelas ceylonica. Biochem Syst Ecol 28: 1035

    Article  CAS  Google Scholar 

  196. Reddy NS, Yenkateswarlu Y (2000) A new bromopyrrole alkaloid from the sponge Axinella tenuidigitata. Indian J Chem Sect. B: Org Chem Incl Med Chem 39: 971

    Google Scholar 

  197. Koul SK, Taneja SC, Agarwal VK, Dhar KL (1988) Minor amides of Piper species. Phytochemistry 27: 3523

    Article  CAS  Google Scholar 

  198. Cafieri F, Fattorusso LE, Mangoni A, Tagliatela-Scafati O (1995) Longamide and 3,7-dimethylisoguanidine, two novel alkaloids from the marine sponge Agelas longissima. Tetrahedron Lett 36: 7893

    Article  CAS  Google Scholar 

  199. Li C-J, Schmitz FJ, Kelly-Borges M (1998) A new lysine derivative and new 3bromopyrrole carboxylic acid derivative from two marine sponges. J Nat Prod 61: 387

    Article  CAS  Google Scholar 

  200. Marchais S, Al Mourabit A, Ahond A, Poupat C, Potier P (1999) Synthesis of the marine carbinolamine (f) longamide. Control of N-1 and C-3 bromopyrrole nucleophilicity. Tetrahedron Lett 40: 5519;

    Article  CAS  Google Scholar 

  201. Barrios Sosa AC, Yakushijin K, Home DA (2000) Controlling cyclizations of 2-pyrrolecarboxamidoacetals. Facile solvation of ß-amido aldehydes and revised structure of synthetic homolongamide. Tetrahedron Lett 41: 4295

    Article  CAS  Google Scholar 

  202. Banwell MG, Bray AM, Willis AC, Wong D-J (1999) First syntheses of the pyrroloketopiperazine marine natural products (¡À)-longamide, (¡À)-longamide B methyl ester and (f)-hanishin. New J Chem 23: 687

    Article  CAS  Google Scholar 

  203. Kobayashi J, Ohizumi Y, Nakamura H, Hirata Y, Wakamatsu K, Miyazawa T (1986) Hymenin, a novel a-adrenoceptor blocking agent from the Okinawan marine sponge Hymeniacidon sp. Experientia 42: 1064

    Article  CAS  Google Scholar 

  204. Eder C, Proksch P, Wray V, Steube K, Bringmann G, van Soest RWM, Sudarsono, Ferdinandus E, Pattisina LA, Wiryowidagdo S. Moka W (1999) New alkaloids from the indopacific sponge Stylissa carteri. J Nat Prod 62: 184

    Article  CAS  Google Scholar 

  205. Xu Y, Phan G, Yakushijin K, Home DA (1994) A synthesis of (f)-hymenin. Tetrahedron Lett 35: 351

    Article  CAS  Google Scholar 

  206. Xu Y, Yakushijin K, Home DA (1997) Synthesis of C11N5 marine sponge alkaloids: (f)-Hymenin, stevensine, hymenialdisine and debromohymenialdisine. J Org Chem 62: 456;

    Article  CAS  Google Scholar 

  207. Barrios Sosa AC, Yakushijin K, Home DA (2000) A practical synthesis of (Z)-debromohymenialdisine. J Org Chem 65: 610

    Article  CAS  Google Scholar 

  208. Albizati KF, Faulkner DJ (1985) Stevensine, a novel alkaloid of an unidenfied marine sponge. J Org Chem 50: 4163

    Article  CAS  Google Scholar 

  209. Andrade P, Willoughby R, Pomponi SA, Kerr RG (1999) Biosynthetic studies of the alkaloid, stevensine, in a cell culture of the marine sponge Teichaxinella morchella. Tetrahedron Lett 40: 4775

    Article  CAS  Google Scholar 

  210. Xu Y, Yakushijin K, Home DA (1996) Transbromination of brominated pyrrole and imidazole derivatives: Synthesis of the C11N5 marine alkaloid stevensine. Tetrahedron Lett 37: 8121

    Article  CAS  Google Scholar 

  211. Pettit GR, Herald CL, Leet JE, Gupta R, Schaufelberger DE, Bates RB, ClewlowPi Doubek DL, Manfredi KP, Rützler K, Schmidt JM, Tackett LP, Ward FB, Bruck M, Camou F (1990) Antineoplastic agents. 168. Isolation and structure of axinohydantoin. Can J Chem 68:1621

    Google Scholar 

  212. .Zeng L, Fu X, Su J, De Guzman F, Schmitz FJ, Hossain MB, Van der Helm D (1991) Studies on the chemical constituents of South China sea sponge Phacellia fusca. Chin J Chem 9: 136 [Chem Abstr (1991) 115: 203706];

    Article  CAS  Google Scholar 

  213. Fu X, Zeng L, Su J, De Guzman F, Schmitz FJ, Hossain MB, Van der Helm D (1991) A novel pyrrololactam alkaloid from South China sea sponge Phacellia fusca Schmidt. Chem Res Chin Univ 7: 78 [Chem Abstr (1993) 118: 36148]

    Google Scholar 

  214. Sharma GM, Buyer JS, Pomerantz MW (1980) Characterization of a yellow compound isolated from the marine sponge Phakellia fiabellata. J Chem Soc Chem Commun 435

    Google Scholar 

  215. Utkina NK, Fedoreev SA, Maksimov OB (1984) Nitrogen-containing metabolites of the marine sponge Acanthella carteri. Khim Prir Soedin 535 [Chem Abstr (1985) 102: 146 334]

    Google Scholar 

  216. Kitagawa I, Kobayashi M, Kitanaka K, Kido M, Kyogoku Y (1983) Marine natural products. XII. On the chemical constituents of the Okinawan marine sponge Hymeniacidon aldis. Chem Pharm Bull 31: 2321

    Article  CAS  Google Scholar 

  217. Groszek G, Kantoci D, Pettit GR (1995) The isolation and structure elucidation of debromoaxinohydantoin. Liebigs Ann 715

    Google Scholar 

  218. Annoura H, Tatsuoka T (1995) Total syntheses of hymenialdisine and debromohymenialdisine: Stereospecific construction of the 2-amino-4-oxo-2imidazolin-5(Z)disubstituted ylidene ring system. Tetrahedron Lett 36: 413

    Article  CAS  Google Scholar 

  219. Mattia CA, Mazzarella L, Puliti R (1982) 4-(2-Amino-4-oxo-2-imidazolin-5ylidene)-2-bromo-4,5,6,7-tetrahydropyrrolo[2,3-c]azepin-8-one methanol solvate: a new bromo compound from the sponge Acanthella aurantiaca. Acta Cryst B38: 2513

    Google Scholar 

  220. Williams DH, Faulkner DJ (1996) Isomers and tautomers of hymenialdisine and debromohymenialdisine. Nat Prod Lett 9: 57

    Article  CAS  Google Scholar 

  221. Inaba K, Sato H, Tsuda M, Kobayashi J (1998) Spongiacidins A—D, new bromo-pyrrole alkaloids from Hymeniacidon sponge. J Nat Prod 61: 693

    Article  CAS  Google Scholar 

  222. Kobayashi J, Nakamura H, Ohizumi Y (1988) a-Adrenoceptor blocking action of hymenin, a novel marine alkaloid. Experientia 44: 86

    Article  CAS  Google Scholar 

  223. Kobayashi J, Ohizumi Y, Nakamura H, Hirata Y (1986) A novel antagonist of serotonergic receptors, hymenidin, isolated from the Okinawan marine sponge Hymeniacidon species. Experientia 42: 1176;

    Article  CAS  Google Scholar 

  224. Rosa R, Silva W, Escalona de Motta G, Rodriguez AD, Morales JJ, Ortiz M (1992) Antimuscarinic activity of a family of C11N5 compounds isolated from Agelas sponges. Experientia 42: 885

    Article  Google Scholar 

  225. Kasum B, Prager RH, Tsopelas C (1990) Dihydroindol-7(6H)-ones and 6,7-dihydropyrrolo[3,3-c]azepine-4,8-(1H,5H)dione. Aust J Chem 43: 355

    Article  CAS  Google Scholar 

  226. Prager RH, Tsopelas C (1990) Approaches to the synthesis of 5-benzylidene-2imidazolin-4-ones. Aust J Chem 43: 367

    Article  CAS  Google Scholar 

  227. Burkholder PR, Sharma GM (1969) Antimicrobial agents from the sea. Lloydia 32: 466

    CAS  Google Scholar 

  228. Sharma GM, Burkholder PR (1971) Structure of dibromophakelin, a new bromine-containing alkaloid from the marine sponge Phakellia flabellata. J Chem Soc Chem Commun 151;

    Google Scholar 

  229. Sharma GM, Magdoff-Fairchild B (1977) Natural products of marine sponges. 7. The constitution of weakly basic guanidine compounds, dibromophykellin and monobromophykellin. J Org Chem 42: 4118

    Article  CAS  Google Scholar 

  230. Foley LH, Büchi G (1982) Biomimetic synthesis of dibromophakelin. J Am Chem Soc 104: 1776

    Article  CAS  Google Scholar 

  231. Fedoreev SA, Utkina NK, Il’in SG, Reshetnyak MV, Maksimov OB (1986) The structure of dibromoisophakellin from the marine sponge Acanthella carteri. Tetrahedron Lett 27: 3177

    Article  CAS  Google Scholar 

  232. Wiese KJ, Yakushijin K, Horne DA (2002) Synthesis of dibromophakellstatin and dibromoisophakellin Tetrahedron Lett 43: 5135

    Google Scholar 

  233. 167. Pettit GR, McNulty J, Herald DL, Doubek DL, Chapuis JC, Schmidt JM, Tackett LP, Boyd MR (1997) Antineoplastic agents. 362. Isolation and X-ray crystal structure of dibromophakellstatin from the Indian ocean sponge Phakellia mauritiana. J Nat Prod 60: 180

    Article  CAS  Google Scholar 

  234. Fedoreyev SA, Ilyin SG, Utkina NK, Maximov OB, Reshetnyak MV, Antipin MYu, Struchkov YuT (1989) The structure of dibromoagelaspongin — A novel bromine-containing guanidine derivative from the marine sponge Agelas sp. Tetrahedron 45: 3487

    Article  Google Scholar 

  235. D’Ambrosio M, Guerriero A, Debitus C, Ribes O, Pusset J, Leroy S, Pietra F (1993) Agelastatin A, a new skeleton cytotoxic alkaloid of the oroidin family. Isolation from the axinellid sponge Agelas dendromorpha of the Coral Sea. J Chem Soc Chem Commun 1305

    Google Scholar 

  236. D’Ambrosio M, Guerriero A, Chiasera G, Pietra F (1994) Conformational preferences and absolute configuration of agelastatin A, a cytotoxic alakaloid of the axinellid sponge Agelas dendromorpha of the Coral Sea, via combined molecular modelling, NMR, and exciton splitting for diamide and hydroxyamide derivatives. Helv Chim Acta 77: 1895

    Article  Google Scholar 

  237. Hong TW, Jimenez DR, Molinski TF (1998) Agelastatins C and D, new pentacyclic bromopyrroles from the sponge Cymbastela sp., and potent arthropod toxicity of (—)agelastatin A. J Nat Prod 61: 158

    Article  CAS  Google Scholar 

  238. Anderson GT, Chase CE, Koh Y-H, Stien D, Weinreb SM, Shang MY (1998) Studies on total synthesis of the cytotoxic marine alakaloid agelastatin A. J Org Chem 63 : 7594

    Article  CAS  Google Scholar 

  239. Stien D, Anderson GT, Chase CE, Koh Y-H, Weinreb SM (1999) Total synthesis of the antitumor sponge alkaloid agelastatin A. J Am Chem Soc 121: 9574

    Article  CAS  Google Scholar 

  240. D’Ambrosio M, Guerriero A, Ripamonti M, Debitus C, Waikedre J, Pietra F (1996) The active centres of agelastatin A, a strongly cytotoxic alkaloid of the Coral Sea Anixellid sponge Agelas dendromorpha, as determined by comparative bioassays with semisynthetic derivatives. Helv Chim Acta 79: 727

    Article  Google Scholar 

  241. 174. Olofson A, Yakushijin K, Horne DA (1997) Synthesis of mauritiamine. J Org Chem 62: 7918

    Article  CAS  Google Scholar 

  242. 175. Keifer PA, Schwartz RE, Koker MES, Hughes Jr RG, Rittschof D, Rinehart KL (1991) Bioactive bromopyrole metabolites from the Caribbean sponge Agelas conifera. J Org Chem 56: 2965

    Article  CAS  Google Scholar 

  243. Shen X, Perry TL, Dunbar CD, Kelly-Borges M, Hamann MT (1998) Debromosceptrin, an alkaloid from the Caribbean sponge Agelas conífera. J Nat Prod 61: 1302

    Article  CAS  Google Scholar 

  244. 177. Kobayashi J, Tsuda M, Ohizumi Y (1991) A potent actomyosin ATPase activator from the Okinawan marine sponge Agelas cf. nemoechinata. Experientia 47: 301

    Article  CAS  Google Scholar 

  245. Eder C, Proksch P, Wray V, van Soest RWM, Ferdinandus E, Pattisina LA, Sudarsono (1999) New bromopyrrole alkaloids from the indopacific sponge Agelas nakamurai. J Nat Prod 62: 1295

    Article  CAS  Google Scholar 

  246. Kawasaki I, Sakaguchi N, Fukushima N, Fujioka N, Nikaido F, Yamashita M, Ohta S (2002) Novel Diels-Alder-type dimerization of 5-ethenyl-2-phenylsulfanyl-lHimidazoles and its application to biomimetic synthesis of 12,12’-dimethylageliferin. Tetrahedron Lett 43: 4377

    Article  CAS  Google Scholar 

  247. Kobayashi J, Tsuda M, Murayama T, Nakamura H, Ohizumi Y, Ishibashi M, Iwamura M, Ohta T, Nozoe S (1990) Ageliferins, potent actomyosin ATPase activators from the Okinawan marine sponge Agelas sp. Tetrahedron 46: 5579

    Article  CAS  Google Scholar 

  248. 181. Williams DH, Faulkner DJ (1996) N-Methylated ageliferins from the sponge Astro-sclera willeyana from Pohnpei. Tetrahedron 52: 5381

    Article  CAS  Google Scholar 

  249. Kobayashi J, Suzuki M, Tsuda M (1997) Konbu’acidin, a new bromopyrrole alkaloid with cdk4 inhibitory activity from Hymenacidon sponge. Tetrahedron 53: 15681

    Article  CAS  Google Scholar 

  250. Kinnel RB, Gehrken H-P, Scheuer PJ (1993) Palau’amine. A cytotoxic immunosuppressive haxacyclic bisguanidine antibiotic from the sponge Stylotella agminata J Am Chem Soc 115: 3376;

    Article  CAS  Google Scholar 

  251. Kinnel RB, Gehrken H-P, Swali R, Skoropowski G, Scheuer PJ (1998) Palau’amine and its congeners: A family of bioactive bisguanidines from the marine sponge Stylotella aurantium. J Org Chem 63: 3281

    Article  CAS  Google Scholar 

  252. Kato T, Shizuri Y, Izumida H, Yokoyama A, Endo M (1995) Styloguanidines, new chitinase inhibitors from the marine sponge Stylotella aurantium. Tetrahedron Lett 36: 2133

    Article  CAS  Google Scholar 

  253. Overman LE, Rogers BN, Tellew JE, Trenkle WC (1997) Stereocontrolled synthesis of the tetracyclic core of the bisguanidine alkaloids Palau’amine and styloguanidine. J Am Chem Soc 119: 7159

    Article  CAS  Google Scholar 

  254. Urban S, de Almeida Leone P, Carroll AR, Fechner GA, Smith J, Hooper JNA, Quinn RJ (1999) Axinellamines A—D. novel imidazoazolo-imidazole alkaloids from the Australian marine sponge Axinella sp. J Org Chem 64: 731

    Article  CAS  Google Scholar 

  255. Bascombe KC, Peter SR, Tinto WF, Bissada SM, Mclean S, Reynolds WF (1998) Axinellamines A and B, new pyrrole alkaloids of the marine sponge Axinella sp. Heterocycles 48: 1461

    Article  CAS  Google Scholar 

  256. Seki M, Mori K (2001) The absolute configuration of axinellamine A, a pyrrole alkaloid of the marine sponge Axinella sp., was determined as R by synthesizing its (S)-isomer. Eur J Org Chem 503

    Google Scholar 

  257. Miller SL, Tinto WF, Yang J-P, McLean S, Reynolds WF (1995) Axinellamide, a new alkaloid from the marine sponge Axinella sp. Tetrahedron Lett 36: 5851

    Google Scholar 

  258. Cimino G, de Stefano S, Minale M (1975) Long alkyl chains, 3-substituted pyrrole-2aldehyde (-2-carboxylic acid and methyl ester) from the marine sponge Oscarella lobularis. Experientia 31: 1387

    Article  CAS  Google Scholar 

  259. Muchowski JM, Naef R (1984) 3-Lithiopyrroles by halogen-metal interchange of 3bromo-l-(triisopropylsilyl)pyrroles. Synthesis of verrucarin E and other 3-substituted pyrroles. Helv Chim Acta 67: 1168

    Article  CAS  Google Scholar 

  260. Stierle DB, Faulkner DJ (1980) Metabolites of the marine sponge Laxosuberites sp. J Org Chem 45: 4980

    Article  CAS  Google Scholar 

  261. Venkateswarlu Y, Rao MR, Farooq Biabani MA (1996) 5-Alkylpyrrole-2carboxaldehydes from the sponges Mycalecarmia monanchrorata and Mycale mytilorum. Indian J Chem B35: 876

    Google Scholar 

  262. Compagnone R, Oliveri MC, Piña IC, Marques S, Rangel HR, Dagger F, Suàrez AI, Gómez M (1999) 5-Alkylpyrrole-2-carboxaldehydes from the Caribbean sponges Mycale microsigmatosa and Desmapsamma anchorata. Nat Prod Lett 13: 203

    Article  CAS  Google Scholar 

  263. Venkatesham U, Rama Rao M, Venkateswarlu Y (2000) New 5-alkylpyrrole-2carboxaldehyde derivatives from the sponge Mycale tenuispiculata. J Nat Prod 63: 1318

    Article  CAS  Google Scholar 

  264. Bowden BF, Clezy PS, Coll JC, Ravi BN, Tapiolas DM (1984) Studies of Australian soft corals. XXXIV. A new substituted pyrrole from a soft coral sponge association. Aust J Chem 37: 227

    Article  CAS  Google Scholar 

  265. Ortega MJ, Zubia E, Carballo JL, Salvà J (1997) New cytotoxic metabolites from the sponge Mycale micracanthoxea. Tetrahedron 53: 331

    Article  CAS  Google Scholar 

  266. Nabbs BK, Abell AD (1999) The synthesis and P388 cytotoxicity of mycalazol 11 and related 5-acyl-2-hydroxymethylpyrroles. Bioorg Med Chem Lett 9: 505

    Article  CAS  Google Scholar 

  267. Cafieri F, De Napoli L, Fattorusso E, Santacrone C, Sica D (1977) Molliorin A: Unique scalarin-like pyrroloterpene from the sponge Cacospongia mollior. Tetrahedron Lett 477;

    Google Scholar 

  268. Cafieri F, De Napoli L, Fattorusso E, Santacrone C (1977) Molliorin-B. a second scalarin-like pyrroloterpene from the sponge Cacospongia mollior. Experientia 33: 994;

    Article  CAS  Google Scholar 

  269. Cafieri F, De Napoli L, Iengo A, Santacrone C (1978) Molliorin-c. a further pyrroloterpene present in the sponge Cacospongia mollior. Ibid 34: 300;

    CAS  Google Scholar 

  270. Cafieri F, De Napoli L, Iengo A, Santacrone C (1979) Minor pyrroloterpenoids from the marine sponge Cacospongia mollior. Ibid 35: 157

    CAS  Google Scholar 

  271. Scheuer Pi (1990) Some marine ecological phenomena: Chemical basis and biomedical potential. Science 248: 173 and references given therein

    Google Scholar 

  272. Urban S, Hickford SJH, Blunt JW, Munro MHG (2000) Bioactive Marine alkaloids. Curr Org Chem 4: 765

    Article  CAS  Google Scholar 

  273. Urban S, Butler MS, Capon RJ (1994) Lamellarins O and P: New aromatic metabolites from the Australian marine sponge Dendrilla cactos. Aust J Chem 47: 1919

    Article  CAS  Google Scholar 

  274. Urban S, Hobbs L, Hooper JNA, Capon RJ (1995) Lamellarins Q and R: New aromatic metabolites from an Australian marine sponge Dendrilla cactos. Aust J Chem 48: 1491

    Google Scholar 

  275. Fürstner A, Weintritt H, Hupperts A (1995) A new, titanium-mediated approach to pyrroles: First synthesis of lukianol A and lamellarin O dimethyl ether. J Org Chem 60: 6637;

    Article  Google Scholar 

  276. Banwell MG, Flynn BL, Hamel E, Hockless DCR (1997) Convergent synthesis of the pyrrolic marine natural product lamellarin-O, lamellarin-Q, lukianol A and some more highly oxigenated congeners. J Chem Soc Chem Commun 207;

    Google Scholar 

  277. Boger DL, Boyce CW, Labroli MA, Sehon CA, Jin Q (1999) Total synthesis of ningalin A, lamellarin O, lukianol A, and permethyl storniamide A utilizing heterocyclic azadiene Diels-Alder reactions. J Am Chem Soc 121: 54

    Article  CAS  Google Scholar 

  278. Palermo JA, Rodriguez Brasco MF, Seldes AM (1996) Storniamides A—D: Alkaloids from a Patagonian sponge Cliona sp. Tetrahedron 52: 2727

    Article  CAS  Google Scholar 

  279. Ebel H, Terpin A, Steglich W (1998) A concise synthesis of storniamide A nonamethyl ether. Tetrahedron Lett 39: 9165

    Article  CAS  Google Scholar 

  280. Kashman Y, Koren-Goldschlager G, Garcia Gravalos MD, Schleyer M (1999) Halitulin, a new cytotoxic alkaloid from the marine sponge Haliclona tulearensis. Tetrahedron Lett 40: 997

    Article  CAS  Google Scholar 

  281. Frincke JM, Faulkner DJ (1982) Antimicrobial metabolites of the sponge Reniera sp. J Am Chem Soc 104: 265

    Article  CAS  Google Scholar 

  282.   Parker KA, Cohen ID, Padwa A, Dent W (1984) Cycloadditions of non-stabilized azomethine ylides and quinones. Synthesis of the Reniera isoindole. Tetrahedron Lett 25 : 4917;

    Article  CAS  Google Scholar 

  283.  Padwa A, Chen Y-Y, Dent W, Nimmesgern H (1985) Synthetic application of cyanoaminosilanes as azomethine ylide equivalents.J Org Chem 50 :4006;

    Article  CAS  Google Scholar 

  284. Schubert-Zsilavecz M, Schramm HW (1991) Synthese von 6-Methoxy2,5-dimethyl-2H-isoindol-4,7-dion, einem Alkaloid aus Reniera-Arten. Liebigs Ann Chem 973

    Google Scholar 

  285. Aknin M, Miralles J, Kornprobst J-M, Faure R, Gaydou E-M, Boury-Esnault N, Kato Y, Clardy J (1990) Trikentramine, an unusual pyrrole derivative from the sponge Trikentrion loeve Carter. Tetrahedron Lett 31: 2979

    Article  CAS  Google Scholar 

  286. 211. Loukaci A, Guyot M (1994) Trikendiol, an unusual red pigment from the sponge Trikentrion loeve, anti-HIV-1 metabolite. Tetrahedron Lett 35: 6869

    Article  CAS  Google Scholar 

  287. Treibs A, Jakob K, Died A (1967) Über isoindigoide Farbstoffe der Pyrrol-Reihe. Liebigs Ann Chem 702: 112

    Article  CAS  Google Scholar 

  288. Shin J, Rho J-R, Seo Y, Lee H-S, Cho KW, Sim CJ (2001) Sarcotragins A and B, new sesterterpenoid alkaloids from the sponge Sarcotragus sp. Tetrahedron Lett 42: 3005

    Article  CAS  Google Scholar 

  289. Pham AT, Carney JR, Yoshida WY, Scheuer PJ (1992) Haumanamide, a nitrogenous spongian derivative from a Spongia sp. Tetrahedron Lett 33: 1147

    Article  CAS  Google Scholar 

  290. For an excellent review see: Royles BJL (1995) Naturally occurring tetramic acids: Structure, isolation, and synthesis. Chem Rev 95: 1981 and references given therein

    Google Scholar 

  291. Nolte MJ, Steyn PS, Wessels PL (1980) Structural investigations of 3-acylpyrrolidine-2,4-diones by nuclear magnetic resonance spectroscopy and X-ray crystallography. J Chem Soc Perkin Trans 1, 1057

    Article  Google Scholar 

  292. Lacey RN (1954) Derivatives of acetoacetic acid. Part VII. ca-Acetyltetramic acids. J Chem Soc 850

    Google Scholar 

  293. Harris SA, Fisher LV, Folkers K (1965) The synthesis of tenuazonic acid and congeneric tetramic acids. J Med Chem 8: 478

    Article  CAS  Google Scholar 

  294. Jones RCF, Begley MJ, Peterson GE, Sumaria S (1990) Acylation of pyrrolidine-2,4diones: a synthesis of 3-acyltetramic acids. X-ray molecular structure of 3-[1(difluoroboryloxy)ethylidene]-5-isopropyl-1-methyl-pyrrolidine-2,4-dione. J Chem Soc Perkin Trans 1, 1959

    Article  Google Scholar 

  295. Rosen T (1989) The tetramic acids — an overview of their biological properties. Drugs Fut 14: 153

    Google Scholar 

  296. Hofheinz W, Oberhänsli WE (1977) Dysidin, ein neuartiger, chlorhaltihger Naturstoff aus dem Schwamm Dysidea herbacea. Helv Chim Acta 60: 660

    Article  CAS  Google Scholar 

  297. Aoki S, Higuchi K, Ye Y, Saari R, Kobayashi M (2000) Melophlins A and B, novel tetramic acids reversing the phenotype of ras-transformed cells, from the marine sponge Melophlus sarassinorum. Tetrahedron 56: 1833

    Article  CAS  Google Scholar 

  298. Ohta S, Ohta E, Ikegami S (1997) Ancorinoside A: A novel tetramic acid glycoside from the marine sponge Ancorina sp. which specifically inhibits blastulation of starfish embryos. J Org Chem 62: 6452

    Article  CAS  Google Scholar 

  299.   Matsunaga S, Fusetani N, Kato Y, Hirota H (1991) Aurantosides A and B: Cytotoxic tetramic acid glycosides from the marine sponge Theonella sp. J Am Chem Soc 113 : 9690;

    Article  CAS  Google Scholar 

  300.  Schmidt EW, Harper MK, Faulkner DJ (1997) Mozamides A and B. cyclic peptides from a Theonellid sponge from Mozambique. J Nat Prod 60: 779

    Article  CAS  Google Scholar 

  301.  Sata NU, Matsunaga S, Fusetani N, van Soest RWM (1999) Aurantosides D, E, and F: New antifungal tetramic acid glycosides from the sponge Siliquariaspongia japonica. J Nat Prod 62: 969

    Article  CAS  Google Scholar 

  302. Wolf D, Schmitz FJ, Qiu F, Kelly-Borges M (1999) Aurantoside C, a new tetramic acid glycoside from the sponge Homophymia conferta. J Nat Prod 62: 170

    Article  CAS  Google Scholar 

  303. Sata NU, Wada S, Matsunaga S, Watabe S, van Soest RWM, Fusetani N (1999) Rubrosides A-H. new bioactive tetramic acid glycosides from the marine sponge Siliquariaspongia japonica. J Org Chem 64: 2331

    Article  CAS  Google Scholar 

  304. Gunasekera SP, Gunasekera M, McCarthy P (1991) Discodemide: a new bioactive macrocyclic lactam from the marine sponge Discoderma dissoluta. J Org Chem 56: 4830

    Article  CAS  Google Scholar 

  305. Kanazawa S, Fusetani N, Matsunaga S (1993) Cylindramide: Cytotoxic tetramic acid lactam from the marine sponge Halichondria cylindrata Tanita & Hoshino. Tetrahedron Lett 34: 1065

    Article  CAS  Google Scholar 

  306. Andersen RJ, Faulkner DJ, Cun-heng He, Van Duyne GD, Clardy J (1985) Metabolites of the marine prosobranch mollusc Lamellaria sp. J Am Chem Soc 107: 5492

    Article  CAS  Google Scholar 

  307. Lindquist N, Fenical W, Van Duyne GD, Clardy J (1988) New alkaloids of the lamellarin class from the marine ascidian Didemnun chartaceum (Sluiter, 1909). J Org Chem 53: 4570

    Article  CAS  Google Scholar 

  308. Carroll AR, Bowden BF, Coll JC (1993) Studies of Australian ascidians. I. Six new lamellarin-class alkaloids from a colonial ascidian, Didemnum sp. Aust J Chem 46: 489

    Article  CAS  Google Scholar 

  309. Urban S, Capon RJ (1996) Lamellain-S: a new aromatic metabolite from an Australian tunicate, Didemnum sp. Aust J Chem 49: 711

    CAS  Google Scholar 

  310. Davis RH, Carroll AR, Pierens GK, Quinn RJ (1999) New lamellarin alkaloids from the Australian Ascidian, Didemnum chartaceum. J Nat Prod 62: 419

    Article  CAS  Google Scholar 

  311. Reddy MVR, Faulkner DJ, Venkateswarlu Y, Rao MR (1997) New lamellarin alkaloids from an unidentified ascidian from the Arabian Sea. Tetrahedron 53: 3457

    Article  CAS  Google Scholar 

  312. Reddy MVR, Rao MR, Rhodes D, Hansen MST, Rubins K, Bushman FD, Venkateswarlu Y, Faulkner DJ (1999) Lamellarin alpha 20-sulfate, an inhibitor of HIV-1 virus in cell culture. J Med Chem 42: 1901

    Article  CAS  Google Scholar 

  313.   Köck M, Reif B, Fenical W, Griesinger C (1996) Differentiation of HMBC two- and three-bond correlations: A method to simplify the structure determination of natural products. Tetrahedron Lett 37 : 363;

    Article  Google Scholar 

  314.   Reif B, Köck M, Kerssebaum R, Kang H, Fenical W, Griesinger C (1996) ADEQUATE, a new set of experiments to determine the constitution of small molecules at natural abundance. J Magn Reson A118: 282

    Google Scholar 

  315. Ishibashi F, Miyazaki Y, Iwao M (1997) Total synthesis of lamellarin D and H. The first synthesis of lamellarin-class marine alkaloids. Tetrahedron 53: 5951

    Article  CAS  Google Scholar 

  316. Heim A, Terpin A, Steglich W (1997) Biomimetic synthesis of lamellarin G trimethyl ether. Angew Chem 109: 158; Angew Chem Int Ed Engl 36: 155;

    Google Scholar 

  317. Ruchirawat S, Mutarapat T (2001) An efficient synthesis of lamellarin alkaloids: synthesis of lamellarin G trimethyl ether. Tetrahedron Lett 42: 1205

    Article  CAS  Google Scholar 

  318. Banwell MG, Flynn BL, Hockless DCR (1997) Convergent total synthesis of lamellarin K. J Chem Soc Chem Commun 2259

    Google Scholar 

  319. Peschko C, Winklhofer C, Steglich W (2000) Biomimetic total synthesis of lamellarin L by coupling of two different arylpyruvic acid units. Chem Eur J 6: 1147

    Article  CAS  Google Scholar 

  320. Yoshida WY, Lee KK, Carroll AR, Scheuer PJ (1992) A complex pyrrolo-oxazinone and its iodo derivative isolated from a tunicate. Heiv Chim Acta 75: 1721

    Google Scholar 

  321. Gupton JT, Krumpe KE, Burnham BS, Webb TM, Shuford JS, Sikorski JA (1999) The application of vinylogous iminium salt derivatives to a regiocontrolled and efficient relay synthesis of lukianol A and related marine natural products. Tetrahedron 55 : 14515;

    Article  CAS  Google Scholar 

  322. Liu J-H, Yang Q-C, Mak TCW, Wong HNC (2000) Highly regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles: A formal total synthesis of lukianol A. J Org Chem 65 : 3587;

    Article  CAS  Google Scholar 

  323. Kim S, Son S, Kang H (2001) Efficient syntheses of 2-carbomethoxy-3,4-disubstituted pyrroles by the condensation of vinylogous amides with aminomalonate. Bull Korean Chem Soc 22: 1403

    CAS  Google Scholar 

  324. Kang H, Fenical W (1997) Ningalins A—D: Novel aromatic alkaloids from western Australian ascidian of the genus Didemnum. J Org Chem 62: 3254

    Article  CAS  Google Scholar 

  325. Chan GW, Francis T, Thureen DR, Offen PH, Pierce NJ, Westley JW, Johnson RK, Faulkner DJ (1993) Purpurone, an inhibitor of ATP-citrate lyase: A novel alkaloid from the marine sponge lotrochota sp. J Org Chem 58: 2544

    Article  CAS  Google Scholar 

  326. 246Boger DL, Soenen DR, Boyce CW, Hedrick MP, Jin Q (2000) Total synthesis of ningalin B utilizing a heterocyclic azadiene Diel-Alder reaction and discovery of a new class of potent multidrug resistant (MDR) reversal agents. J Org Chem 65: 2479

    Article  CAS  Google Scholar 

  327. Peschko C, Steglich W (2000) First total synthesis of the marine alkaloids purpurone and ningalin. Tetrahedron Lett 41: 9477;

    Google Scholar 

  328. Namsa-aid A, Ruchirawat S (2002) Efficient synthesis of ningalin C. Org Lett 4: 2633

    Article  CAS  Google Scholar 

  329. 248a Rudi A, Goldberg I, Stein Z, Frolow F, Benayahu Y, Schleyer M,Kashman Y (1994) Polycitone A and polycitrins A and B: New alkaloids from the marine ascidian Polycitor sp. J Org Chem 59: 999;

    Article  CAS  Google Scholar 

  330. 248b Rudi A, Evan T, Aknin M, Kashman Y (2000) Polycitone B and prepolycitrin A: Two novel alkaloids from the marine ascidian Polycitor africanus. J Nat Prod 63: 832

    Article  CAS  Google Scholar 

  331. Terpin A, Polborn K, Steglich W (1995) Biomimetic total synthesis of polycitrin A. Tetrahedron 51: 9941

    Article  CAS  Google Scholar 

  332. Beccalli EM, Clerici F, Marchesini A (2000) First total synthesis of the alkaloid polycitrin B Tetrahedron 56: 2699

    Google Scholar 

  333. Kobayashi J, Cheng J, Kikuchi Y, Ishibashi M, Yamamura S, Ohizumi Y, Ohta T, Nozoe S (1990) Rigidin, a novel alkaloid with calmodulin antagonistic activity from the Okinavan marine tunicate Eudistoma cf. rigida. Tetrahedron Lett 31: 4617

    Article  CAS  Google Scholar 

  334. Edstrom ED, Wei Y (1993) Synthesis of a novel pyrrolo[2,3-d]pyrimidine alkaloid, rigidin. J Org Chem 58: 403

    Article  CAS  Google Scholar 

  335. (a) Sakamoto T, Kondo Y, Sato S, Yamanaka H (1994) Total synthesis of a marine alkaloid, rigidin. Tetrahedron Lett 35: 2919; (b) Sakamoto T, Kondo Y, Sato S, Yamanaka H (1996) Condensed heteroaromatic ring systems. Part 24. Synthesis of rigidin, a pyrrolo [2,3-d]pyrimidine marine alkaloid. J Chem Soc Perkin Trans 1, 459

    Google Scholar 

  336. (a) Kobayashi J, Harbour GC, Gilmore J, Rinehart Jr. KL (1984) Eudistomins A, D, G, H, I, J, M, N, O, P, and Q, bromo-, hydroxy, pyrrolyl-and 1-pyrrolinyl-/3-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. J Am Chem Soc 106: 1526;

    CAS  Google Scholar 

  337. (b) Rinehart Jr. KL, Kobayashi J, Harbour GC, Gilmore J, Mascal M, Holt TG, Shield LS, Lafargue F (1987) Eudistomins A-Q, ß-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. J Am Chem Soc 109: 3378

    Google Scholar 

  338. Carté B, Faulkner DJ (1983) Defensive metabolites from three nembrothid nudibranchs. J Org Chem 48: 2314

    Article  Google Scholar 

  339. Lindquist N, Fenical W (1991) New tambjamine class alkaloids from the marine ascidian Atapozoa sp. and its nudibranch predators. Origin of the tamjamines in Atapozoa. Experientia 47: 504

    Article  CAS  Google Scholar 

  340. Blackman AJ, Li C (1994) New tambjamine alkaloids from the marine bryozoan Bugula dentata. Aust J Chem 47: 1625

    Article  CAS  Google Scholar 

  341. Matsunaga S, Fusetani N, Hashimoto K (1986) Bioactive marine metabolites. VIII. Isolation of an antimicrobial blue pigment from the bryozoan Bugula dentata. Experientia 42: 84

    Article  CAS  Google Scholar 

  342. Kazlauskas R, Marwood JF, Murphy PT, Wells RJ (1982) A blue pigment from a compound ascidian. Aust J Chem 35: 215

    Article  CAS  Google Scholar 

  343. Carté B, Faulkner DJ (1986) Role of secondary metabolites in feeding associations between a predatory nudibranch, two grazing nudibranchs, and a bryozoan. J Chem Ecol 12: 795

    Article  Google Scholar 

  344. Melvin MS, Ferguson DC, Lindquist N, Manderville RA (1999) DNA binding by 4methoxypyrrolic natural products. Preference for intercalation at AT sites by tambjamine E and prodigiosin. J Org Chem 64: 6861

    Article  CAS  Google Scholar 

  345. Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM (1989) Isolation and structure of the cytostatic linear depsipeptide dolastatin 15. J Org Chem 54: 6005

    Article  CAS  Google Scholar 

  346. Pettit GR, Herald DL, Singh SB, Thornton TJ, Mullaney JT (1991) Antineoplastic agents. 220. Synthesis of natural (¡ª)-dolastatin 15. J Am Chem Soc 113: 6692

    Article  CAS  Google Scholar 

  347. Pettit GR, Thornton TJ, Mullaney JT, Boyd MR, Herald DL, Singh S-B, Flahive EJ (1994) The dolastatins 20. A convenient synthesis route to dolastatin 15. Tetrahedron 50: 12097

    Article  Google Scholar 

  348. Poncet J (1999) The dolastatins, a family of promising antineoplastic agents. Curr Pham Des 5: 139

    CAS  Google Scholar 

  349. Höfle G, Pohlan S, Uhlig G, Kabbe K, Schumacher D (1994) Keronopsins A and B. chemical defence substances of the marine ciliate Pseudokeronopsis rubra (protozoa): Identification by ex vivo HPLC. Angew Chem 106: 1561; Angew Chem Int Ed Engl 33: 1495

    Article  Google Scholar 

  350. Cionga E (1935) Présence de la pyrryl-a-méthylcétone dans la valériane officinale stabilisée. Compt Rend 200: 780

    CAS  Google Scholar 

  351. Szentpetéry GB, Nyomàrkay KM, Sàrkàny S, Horvtàh KB (1963) Untersuchung der nicht-flüchtigen Workstoffe der ungarischen Arzneibaldraine. Pharmazie 18: 816

    Google Scholar 

  352. Sàndor P, Kovàch AGB, Horvàth KB, Szentpétery GB, Clauder O (1970) Pharmakologische Untersuchungen über die Wirkung von synthetischem a-Methylpyrrylketon auf das Zentralnervensystem und den Kreislauf. Arzneim-Forsch 20: 29

    Google Scholar 

  353. Bricout J, Viani R, Müggler-Chavan F, Marion JP, Reymond D, Egli RH (1967) Sur la composition de l’arôme de thé noir II. Helv Chim Acta 50: 1517

    Article  CAS  Google Scholar 

  354. Naya Y, Kotake M (1968) Volatile constituents of hops. II. Nippon Kagaku Zasshi 89: 1113 [Chem Abstr (1969) 70: 80786

    Google Scholar 

  355. Onishi I, Tomita H, Fukuzumi T (1956) Studies on the essential oils of tobacco leaves. Bull Agr Chem Soc Japan 20: 61

    Article  CAS  Google Scholar 

  356. Onishi I, Yamamoto K (1956) Studies on the essential oils of tobacco leaves. Part VI. Phenol fraction (II). Bull Agr Chem Soc Japan 20: 70

    Article  CAS  Google Scholar 

  357. Sannai A, Fujimori T, Kato- K (1983) Neutral volatile components of “Kukoshi” (Lycium chinense M.). Agrie Biol Chem 47: 2397

    Article  CAS  Google Scholar 

  358. Miyazawa M, Maruyama H, Kameoka H (1983) Essential oil constituents of “moutan radicis cortex” Paeonia moutan Sims (= P. suffruticosa Andrews). Agrie Biol Chem 47: 2925

    Article  CAS  Google Scholar 

  359. Marion JP, Müggler-Chavan F, Viani R, Bricout J, Reymond D, Egli RH (1967) Sur la composition de l’arôme de cacao. Helv Chim Acta 50: 1509

    Article  CAS  Google Scholar 

  360. Van der Wal B, Sipma G, Kettenes DK, Semper ATJ (1968) Some constituents of roasted cocoa. Rec Tray Chim 87: 238

    Google Scholar 

  361. Gianturco MA, Giammarino AS, Friedel P, Flanagan V (1964) The volatile constituents of coffee ¡ª IV Furanic and pyrrolic compounds. Tetrahedron 20: 2951

    Article  CAS  Google Scholar 

  362. Stoll M, Winter M, Gautschi F, Flament I, Willhalm B (1967) Recherches sur les arômes. 13e comm. Sur l’arôme de café I. Helv Chim Acta 50: 628

    Article  CAS  Google Scholar 

  363. Ito M, Shimura H, Watanabe N, Tamai M, Takahashi A, Tanaka Y, Arai I, Hanada K (1991) 2-Acetylpyrrole, a hepatoprotective compound from Streptomyces sp. A5071. Agrie Biol Chem 55: 2117

    Google Scholar 

  364. Lloyd HA, Fales HM, Goldman ME, Jerina DM, Plowman T, Schultes RE (1985) Brunfelsamidine: A novel convulsant from the medicinal plant Brunfelsia grandiflora. Tetrahedron Lett 26: 2623

    Article  CAS  Google Scholar 

  365. Buschi CA, Pomilio AB (1987) Pyrrole-3-carboxamidine: A letal principle from Nierenbergia hippomanica. Phytochemistry 26: 863

    Article  CAS  Google Scholar 

  366. Blau F (1894) Zur Constitution des Nicotins. Chem Ber 27: 2535

    Article  Google Scholar 

  367. Cahours A, Etard A (1880) Recherches sur la nicotine. Bull Soc Chim Fr 34: 449

    Google Scholar 

  368. Späht E, Kesztler F (1937) Über neue Basen des Tabaks (XIII. Mitteil. über Tabak-Alkaloide). Chem Ber 70: 2450

    Google Scholar 

  369. Hutchinson CR, Hsia M-TS, Carver RA (1976) Biosynthetic studies 13CO2 of secondary plant metabolites. Nicotiana alkaloids. 1. Initial experiments. J Am Chem Soc 98: 6006 and references given therein

    Google Scholar 

  370. LaForge FB (1928) The preparation and properties of some new derivatives of pyridine J Am Chem Soc 50: 2477

    Google Scholar 

  371. Richardson CH, Shepard HH (1930) The insecticidal action of some derivatives of pyridine and pyrrolidine and some aliphatic amines. J Agr Research 40: 1007

    CAS  Google Scholar 

  372. El Sayed KA, Hamann MT, Abd El-Rahman HA, Zaghloul AM (1998) New pyrrole alkaloids from Solanum sodomaeum. J Nat Prod 61: 848

    Article  CAS  Google Scholar 

  373. Demole E, Demole C, Enggist P (1976) A chemical investigation of the volatile constituents of East Indian sandalwood oil (Santalum album L.). Heiv Chim Acta 59: 737

    Article  CAS  Google Scholar 

  374. Gupta S, Jha A, Prasad AK, Rajwanshi VK, Jain SC, Olsen CE, Wengel J, Parmar VS (1999) A new amide, N-cinnamoylpyrrole and other constituents from Piper argyrophyllum. Indian J Chem Sect B: Org Chem Incl Med Chem 38: 823

    Google Scholar 

  375. Likhitwitayawuid K, Ruangrungsi N, Lange GL, Decicco CP (1987) Structural elucidation and synthesis of new components isolated from Piper sarmentosum (Piperaceae). Tetrahedron 43: 3689

    Article  CAS  Google Scholar 

  376. Kapadia GJ, Highet RJ (1968) Peyote alkaloids IV. Structure of peyonine, novel,3phenetylpyrrole from Lophophora williamsii. J Pharm Sci 57: 191

    Article  CAS  Google Scholar 

  377. Jiang ZD, Gerwick WH (1991) Novel pyrroles from the Oregon red alga Gracilariopsis lemaneiformis. J Nat Prod 54: 403

    Article  CAS  Google Scholar 

  378. Jefford CW, Sienkiewicz K, Thornton SR (1994) A concise synthesis of two pyrroles of marine origin. Tetrahedron Lett 35: 6271

    Article  CAS  Google Scholar 

  379. Raffauf RF, Zennie TM, Onan KD, Le Quesne PW (1984) Funebrine, a structurally novel pyrrole alkaloid and other y-hydroxyisoleucine-related metabolites of Quararibea funebris (Llave) Vischer (Bombacaceae). J Org Chem 49: 2714

    Article  CAS  Google Scholar 

  380. Zennie TM, Cassady JM, Raffauf RF (1986) Funebral. A new pyrrole lactone alkaloid from Quararibea funebri. J Nat Prod 49: 695

    Article  CAS  Google Scholar 

  381. Zennie TM, Cassady JM (1990) Funebradiol. a new pyrrole lactone alkaloid from Quararibea funebri flowers. J Nat Prod 53: 1611

    Article  CAS  Google Scholar 

  382. (a) Yu S-X, Le Quesne PW (1995) Quararibea metabolites. 3. Total synthesis of (f)-funebral, a rotationally restricted pyrrole alkaloid, using a novel Paal-Knorr reaction. Tetrahedron Lett 36: 6205; (b) Dong Y, Pai NN, Ablaza SL, Yu S-X, Bolvig S, Forsyth DA, Le Quesne PW (1999) Quararibea Metabolites. 4. Total synthesis and conformational studies of (f)-Funebrine and (¡À)-Funebral. J Org Chem 64: 2657

    Google Scholar 

  383. Ablaza SL, Pai NN, Le Quesne PW (1995) Quararibea Metabolites. 2. Efficient synthetic approaches to (f)-(2S,3S,4R)-y-hydroxyisoleucine, the characteristic Quararibea amino acid. Nat Prod Lett 6: 77

    Article  CAS  Google Scholar 

  384. Lynn DG, Jaffe K, Cornwall M, Tramontano W (1987) Characterization of an endogeneous factor controlling the cell cycle of complex tissues. J Am Chem Soc 109: 5858

    Article  CAS  Google Scholar 

  385. Haidoune M, Mornet R, Laloue M (1990) Synthesis of 6-(3-methylpyrrol-1-yl)-9-ßribofuranosyl purine, a novel metabolite of zeatin riboside. Tetrahedron Lett 31: 1419

    Article  CAS  Google Scholar 

  386. Banerji A, Majumder PL, Chatterjee A (1970) Occurrence of geissoschizine and other minor biogenetically related alkaloids in Rhazya stricta. Phytochemistry 9: 1491

    Article  CAS  Google Scholar 

  387. De Silva KT, Ratcliffe AH, Smith GF, Smith GN (1972) Rhazinilam, a neutral alkaloidal artefact from Rhazya stricto Decaisne. Tetrahedron Lett 913

    Google Scholar 

  388. Linde HA (1965) Die Alkaloide aus Melodinus australis (F. Mueller) Pierre (Apocynaceae). HeIv Chim Acta 48: 1822

    Article  CAS  Google Scholar 

  389. Thoison O, Guénard D, Sévenet T, Kan-Fan C, Quirion J-C, Husson H-P, Deverre J-R, Chan K-C, Potier P (1987) Propriétés inhibitrices du rhazinilame sur la polymérisation de la tubuline en microtubules. C R Acad Sci Paris II, 304: 157

    Google Scholar 

  390. Kam T-S, Tee Y-M, Subramanian G (1998) Rhazinal, a formylrhazinilam derivative from a Malayan Kopsia. Nat Prod Lett 12: 307

    Article  CAS  Google Scholar 

  391. Goh SH, Abdul R (1986) Ring-opened indole alkaloidal artefacts from Leuconotis species and the facile ring reclosure of leuconolam. Tetrahedron Lett 2501

    Google Scholar 

  392. Aimi N, Uchida N, Ohya N, Hosokawa H, Takayama H, Sakai S, Mendoza LA, Polz L, Stöckigt J (1991) Novel indole alkaloids from cell suspension cultures of Aspidosperma quebracho blanco Schlecht. Tetrahedron Lett 32: 4949

    Article  CAS  Google Scholar 

  393. (a) Ratcliffe AH, Smith GF, Smith GN (1973) The synthesis of rhazinilam. Tetrahedron Lett 5179; (b) Magnus P, Rainey T (2001) Concise synthesis of (¡À)rhazinilam. Tetrahedron 57: 8647

    Article  Google Scholar 

  394. Abraham DJ, Rosenstein RD, Lyon RL, Fong HHS (1972) The structure elucidation of rhazinilam, a new class of alkaloids from the Apocinaceae. Tetrahedron Lett 909

    Google Scholar 

  395. David B, Sévenet T, Morgat M, Guénard D, Moisand A, Tollon Y, Thoison O, Wright M (1994) Rhazinilam mimics the cellular effects of taxol by different mechanisms of action. Cell Motil Cytoskel 28: 317 [Chem Abstr (1994) 121: 271 453]

    Google Scholar 

  396. Culvenor CCJ, Smith LW (1969) A quaternary N-dihydropyrrolizinomethyl derivative of heliotridine from Heliotropium europaeum. Tetrahedron Lett 3603

    Google Scholar 

  397. Borges del Castillo J, Espana de Aguirre AG, Bret¨®n IL, Gonzàlez AG, Trujillo J (1970) Loroquin, a new necine isolated from Urechites karwinsky Mueller. Tetrahedron Lett 1219

    Google Scholar 

  398. Robins DJ (1982) The pyrrolizidine alkaloids in: Herz W, Grisebach H, Kirby GW (eds) Progress in the chemistry of organic natural products vol. 41. Springer, Wien, p 116–203

    Google Scholar 

  399. Culvenor CCJ, Edgar JA, Smith LW, Tweeddale HJ (1969) Dihydropyrrolizine alkaloids of pyrroliizidine alkaloids. Tetrahedron Lett 3599 and references given therein

    Google Scholar 

  400. Bohlmann F, Gupta RK, Jakupovic J (1981) An acylpyrrole derivative and further constituents from Jamaican representatives of the tribe Senecioneae. Phytochemistry, 20: 831

    Article  CAS  Google Scholar 

  401. Bohlmann F, Zdero C, Jakupovic J, Grenz M, Castro V, King RM, Robinson H, Vincent: LPD (1986) Further pyrrolizidine alkaloids and furoeremophilanes from Senecio species. Phytochemistry 25: 1151

    Google Scholar 

  402. Bohlmann F, Zdero C, Grenz M (1977) Natürlich vorkommende Terpen-Derivate. 78. Mitt. Weitere Inhaltsstoffe aus südafrikanischen Senecio-Arten. Chem Ber 110: 474

    Article  CAS  Google Scholar 

  403. Bohlmann F, Zdero C, Berger D, Suwita A, Mahanta P, Jeffrey C (1979) Neue Furanoeremophilane und weitere Inhaltsstoffe aus Südafrikanischen Senecio-Arten. Phytochemistry 18: 79

    Article  CAS  Google Scholar 

  404. Bohlmann F, Knoll K-H, Zdero C, Mahanta PK, Grenz M, Suwita A, Ehlers D, Ngo Le Van, Abraham W-R, Natu AA (1977) Terpen-Derivate aus Senecio-Arten. Phytochemistry 16: 965

    Article  CAS  Google Scholar 

  405. Bohlmann F, Knoll K-H (1978) Zwei neue Acylpyrrole aus Kleinia kleinioides. Phytochemistry 17: 599

    Article  CAS  Google Scholar 

  406. Bohlmann F, Zdero C, Snatzke G (1978) Zur Stereochemie der Acylpyrrole aus Senecio-Arten. Chem Ber 111: 3009

    Article  CAS  Google Scholar 

  407. Bohlmann F, Zdero C (1979) Neue C10-Säureamide, Furanoeremophilane und andere Inhaltsstoffe aus bolivianischen Senecio-Arten. Phytochemistry 18: 125

    Article  CAS  Google Scholar 

  408. Close W, Nickisch K, Bohlmann F (1980) Synthese von 5,7a-Didehydroheliotridin-3on, dem Grundkörper einer neuen Gruppe von Pyrrolizidin-Alkaloiden. Chem Ber 113: 2694

    Article  Google Scholar 

  409. (a) McNab H, Thornley C (1993) New chemistry of pyrrolizin-3-one. A concise route to 3,8-didehydroheliotridin-5-one. J Chem Soc Chem Commun 1570;

    Google Scholar 

  410. (b) McNab H,Thornley C (2000) Chemistry of pyrrolizinones. Part 1. Reactions of pyrrolizin-3ones with electrophiles: synthesis of 3,8-didehydroheliotridin-5-one. J Chem Soc Perkin Trans 1 3584

    Article  Google Scholar 

  411. Veen G, Greinwald R, Witte L, Wray V, Czygan F-C (1991) Alkaloids of Virgilia divaricata and V. oroboides. Phytochem 30: 1891

    Article  CAS  Google Scholar 

  412. White EP (1964) Alkaloids of the Leguminosae. Part XXVIII. Virgiline and O(Pyrrol-2-ylcarbonyl)virgiline. J Chem Soc 5243

    Google Scholar 

  413. Manchanda AH, Nabney J, Young DW (1968) 2,3-Dehydro-O-(2-pyrrolylcarbonyl) virgiline, an alkaloid from Readea membranacea Gillespie (Rubiaceae). J Chem Soc (C) 615

    Google Scholar 

  414. Goosen A (1963) The alkaloids of the Leguminosae. Part I. The structure of calpurnine. J Chem Soc 3067

    Google Scholar 

  415. (a) Gerrans GC, Harley-Mason J (1963) The alkaloids of Virgilia oroboides. Chem and Ind (London) 1280, ibid. 1433; (b) Gerrans GC, Harley-Mason J(1964) The alkaloids of Virgilia oroboides. J Chem Soc 2202

    Google Scholar 

  416. Faugeras G, Paris R-R, Peltier M (1974) Alcaloïdes et polyphénols des Légumineuses. XXIX. ¡ª Sur le Cadia ellisiana Baker, Papilionacée de Madagascar: Alcaloïdes. Ann Pharm Fr 32: 323

    CAS  Google Scholar 

  417. Faugeras G, Paris R-R, Debray M, Bourgeois J, Delabos C (1975) Alkaloïds and polyphenols from Leguminosae. Alkaloids of Cadia ellisiana bark. Isolation, identification and toxicity. Plant Med Phytother 9: 37

    CAS  Google Scholar 

  418. Van Eijk JL, Radema MH (1977) Some alkaloids of Ethiopian Calpuruea aurea and Cadia purpurea. Planta Med 32: 275

    Article  Google Scholar 

  419. Lindner E, Kaiser J, Schacht U (1976) Hypotensive and antiarrhytmic effects of a new alkaloid, the 13-hydroxylupanine-2-pyrrolecarbonic acid ester from the Madagascar plant Cadia ellisiana. Arzneim-Forsch 26: 1651

    CAS  Google Scholar 

  420. Asres K, Gibbons WA, Phillipson JD, Mascagni P (1986) Alkaloids of Ethiopian Calpurnia aurea subsp. aurea. Phytochemistry 25: 1443

    Article  CAS  Google Scholar 

  421. Mascagni P, Gibbons WA, Asres K, Phillipson JD, Niccolai N (1987) The determination of the molecular framework and conformation of the calpaurine alkaloid by 1D-and 2D-NMR methods. Tetrahedron 43: 149

    Article  Google Scholar 

  422. van Eijk JL, Radema MH (1976) New quinolizidine alkaloids from Cadia purpurea. Tetrahedron Lett 2053

    Google Scholar 

  423. Reinecke MG, Zhao Y-Y (1988) Phytochemical studies of the Chinese herb taizishen. Pseudostellaria heterophylla. J Nat Prod 51: 1236

    Article  CAS  Google Scholar 

  424. Rogers EF, Koniuszy FR, Shavel Jr J, Folkers K (1948) Plant insecticides. I. Ryanodine, a new alkaloid from Ryania speciosa Vahl. J Am Chem Soc 70: 3086

    Article  CAS  Google Scholar 

  425. Waterhouse AL, Holden I, Casida JE (1984) 9,21-Didehydroryanodine: a new principal toxic constituent of the botanical insecticide Ryania. J Chem Soc Chem Commun: 1265

    Google Scholar 

  426. Waterhouse AL, Holden I, Casida JE (1985) Ryanoid insecticides: Structural examination by fully coupled two-dimensional 1H–13C-shift correlation NMR spectroscopy. J Chem Soc Perkin Trans II 1011

    Google Scholar 

  427. Ruest L, Taylor DR, Deslongchamps P (1985) Investigation of the constituents of Ryania speciosa. Can J Chem 63: 2840

    Article  CAS  Google Scholar 

  428. Kelly RB, Whittingham DJ, Wiesner K (1951) The structure of ryanodine. I. Can J Chem 29: 905

    Article  CAS  Google Scholar 

  429. Babin DR, Forrest TP, Valenta Z, Wiesner K (1962) The complete structure and relative and absolute configuration of anhydroryanodine. Experientia, 18: 549

    Article  CAS  Google Scholar 

  430. Wiesner K (1963) The structure, stereochemistry, and absolute configuration of anhydroryanodine. Pure Appl Chem 7: 285

    Article  CAS  Google Scholar 

  431. Wiesner K, Valenta Z, Findlay JA (1967) The structure of ryanodine. Tetrahedron Lett 221

    Google Scholar 

  432. Srivastava SN, Przybylska M (1968) The molecular structure of ryanodol-p-bromo benzyl ether Can J Chem 46: 795

    Google Scholar 

  433. Wiesner K (1972) The structure of ryanodine. Adv Org Chem 8: 295

    CAS  Google Scholar 

  434. Belanger A, Berney DJF, Borschberg H-J, Brousseau R, Doutheau A, Durand R, Katayama H, Lapalme R, Leturc DM, Liao C-C, MacLachlan FN, Maffrand J-P, Marrazza F, Martino R, Moreau C, Saint-Laurent L, Saintonge R, Soucy P, Ruest L, Deslongchamps P (1979) Total synthesis of ryanodol. Can J Chem 57: 3348

    Article  CAS  Google Scholar 

  435. Deslongchamps P, Belanger A, Berney DJF, Borschberg H-J, Brousseau R, Doutheau A, Durand R, Katayama H, Lapalme R, Leturc DM, Liao C-C, MacLachlan FN, Maffrand J-P, Marrazza F, Martino R, Moreau C, Ruest L, Saint-Laurent L, Saintonge R, Soucy P (1990) The total synthesis of (+)-ryanodol. Part I. Can J Chem 68: 115 Part II. Ibid 127; Part III. Ibid 153; Part IV. Ibid 186

    Google Scholar 

  436. Vierling W (1988) Ryanodine in mammalian heart ventricular muscle: indication for the induction of calcium leakage from the sarcoplasmic reticulum. Eur J Pharmacol 145: 329

    Article  CAS  Google Scholar 

  437. Procita L (1956) The action of ryanodine on mammalian skeletal muscle in situ. J Pharmacol Exp Ther 117: 363

    CAS  Google Scholar 

  438. Jenden DJ, Fairhurst AS (1969) The pharmacology of ryanodine. Pharmacol Rev 21: 1 and references given therein

    Google Scholar 

  439. Achenbach H, Hübner H, Vierling W, Brandt W, Reiter M (1995) Spiganthine, the cardioactive principle of Spigelia anthelmia. J Nat Prod 58: 1092

    Article  CAS  Google Scholar 

  440. Cheng D, Shao Y, Hartman R, Roder E, Zhao K (1994) Oligopeptides from Aster tataricus. Phytochem 36: 945

    Article  CAS  Google Scholar 

  441. Morita H, Nagashima S, Takeya K, Itokawa H (1995) Structure of a new peptide, astin J, from Aster tataricus. Chem Pharm Bull 43: 271

    Google Scholar 

  442. Kosemura S, Ogawa T, Totsuka K (1993) Isolation and structure of asterin. a new halogenated cyclic pentapeptide from Aster tataricus. Tetrahedron Lett 34: 1291

    Article  CAS  Google Scholar 

  443. Morita H, Nagashima S, Takeya K, Itokawa H (1993) Astins A and B, antitumor cyclic pentapeptides from Aster tataricus. Chem Pharm Bull 41: 992

    Article  CAS  Google Scholar 

  444. Morita H, Nagashima S, Takeya K, Itokawa H, Iitaka Y (1995) Structures and conformation of antitumor cyclic pentapeptides, astins A, B and C, from Aster tataricus. Tetrahedron 51: 1121 and references given therein

    Google Scholar 

  445. Jizba J, Samek Z, Novotny L (1977) A sesquiterpenic alkaloid, eremophilene lactam, from the rhizomes of Petasites hybridus. Collect Czech Chem Commun 42: 2438

    Article  CAS  Google Scholar 

  446. Wiedhopf RM, Trumbull ER, Cole JR (1973) Antitumor agents from Jatropha macrorhiza (Euphorbiaceae) I: Isolation and characterization of jatropham. J Pharm Sci 62: 1206

    Article  CAS  Google Scholar 

  447. Shimomura H, Sashida Y, Mimaki Y, Minegishi Y (1987) Jatropham glucoside from the bulbs of Lilium hansonii. Phytochemistry 26: 582

    Article  CAS  Google Scholar 

  448. Ori K, Mimaki Y, Mito K, Sashida Y, Nikaido T, Ohmoto T, Masuko A (1992) Jatropham derivatives and steroidal saponins from the bulbs of Lilium hansonii. Phytochemistry 31: 2767

    Article  CAS  Google Scholar 

  449. Haladovà M, Buckovà A, Eisenreichovà E, Uhrin D, Tomko J (1987) Jatropham in Lilium candidum. L. Chem Papers 41: 835

    Google Scholar 

  450. Eisenreichovà E, Haladovà M, Buckovà A, Ubik K, Uhrin D (1991) Derivatives of pyrroline in Lilium candidum L. Chem Papers 45: 709

    Google Scholar 

  451. Shimomura H, Sashida Y, Mimaki Y, Kudo Y, Maeda K (1988) New phenylpropanoid glycerol glucosides from the bulbs of Lilium species. Chem Pharm Bull 36: 4841

    Article  CAS  Google Scholar 

  452. Yakushijin K, Kozuka M, Ito Y, Suzuki R, Furukawa H (1980) Ring transformation of 2-furylcarbamates to 5-hydroxy-3-pyrrolin-2-ones, revised structure of jatropham. Heterocycles 14: 1073

    Article  CAS  Google Scholar 

  453. Yakushijin K, Suzuki R, Hattori R, Furukawa H (1981) Synthesis of (f)-jatrophan, an antitumor alkaloid from Jatropha Macrorhiza. Heterocycles 16: 1157

    Article  CAS  Google Scholar 

  454. Nagasaka T, Esumi S, Ozawa N, Kosugi Y, Hamaguchi F (1981) Synthesis of 5hydroxy-3-methyl-3-pyrrolin-2-one [(f)-jatropham, an antitumor alkaloid] and its 4-methyl isomer. Heterocycles 16: 1987

    Article  CAS  Google Scholar 

  455. Fariña F, Martin MV, Paredes MC, Ortega MC, Tito A (1984) Pseudoesters and derivatives. XXII. Synthesis of 5-hydroxy-3-pyrrolin-2-ones and 5-hydroxypyrrolidin-2-ones by ammonolysis of 5-methoxyfuran-2(511)-ones and derivatives. Heterocycles 22: 1733

    Article  Google Scholar 

  456. Haladovà M, Eisenreichovà E, Buckovà A, Tomko J, Uhrin D, Ubik K (1991) Dimeric pyrroline alkaloids from Lilium candidum L. Collect Czech Chem Commun 56: 436

    Article  Google Scholar 

  457. Haladovà M, Eisenreichovà E, Buckovà A, Tomko J, Uhrin D (1988) New nitrogen-containing compounds in Lilium candidum L. Collect Czech Chem Commun 53: 157

    Article  Google Scholar 

  458. Eisenreichovà E, Haladovà M, Buckovà A, Tomko J, Uhrin D, Ubik K (1992) A pyrroline-pyrrolidine alkaloid from Lilium candidum bulbs. Phytochemistry 31: 1084

    Google Scholar 

  459. Kuo R-Y, Chang F-R, Wu Y-C (2001) A new propentdyopent derivative, rollipyrrole, from Rollinia mucosa Baill. Tetrahedron Lett 42: 7907

    Article  CAS  Google Scholar 

  460. Yamano K, Konno K, Shirahama H (1991) A new amino acid, L-3-(2-carboxy-4pyrrolyl)alanine from the poisonous mushroom Clytocybe acromelalga. Chem Lett 1541;

    Google Scholar 

  461. Yamano K, Shirahama H (1992) New amino acids from the poisonous mushroom Clytocybe acromelalga. Tetrahedron 48: 1457

    Article  CAS  Google Scholar 

  462. Härri E, Loeffler W, Sigg HP, Stähelin H, Stoll C, Tamm C, Wiesinger D (1962) Über die Verrucarine und Roridine, eine Gruppe von cytostatisch hochwirksamen Antibiotica aus Myrothecium-Arten. Helv Chim Acta 45: 839

    Article  Google Scholar 

  463. Pfäffli P, Tamm C (1969) Revidierte Struktur von Verrucarin E. Eine Synthese des Antibioticums und verwandter,3-Acetyl-Pyrrol-Derivate. Heiv Chim Acta 52: 1911

    Google Scholar 

  464. Groves JK, Cundasawmy NE, Anderson HJ (1973) Pyrrole chemistry. XV. Chemistry of some 3,4-disubstituted pyrroles. Can J Chem 5: 1089

    Article  Google Scholar 

  465. Gossauer A, Suhl K (1976) Totalsynthese des Verrucarins E sowie ihre Anwendung zur Herstellung eines 13C-markierten Derivates desselben. Heiv Chim Acta 59: 1698

    CAS  Google Scholar 

  466. Sheldrick WS, Borkenstein A, Engel J (1978) The crystal structures of verrucarin E (4-acetyl-3-hydroxymethylpyrrole) and its 1/3 hydrate. Acta Crystallogr B34: 1248

    CAS  Google Scholar 

  467. Arndt RR, Holzapfel CW, Ferreira NP, Marsh JJ (1974) Structure and biogenesis of desoxyverrucarin E, a metabolite of Eupenicillium hirayamae. Phytochemistry 13: 1865

    Article  CAS  Google Scholar 

  468. Pfäffli P, Tamm C (1969) Über die Biosynthese des Antibiotikums Verrucarin E. Helv Chim Acta 52: 1921

    Article  Google Scholar 

  469. Chexal KK, Snipes C, Tamm C (1980) Biosynthesis of the antibiotic Verrucarin E. Use of [1-13C]-, [2-13C1-, [1,2-13C]- and [2-13C, 2-2H3]-acetates. Helv Chim Acta 63: 761

    CAS  Google Scholar 

  470. Badar Y, Lockley WJS, Toube TP, Weedon BCL, Valadon LRG (1973) Natural and synthetic 2-pyrrolylpolyenes. J Chem Soc Perkin Trans 1, 1416

    Article  Google Scholar 

  471. Badar Y, Chopra AK, Dias HW, Hursthouse MB, Khokhar AR, Ito M, Toube TP, Weedon BCL (1977) Pyrrolylpolyenes. Part 2. Stereochemistry of wallemia A and synthesis of its (E)-isomer and other models. J Chem Soc Perkin Trans 1, 1372;

    Article  Google Scholar 

  472. b. Ito M, Tsukida K, Toube TP (1981) Pyrrolylpolyenes. Part 3. Synthesis of all-(E)wallemia C and stereochemistry of natural wallemia C. J Chem Soc Perkin Trans 1, 3255

    Article  Google Scholar 

  473. Ahmed FR, Buckingham MJ, Hawkes GE, Toube TP (1984) Pyrrolylpolyenes. Part 5. Revision of the structure of the principal pigment of Wallemia sebi. A nuclear Overhauser enhancement study. J Chem Res (S) 178

    Google Scholar 

  474. Ahmed FR, Toube TP (1984) Pyrrolylpolyenes. Part 6. Synthesis of wallemia A and wallemia E. J Chem Soc Perkin Trans 1, 1577

    Article  Google Scholar 

  475. Yamagishi Y, Matsuoka M, Odagawa A, Kato S, Shindo K, Mochizuki J (1993) Rumbrin, a new cytoprotective substance produced by Auxarthron umbrinum. I. Taxonomy, production, isolation and biological activities. J Antibiotics 46: 884

    Article  CAS  Google Scholar 

  476. Yamagishi Y, Shindo K, Kawai H (1993) Rumbrin, a new cytoprotective substance produced by Auxarthron umbrinum. II. Physicochemical properties and structure determination. J Antibiotics 46: 888

    Article  CAS  Google Scholar 

  477. Numata A, Takahashi C, Ito Y, Minoura K, Yamada T, Matsuda C, Nomoto K (1996) Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: structure determination and solution conformation. J Chem Soc Perkin Trans 1, 239

    Article  Google Scholar 

  478. Trigos A, Reyna S, Matamoros B (1995) Macrophominol, a diketopiperazine from cultures of Macrophomina phaseolina. Phytochemistry 40: 1697

    Article  CAS  Google Scholar 

  479. Rowan DD, Gaynor DL (1986) Isolation of feeding deterrents against Argentine stem weevil from riegrass infected with the endophyte Acremonium loliae. J Chem Ecol 12: 647

    Article  CAS  Google Scholar 

  480. Rowan DD, Hunt MB, Gaynor DL (1986) Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae. J Chem Soc Chem Commun 935

    Google Scholar 

  481. Dumas DJ (1988) Total synthesis of peramine (I). J Org Chem 53: 4650

    Article  CAS  Google Scholar 

  482. Brimble MA, Rowan DD (1990) Synthesis of the insect feeding deterrent peramine via Michael addition of a pyrrole anion to a nitroalkene. J Chem Soc Perkin Trans I, 311

    Google Scholar 

  483. Fröde R, Hinze C, Josten I, Schmidt B, Steffan B, Steglich W (1994) Isolation and synthesis of 3,4-bis(indol-3-yl)pyrrole-2,5-dicarboxylic acid derivatives from the slime mould Lycogala epidendrum. Tetrahedron Lett 35: 1689

    Article  Google Scholar 

  484. Hashimoto T, Yasuda A, Akazawa K, Takaoka S, Tori M, Asakawa Y (1994) Three novel dimethyl pyrroledicarboxylate, lycogarubins A-C, from the Myxomycetes Lycogala epidendrum. Tetrahedron Lett 35: 2559

    Article  CAS  Google Scholar 

  485. Nakanishi S, Matsuda Y, Iwahashi K, Kase H (1986) K-252b, c and d, potent inhibitors of protein kinase C from microbial origin. J Antibiot 39: 1066

    Article  CAS  Google Scholar 

  486. Yasuzawa T, lida T, Yoshida M, Hirayama N, Takahashi M, Shirahata K, Sano H (1986) The structures of the novel protein kinase C inhibitors K-252a, b, c and d. J Antibiot 39: 1072

    Article  CAS  Google Scholar 

  487. Hoshino T, Koyima Y, Hayashi T, Uchiyama T, Kaneko K (1993) A new metabolite of tryptophan. chromopyrrolic acid, produced by Chromobacterium violaceum. Biosci Biotech Biochem 57: 775

    Article  CAS  Google Scholar 

  488. Buchanan MS, Hashimoto T, Asakawa Y (1996) Acylglycerols from the slime mould, Lycogala epidendrum. Phytochemistry 41: 791

    Article  CAS  Google Scholar 

  489. Shiomi K, Yang H, Xu Q, Arai N, Namiki M, Hayashi M, Inokoshi J, TakeshimaH, Masuma, R, Komiyama K, Omura S (1995) Phenopyrrozin, a new radical scavanger produced byPenicilliumsp. FO-2047. J Antibiot48:1413

    Google Scholar 

  490. Rosset T, Sankhala RH, Stickings CE, Taylor MEU, Thomas R (1957) Studies in the biochemistry of microorganisms. 103. Metabolites of Alternaria tenuis Auct.: Culture filtrate products. Biochem J 67: 390

    Google Scholar 

  491. Meronuck RA, Steele JA, Mirocha CJ, Christensen CM (1972) Tenuazonic acid, a toxin produced by Alternaria alternata. Appl Microbiol 23: 613

    CAS  Google Scholar 

  492. Janardhanan KK, Husain A (1975) Isolation of tenuazonic acid, a phytotoxin from Alternaria alternata causing leaf blight of Datura innoxia. Indian J Exp Biol 13: 321

    CAS  Google Scholar 

  493. Mikami Y, Nishijima Y, Iimura H, Suzuki A, Tamura S (1971) Chemical studies on brown-spot disease of tobacco plants. Part I. Tenuazonic acid as a vivotoxin of Alternaria longipes. Agr Biol Chem 35: 611

    Article  CAS  Google Scholar 

  494. Iwasaki S, Muro H, Nozoe S, Okuda S, Sato Z (1972) Isolation of 3,4-dihydro-3,4,8trihydroxy-I(2H)-naphthalenone and tenuazonic acid from Pyricularia oryzae Cavarra. Tetrahedron Lett 1: 13

    Article  Google Scholar 

  495. Umetsu N, Kaji J, Tamari K (1972) Investigation on the toxin production by several blast fungus strains and isolation of tenuazonic acid as a novel toxin. Agric Biol Chem 36: 859;

    Article  Google Scholar 

  496. Umetsu N, Kaji J, Tamari K (1973) Isolation of tenuazonic acid from blast-diseased rice plants. ’bid 37: 451

    CAS  Google Scholar 

  497. Umetsu N, Kaji J, Aoyama K, Tamari K (1974) Toxins in blast-diseased rice plants. Agric Biol Chem 38: 1867

    Article  CAS  Google Scholar 

  498. Stickings CE (1959) Studies in the biochemistry of micro-organisms. 106. Metabolites of Alternaria tenuis Auct.: The structure of tenuazonic acid. Biochem J 72: 332

    CAS  Google Scholar 

  499. Stickings CE, Townsend RJ (1961) Studies in the biochemistry of micro-organisms. 108. Metabolites of Alternaria tenuis Auct.: The biosynthesis of tenuazonic acid. Biochem J 78: 412

    CAS  Google Scholar 

  500. Gatenbeck S, Sierankiewicz J (1973) On the biosynthesis of tenuazonic acid in Alternaria tenuis. Acta Chem Scand 27: 1825

    Article  CAS  Google Scholar 

  501. Holzapfel CW (1980) The biosynthesis of cyclopiazonic acid and related tetramic acids. In: Steyn PS (ed) The biosynthesis of mycotoxins. Academic Press, New York, pp 327–355

    Google Scholar 

  502. Kaczka EA, Gitterman CO, Dulaney EL, Smith MC, Hendlin D, Woodruff HB, Folkers K (1964) Discovery of inhibitory activity of tenuazonic acid for growth of human adenocarcinoma-1. Biochem Biophys Res Commun 14: 54

    Article  CAS  Google Scholar 

  503. Gitterman CO (1965) Antitumor, cytotoxic, and antibacterial activities of tenuazonic acid and congeneric tetramic acids. J Med Chem 8: 483

    Article  CAS  Google Scholar 

  504. Shigeura HT, Gordon CN (1963) The biological activity of tenuazonic acid. Biochemistry 2: 1132

    Article  CAS  Google Scholar 

  505. Battaner E, Vazquez D (1971) Inhibitors of protein biosynthesis by ribosomes of the 80-S type. Biochim Biophys Acta 254: 316

    Article  CAS  Google Scholar 

  506. Carrasco L, Vazquez D (1972) Survey of inhibitors in different steps of protein synthesis by mammalian ribosomes. J Antibiot 25: 732

    Article  CAS  Google Scholar 

  507. Muramatsu T, Umetsu N, Matsuda K, Tamari K (1974) Effect of tenuazonic acid on in vitro amino acid incorporation by rice embryo ribosomes. Agric Biol Chem 38: 2049

    Article  CAS  Google Scholar 

  508. Carrasco L, Vazquez D (1973) Differences in eukaryotic ribosomes detected by the selective action of an antibiotic. Biochem Biophys Acta 319: 209

    Article  CAS  Google Scholar 

  509. Lebrun MH, Nicolas L, Boutar M, Gaudemer F, Ranomenjanahary S, Gaudener A (1988) Relationships between the structure and the phytotoxicity of the fungal toxin tenuazonic acid Phytochemistry 27: 77 and references given therein

    Google Scholar 

  510. Matsuda M, Kobayashi T, Nagao S, Ohta T, Nozoe S (1996) Laccarin, a new alkaloid from the mushroom Zaccaria vinaceoavellanea. Heterocycles 43: 685

    Article  CAS  Google Scholar 

  511. Nowak A, Steffan B (1997) Physarorubinic acid, a polyenoyltetramic acid type plasmodial pigment from the slime mold Physarum polycephalum (Myxomycetes). Liebigs Ann Recl 1: 1817

    Article  Google Scholar 

  512. Dixon DJ, Ley SV, Longbottom DA (1999) Total synthesis of the plasmodial pigment physarorubinic acid, a polyenoyl tetramic acid. J Chem Soc Perkin Trans 1, 2231

    Article  Google Scholar 

  513. Nowak A, Steffan B (1998) Polycephalin B and C: Unusual tetramic acids from plasmodia of the slime mold Physarum polycephalum (Myxomycetes). Angew Chem 110: 3341; Angew Chem Int Ed 37: 3139

    Article  CAS  Google Scholar 

  514. Casser I, Steffan B, Steglich W (1987) Fungal pigments. Part 52. Chemistry of the plasmodial pigments of the slime mold Fuligo septica (myxomycetes). Angew Chem 99: 597; Angew Chem Int Ed Engl 26: 586

    Article  Google Scholar 

  515. Ley SV, Smith SC, Woodward PR (1992) Further reactions of t-butyl 3-oxobutanthionate and t-butyl 4-diethylphosphono-3-oxobutanthionate: Carbonyl coupling reactions, amination, use in the preparation of 3-acyltetramic acids and application to the total synthesis of fuligorubin A. Tetahedron 48: 1145

    Article  CAS  Google Scholar 

  516. Steglich W (1989) Slime moulds (Myxomycetes) as a source of new biologically active metabolites. Pure Appl Chem 61: 281

    Article  CAS  Google Scholar 

  517. Howard BH, Raistrick H (1954) Studies in the biochemistry of micro-organisms. 92. The colouring matters of Penicillium islandicum Sopp. Part 4. Iridoskyrin, rubroskyrin and erythroskyrin. Biochem J 57: 212

    CAS  Google Scholar 

  518. Shoji J, Shibata S (1964) The structure of erythroskyrine, a nitrogen-containing coloring matter of Penicillium islandicum Sopp. Chem and Ind (London) 419

    Google Scholar 

  519. Shoji J, Shibata S, Sankawa U, Taguchi H, Shibanuma Y (1965) Metabolic products of fungi. XXIV. The structure of erythroskyrine, a nitrogen-containing coloring matter of Penicillium islandicum Sopp. Chem Pharm Bull 13: 1240

    Article  CAS  Google Scholar 

  520. Ueno Y, Kato Y, Enomoto M (1975) Erythroskyrine, the third mycotoxin from Penicillium islandicum Scopp. Jpn J Exp Med 45: 525

    CAS  Google Scholar 

  521. Beutler JA, Hilton BD, Clark P, Tempesta MS, Corley DG (1988) Absolute and relative configuration of erythroskyrin. J Nat Prod 51: 562

    Article  CAS  Google Scholar 

  522. Dixon DJ, Ley SV, Gracza T, Szolcsanyi P (1999) Total synthesis of the polyenetetramic acid mycotoxin erythroskyrine. J Chem Soc Perkin Trans 1, 839

    Article  Google Scholar 

  523. Shibata S, Sankawa U, Taguchi H, Yamasaki K (1966) Biosynthesis of natural products. III. Biosynthesis of erythoskyrine, a coloring matter of Penicillium islandicum Sopp. Chem Pharm Bull 14: 474

    Article  CAS  Google Scholar 

  524. Ono M, Sakuda S, Suzuki A, Isogai A (1997) Aflastatin A, a novel inhibitor of aflatoxin production by aflatoxigenic fungi. J Antibiotics 50: 111;

    Article  CAS  Google Scholar 

  525. Sakuda S, Ono M, Furihata K, Nakayama J, Suzuki A, Isogai A (1996) Aflastatin A, a novel inhibitor of aflatoxin production of Aspergillus parasiticus fromStreptomyces.J Am Chem Soc118:7855

    Article  CAS  Google Scholar 

  526. Ono M, Sakuda S, Ikeda H, Furihata K, Nakayama J, Suzuki A, Isogai A (1998) Structures and biosynthesis of aflastatines: Novel inhibitors of aflatoxin production by Aspergillus parasiticus. J Antibiot 51: 1019

    Article  CAS  Google Scholar 

  527. Longbottom DA, Morrison AJ, Dixon DJ, Ley SV (2002) Total synthesis of polycephalin C and determination of the absolute configurations at the 3“,4” ring junction. Angew Chem 114: 2910; Angew Chem Int Ed Engl 41: 2786

    Article  CAS  Google Scholar 

  528. Vesonder RF, Tjarks LW, Rohwedder WK, Burmeister HR, Laugal JA (1979) Equisetin, an antibiotic from Fusarium equiseti NRRL 5537, identified as a derivative of N-methyl-2,4-pyrrolidone. J Antibiot 32: 759

    Article  CAS  Google Scholar 

  529. Phillips NJ, Goodwin JT, Fraiman A, Cole RJ, Lynn DG (1989) Characterization of the Fusarium toxin equisetin: The use of phenylboronates in structure assignment. J Am Chem Soc 111: 8223

    CAS  Google Scholar 

  530. Turos E, Audia JE, Danishefsky S (1989) Total synthesis of the Fusarium toxin equisetin: Proof of the stereohemical relationship of the tetramate and terpenoid sectors. J Am Chem Soc 111: 8231

    CAS  Google Scholar 

  531. Singh MP, Zaccardi J, Greenstein M (1998) LL-49F233a, a novel antibiotic produced by an unknown fungus: Biological and mechanistic activities. J Antibiot 51: 1109

    Google Scholar 

  532. Sugie Y, Dekker KA, Inagaki T, Kim Y-J, Sakakibara T, Sakemi S, Sugiura A, Brennan L, Duignan J, Sutcliffe JA, Kojima Y (2002) A novel antibiotic CJ-17,572 from a fungus, Pezicula sp. J Antibiot 55: 19

    Article  CAS  Google Scholar 

  533. Holzapfel CW (1968) The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium cyclopium Westling. Tetrahedron 24: 2101

    Article  CAS  Google Scholar 

  534. Kozikowski AP, Greco MN, Springer JP (1984) Total synthesis of the unique mycotoxin a-cyclopiazonic acid (a-CA): An unusual dimethylzinc-mediated replacement of a phenylthio substituent by a methyl group and a contrathermodynamic Raney nickel desulfurization reaction. J Am Chem Soc 106: 6873

    Article  CAS  Google Scholar 

  535. Muratake H, Natsume M (1985) Total synthesis of (¡À)-a-cyclopiazonic acid. Heterocycles 23: 1111

    Article  CAS  Google Scholar 

  536. van Rooyen PH (1992) Structure of a-cyclopiazonic acid. Acta Crystallogr C48:551

    Article  Google Scholar 

  537. McGrath RM, Steyn PS, Ferreira NP (1973) a-Acetyl-y-(ß-indolyl)methyltetramic acid. A biosynthetic intermediate of cyclopiazonic acid and of bis-secodehydrocyclopiazonic acid. J C S Chem Commun 812

    Google Scholar 

  538. Holzapfel CW, Hutchison RD, Wilkins DC (1970) The isolation and structure of two new indole derivatives from Penicillium cyclopium Westling. Tetrahedron 26: 5239

    Article  CAS  Google Scholar 

  539. Ohmomo S, Sugita M, Abe M (1973) Isolation of cyclopiazonic acid, cyclopiazonic acid imine and bissecodehydrocyclopiazonic acid from the cultures of Aspergillus versicolor (Vuill.) Tiraboshi. J Agric Chem Soc Jpn 47: 57

    CAS  Google Scholar 

  540. (a) Holzapfel CW, Gildenhuys PJ (1977) The synthesis of DL-ß-cyclopiazonic acid. S Afr J Chem 30: 125; (b) Holzapfel CW, Kruger FWH (1992) The synthesis of optically pure /3-cyclopiazonic acid, an indolic fungal metabolite. Aust J Chem 45: 99

    Google Scholar 

  541. McGrath RM, Steyn PS, Ferreira NP, Neethling DC (1976) Biosynthesis of cyclopiazonic acids in Penicillium cyclopium: The isolation of dimethylallylpyrophosphate: cyclo-acetoacetyltryptophanyl dimethylallyltransferase. Bioorg Chem 4: 11

    Article  Google Scholar 

  542. de Jesus AE, Steyn PS, Vleggaar R, Kirby GW, Varley MJ, Ferreira NP (1981) Biosynthesis of a-cyclopiazonic acid. Steric course of proton removal during the cyclisation of 0-cyclopiazonic acid in Penicillium griseofulvum. J Chem Soc Perkin Trans 1, 3292

    Article  Google Scholar 

  543. Steyn PS, Vleggaar R, Ferreira NP, Kirby GW, Verley MJ (1975) Steric course of proton removal during the cyclization of ß-cyclopiazonic acid in Penicillium cyclopium. J Chem Soc Chem Commun 465

    Google Scholar 

  544. Chalmers AA, Gorst-Allman CP, Steyn PS (1982) Biosynthesis of a-cyclopiazonc acid: Stereochemical aspects of D-ring formation. J Chem Soc Chem Commun 1367

    Google Scholar 

  545. Schabort JC, Wilkens DC, Holzapfel CW, Potgieter DJJ, Neitz AW (1971) ßCyclopiazonate oxydocyclase from Penicillium cyclopium. I. Assay methods, isolation and purification. Biochim Biophys Acta 250: 311

    Article  CAS  Google Scholar 

  546. Schabort JC, Potgieter DJJ (1971) ß-Cyclopiazonate oxydocyclase from Penicillium cyclopium. II. Studies on electron acceptors, inhibitors, enzyme kinetics, amino acid composition, flavin prosthetic group and other properties. Biochim Biophys Acta 250: 329

    Article  CAS  Google Scholar 

  547. Omura S, Tanaka H, Shimoi K, Liu JR (1994) Pyrrole propionic acid amide (cystamidine A) manufacture with Streptomyces, and its use as calpain inhibitor. Eur Pat Appl EP 569,122. Chem Abstr (1994) 120:105 131

    Google Scholar 

  548. Bihovsky R, Pendrak I (1996) Synthesis of cystamidin A (pyrrole-3-propanamide), a reported calpain inhibitor. Bioorg Med Chem Lett 6: 1541

    Article  CAS  Google Scholar 

  549. Keller-Schierlein W, Müller A, Hagmann L, Schneider U, Zähner H (1985) Stoffwechselprodukte von Mikroorganismen. 232. Mitt. (E)-3-(1H-Pyrrol-3-yl)-2-propensäure and (E)-3-(1H-Pyrrol-3-yl)-2-propensäureamid aus Streptomyces parvulus, Stamm T¨¹ 2480. Heiv Chim Acta 68: 559

    Article  Google Scholar 

  550. Kato S, Shindo K, Kawai H, Odagawa A, Matsuoka M, Mochizuki J (1993) Pyrrolostatin, a novel lipid peroxidation inhibitor from Streptomyces chrestomyceticus. J Antibiotics 46: 892

    Article  CAS  Google Scholar 

  551. Fumoto Y, Eguchi T, Uno H, Ono N (1999) Synthesis of pyrrolostatin and its analogues. J Org Chem 64: 6518

    Article  CAS  Google Scholar 

  552. Andersen RJ, Wolfe MS, Faulkner DJ (1974) Autotoxic antibiotic production by a marine Chromobacterium. Mar Biol (Berlin) 27: 281

    Article  CAS  Google Scholar 

  553. Shomura T, Amano S, Yoshida J, Ezaki N, Ito T, Niida T (1983) Actinosporangium vitaminophilum sp. nov. Int J Syst Bacteriol 33: 557

    Google Scholar 

  554. Ezaki N, Shomura T, Koyama M, Niwa T, Kojima M, Inouye S, Ito T, Niida T (1981) New chlorinated nitropyrrole antibiotics pyrrolomycin A and B (SF-2080 A and B). J Antibiot 34: 1363

    Article  CAS  Google Scholar 

  555. Koyama M, Kodama Y, Tsuruoka T, Ezaki N, Niwa T, Inouye S (1981) Structure and synthesis of pyrrolomycin A, a chlorinated nitropyrrole antibiotic. J Antibiot 34: 1569

    Article  CAS  Google Scholar 

  556. Umezawa K, Mimura S, Matsushima T, Muramatsu S, Sawa T, Takeuchi T (1982) Enhancement of haemolysis and cellular arachidonic acid release by pyrrolomycins. Biochem Biophys Res Commun 105: 82

    Google Scholar 

  557. Kaneda M, Nakamura S, Ezaki N, litaka Y (1981) Structure of pyrrolomycin B, a chlorinated nitropyrrole antibiotic. J Antibiot 34: 1366

    Article  CAS  Google Scholar 

  558. Yano K, Oono J, Mogi K, Asaoka T, Nakashima T (1987) Pyrroxamycin, a new antibiotic. Taxonomy, fermentation, isolation, structure determination and biological properties. J Antibiotics 40: 961

    Google Scholar 

  559. Nakamura H, Shiomi K, Iinuma H, Naganawa H, Obata T, Takeuchi T, Umezawa H, Takeuchi Y, Iitaka Y (1987) Isolation and characterization of a new antibiotic, dioxapyrrolomycin, related to pyrrolomycins. J Antibiotics 40:899

    Article  CAS  Google Scholar 

  560. Rengaraju S, Narayanan S, Ganju PL, Amin MA, Iyengar MRS, Itoh J, Takeuchi Y, Fujita K, Miyadoh S, Shomura T, Sezaki M, Kojima M (1985) A new antibiotic Al-R2081 related to pyrrolomycin B. Sci Reports of Meiji Seika Kenkyu Nenpo (Japan), 24: 48 [Chem Abstr (1987) 106: 152653]

    Google Scholar 

  561. Ono Y, Yano K, Asaoka T, Mogi K, Nakajima T (S. S. Pharm. Co. Ltd.) (1987) Antibiotic SS 46506A. Japan Pat 61 152 295. Chem Abstr (1987) 106:31379

    Google Scholar 

  562. Carter GT, Nietsche JA, Goodman JJ, Torrey MJ, Dunne TS, Borders DB, Testa RT (1987) LL-F42248ca, a novel chlorinated pyrrole antibioc. J Antibiotics 40: 233

    Article  CAS  Google Scholar 

  563. Masuda K, Suzuki K, Ishida-Okawara A, Mizuno S, Hotta K, Miyadoh S, Hara O, Koyama M (1990) Pyrrolomycin group antibiotics inhibit substance P-induced release of myeloperoxidase from human polymorphonuclear leukocytes. J Antibiotics 44: 533

    Google Scholar 

  564. Carter GT, Nietsche JA, Goodman JJ, Torrey MJ, Dunne TS, Siegel MM, Borders DB (1989) Direct biochemical nitration in the biosynthesis of dioxapyrrolomycin. A unique mechanism for the introduction of nitro groups in microbial products. J Chem Soc Chem Commun 1271

    Google Scholar 

  565. Ezaki N, Koyama M, Shomura T, Tsuruoka T, Inouye S (1983) Pyrrolomycins C, D and E, new members of pyrrolomycins. J Antibiot 36: 1263

    Article  CAS  Google Scholar 

  566. Koyama M, Ezaki N, Tsuruoka T, Inouye S (1983) Structural studies of pyrrolomycins C, D and E. J Antibiot 36: 1483

    Article  CAS  Google Scholar 

  567. Ezaki N, Koyama M, Kodama Y, Shomura T, Tashiro K, Tsuruoka T, Inouye S, Sakai S (1983) Pyrrolomycins F1, F2a, Feb and F2, new metabolites produced by the addition of bromine to the fermentation. J Antibiot 36: 1431

    Article  CAS  Google Scholar 

  568. Takeda R (1958) Structure of a new anibiotic, pyolutorin. J Am Chem Soc 80: 4749

    Article  CAS  Google Scholar 

  569. Takeda R (1959) Pseudomonas pigments. III. Derivatives of pyoluteorin. Bull Agr Chem Soc Japan 23: 126

    Article  CAS  Google Scholar 

  570. Takeda R (1959) Pseudomonas pigments. IV. The structure of pyoluteorin. Bull Agr Chem Soc Japan 23: 165

    Article  Google Scholar 

  571. Birch AJ, Hodge P, Rickards RW, Takeda R, Watson TR (1964) The structure of pyoluteorin. J Chem Soc 2641

    Google Scholar 

  572. Elix JA, Sargent MV (1967) The synthesis of some substituted pyoluteorins. J Chem Soc (C) 1718

    Google Scholar 

  573. Birchhall GR, Hughes CG, Rees AH (1970) Newer syntheses of the pyoluteorin antibiotics. Tetrahedron Lett 4879

    Google Scholar 

  574. Bailey K, Rees AH (1970) Pyoluteorin, a synthesis. Can J Chem 48: 2257

    Article  CAS  Google Scholar 

  575. Davis D, Hodge P (1970) A synthetic route to pyoluteorin. Tetrahedron Lett 1673

    Google Scholar 

  576. Bayley DM, Johnson RE (1970) The synthesis of pyoluteorin. Tetrahedron Lett 3555

    Google Scholar 

  577. Durham DG, Hughes CG, Rees AH (1972) The chlorination of pyrroles. Part III. Can J Chem 50: 3223

    Article  CAS  Google Scholar 

  578. Cue Jr BW, Dirlam JP, Czuba LJ, Windisch WW (1981) A practical synthesis of pyoluteorin. J Heterocycl Chem 18: 191

    Article  CAS  Google Scholar 

  579. Bayley DM, Johnson RE, Salvador UJ (1973) Pyrrole antibacterial agents. 1. Compounds related to pyoluteorin. J Med Chem 16: 1298

    Article  Google Scholar 

  580. 492.Utsumi Y, Furusaki A, Tomiie Y (1970) The crystal and molecular structure of O,O’,N-Trimethylpyoluteorin, C14 H13NC12. Bull Chem Soc Japan 43: 2640

    Google Scholar 

  581. Ohmori T, Hagiwara S, Ueda A, Minoda Y, Yamada K (1978) Production of pyoluteorin and its derivatives from n-paraffin by Pseudomonas aeruginosa S10B2. Agric Biol Chem 43: 2031

    Article  Google Scholar 

  582. Cuppels DA, Howell CR, Stipanovic RD, Stoessi A, Stothers JB (1986) Biosynthesis of pyoluteorin: A mixed polyketide tricarboxylic acid cycle origin demonstratted by [1,2-13C2]-acetate incorporation. Z Naturforsch 41c: 532

    Google Scholar 

  583. Burkholder PR, Pfister RM, Leitz FM (1966) Production of a pyrrole antibiotic by a marine bacterium. Appl Microbiol 14: 649

    CAS  Google Scholar 

  584. 496.Laatsch H, Pudleiner H (1989) Marine Bakterien, 1. Synthese von Pentabrompseudilin, einem cytotoxischen Phenylpyrrol aus Alteromonas luteo-violaceus. Liebigs Ann Chem 863

    Google Scholar 

  585. Lovell FM (1966) The structure of a bromine-rich marine antibiotic. J Am Chem Soc 88: 4510

    Article  Google Scholar 

  586. Hanessian S, Kaltenbronn JS (1966) Synthesis of a bromine-rich antibiotic. J Am Chem Soc 88: 4509

    Article  Google Scholar 

  587. ApSimon JW, Durham DG, Rees AH (1973) A new synthetic route to the marine an tibiotic of Chem Ind (London) 275

    Google Scholar 

  588. Pudleiner H, Laatsch H (1990) Marine Bakterien, II. Synthese cyclischer and sterisch gehinderter Pseudiline. Liebigs Ann Chem 423

    Google Scholar 

  589. Hanefeld U, Laatsch H (1991) Synthesis of isopentabromopseudilin. Liebigs Ann Chem 865

    Google Scholar 

  590. Renneberg B, Kellner M, Laatsch H (1993) Synthese halogenierter Benzyl- and Benzoylpyrole. Liebigs Ann Chem 847

    Google Scholar 

  591. Laatsch H, Pudleiner H, Pelizaeus B, Van Pée K-H (1994) Enzymatische Bromierung von Pseudilinen and verwandten Heteroarylphenolen mit der Chlorperoxidase aus Streptomyces aureofaciens Tü 24. Liebigs Ann Chem 65

    Google Scholar 

  592. Nogami T, Shigihara Y, Matsuda N, Takahashi Y, Naganawa H, Nakamura H, Hamada M, Muraoka Y, Kakita T, Iitaka Y, Takeuchi T (1990) Neopyrrolomycin, a new chlorinated phenylpyrrole antibiotic. J Antibiotics 43: 1192

    Article  CAS  Google Scholar 

  593. Tatsuta K, Itoh M (1993) Total synthesis of chlorinated phenylpyrrole antibiotics, (+)- and (-;)-neopyrrolomycins. Tetrahedron Lett 34: 8443

    Article  CAS  Google Scholar 

  594. Tatsuta K, Itoh M (1994) Total synthesis of (+)- and (-;)-neopyrrolomycins, chlorinated phenylpyrrole antibiotics. Bull Chem Soc Japan 67: 1449

    Article  CAS  Google Scholar 

  595. Tatsuta K, Itoh M (1994) Synthesis and antibacterial activities of less chlorinated analogs of neopyrrolomycin. J Antibiot 47: 602

    Article  CAS  Google Scholar 

  596. Imanaka H, Kousaka M, Tamura G, Arima K (1965) Studies on pyrrolnitrin, a new antibiotic. II. Taxonomic studies on pyrrolnitrin-producing strain. J Antibiot (Tokyo) A18: 205

    CAS  Google Scholar 

  597. Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agr Biol Chem (Tokyo) 28:575

    Article  CAS  Google Scholar 

  598. Arima K, Imanaka H, Kousaka M, Fukuda A, Tamura G (1965) Studies on pyrrolnitrin, a new antibiotic. I. Isolation and properties of pyrrolnitrin. J Antibiot (Tokyo) 18A: 201

    CAS  Google Scholar 

  599. Arima K, Tamura G, Imanaka H, Kosaka M, Fukuda A (Fujisawa Pharmaceutical Co., Ltd.) (1966) Pyrrolnitrin, a new antibiotic substance Japan 7838 (’66) Chem Abstr (1966) 65: 13 662b

    Google Scholar 

  600. Arima K, Tamura G, Imanaka H, Kosaka M, Fukuda A (Fujisawa Pharmaceutical Co., Ltd.) Pyrrolnitrin. Japan 21.750 (’67). Chem Abstr (1968) 68:38 175

    Google Scholar 

  601. Lively DH, Gorman M, Haney ME, Mabe JA (1966) Metabolism of tryptophans by Pseudomonas aureofaciens. I. Biosynthesis of pyrrolnitrin. Antimicrob Agents Chemother 462

    Google Scholar 

  602. Elander RP, Mabe JA, Hamill, RL, Gorman M (1968) Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species Appl Microbiol 16: 753

    CAS  Google Scholar 

  603. Elander RP, Mabe JA, Hamill RL, Gorman M (1971) Biosynthesis of pyrrolnitrins by analogue-resistant mutants of Pseudomonas fluorescens. Folia Microbiol (Prag) 16: 156 [Chem Abstr (1971) 75: 72 810]

    Google Scholar 

  604. Roitman JN, Mahoney NE, Janisiewicz WJ, Benson M (1990) A new chlorinated phenylpyrrole antibiotic produced by the antifungal bacterium Pseudomonas cepacia. J Agric Food Chem 38: 538

    Article  CAS  Google Scholar 

  605. Roitman JN, Mahoney NE, Janisiewicz WJ (1990) Production and composition of phenylpyrrole metabolites produced by Pseudomonas cepacia. Appl Microbiol Biotechnol 34: 381

    Article  CAS  Google Scholar 

  606. Fujisawa Pharmaceutical Co., Ltd (1966) Antibiotic pyrrolnitrin. Neth Appl 6.503.853 (1965) Chem Abstr (1966) 65: 18 434

    Google Scholar 

  607. Imanaka H, Kousaka M, Tamura G, Arima K (1965) Studies on pyrrolnitrin, a new antibiotic. III. Structure of pyrrolnitrin. J Antibiot (Tokyo) 18A: 207

    Google Scholar 

  608. Nakano H, Umio S, Kariyone K, Tanaka K, Kishimoto T, Noguchi H, Ueda I, Nakamura H, Morimoto Y (1966) Total synthesis of pyrrolnitrin, a new antibiotic. Tetrahedron Lett 737

    Google Scholar 

  609. Umio S, Kariyone K, Tanaka K et al. (1969) Total synthesis of pyrrolnitrin. Chem Pharm Bull (Tokyo) 17: I. Synthesis of 3-arylpyrrole derivatives by Knorr’s condensation. 559; II. Synthesis of ethyl 3-aryl-5-methyl-2-pyrrolecarboxylate. (1) 567; III. Synthesis of ethyl 3-aryl-5-methyl-2-pyrrolecarboxylate. (2). 576; IV. Synthesis of ethyl 3-aryl-5-methyl-2-pyrrolecarboxylate. (3). 582; VI. Synthesis of nitrochloro2-aminoacetophenones and 1-aryl-l,3-butanediones. 596; VII. Synthesis of 2,5dimethyl-3-arylpyrrole. 605; VIII. A new method of pyrrole ring closure using aminoacetal. 611; IX. Synthesis of dialkyl 3-aryl-2,5-pyrroledicarboxylates and alkyl ß-aryl-5-methyl-2-pyrrolecarboxylates. 616

    Google Scholar 

  610. Umio S, Kariyone K, Tanaka K, Ueda 1, Morimoto Y (1969) Total synthesis of pyrrolnitrin. V. Synthesis of pyrrolnitrin and its analogues. (1). Chem Pharm Bull 17: 588

    Google Scholar 

  611. Tanaka K, Kariyone K, Umio S (1969) Total synthesis of pyrrolnitrin. X. Synthesis of pyrrolnitrin. (2). Chem Pharm Bull 17: 622

    Article  CAS  Google Scholar 

  612. Gosteli J (1972) Eine neue Synthese des Antibioticums Pyrrolnitrin. Helv Chim Acta 55: 451

    Google Scholar 

  613. Morimoto Y, Hashimoto M, Hattori K (1968) The crystal structure of pyrrolnitrin. Tetrahedron Lett: 209

    Google Scholar 

  614. Gordee RS, Matthews TR (1969) Systemic antifungal activity of pyrrolnitrin. Appl Microbiol 17: 690

    CAS  Google Scholar 

  615. Nishida M, Matsubara T, Watanabe N (1965) Pyrrolnitrin. a new anifungal antibiotic. Microbiological and toxicological observations. J Antibiot A18: 211

    Google Scholar 

  616. Murphy PJ, Williams TL (1972) Biological inactivation of pyrrolnitrin. Identification and synthesis of pyrrolnitrin metabolites. J Med Chem 15: 137

    Article  CAS  Google Scholar 

  617. Gordee RS, Matthews TR (1967) Evaluation of the in vitro and in vivo antifungal activity of pyrrolnitrin. Antimicrob Agents Chemother 378

    Google Scholar 

  618. Nose M, Arima K (1969) On the mode of action of a new antifungal antibiotic, pyrrolnitrin. J Antibiot (Tokyo), 22: 135

    Article  CAS  Google Scholar 

  619. Lambowitz AM, Slayman CW (1972) Effect of pyrrolnitrin on electron transport and oxidative phosphorylation in mitochondria isolated from Neurospora crassa. J Bacteriol 112: 1020

    CAS  Google Scholar 

  620. Tripathi RK, Gottlieb D (1969) Mechanism of action of the antifungal antibiotic pyrrolnitrin. J Bacteriol: 100: 310

    CAS  Google Scholar 

  621. Wong DT, Airall JM (1970) The mode of action of antifungal agents: Effect of pyrrolnitrin on mitochondrial electron transport. J Antibiot 23: 55

    Article  CAS  Google Scholar 

  622. Wong DT, Horng J-S, Gordee RS (1971) Respiratory chain of a pathogenic fungus, Microsporum gypseum: Effect of the antifungal agent pyrrolnitrin. J Bacterio1106: 168

    Google Scholar 

  623. S, Kariyone K, Tanaka K, Kishimoto T, Nakamura H, Nishida M (1970) Structure-activity studies of pyrrolnitrin analogues. Chem Pharm Bull (Tokyo) 18: 1414

    Article  CAS  Google Scholar 

  624. Massa S, DiSanto R, Costi R, Mai A, Artico M, Retico A, Apuzzo G, Artico M, Simonetti G (1993) Antifungal agents. 4. Synthesis of neo-isopyrrolnitrin and other 3aryl-4-nitro-1H-pyrroles via TosMIC. Med Chem Res 3:192

    CAS  Google Scholar 

  625. Gorman M, Lively DH (1967) Pyrrolnitrin: A new mode of tryptophan metabolism. Antibiotics 2: 433

    CAS  Google Scholar 

  626. Hamill RL, Elander R, Mabe J, Gorman M (1967) Metabolism of tryptophan by Pseudomonas aureofaciens. V. Conversion of tryptophan to pyrrolnitrin. Antimicrob Agents Chemother 388

    Google Scholar 

  627. Hamill RL, Elander RP, Mabe JA, Gorman M (1970) Metabolism of tryptophan by Pseudomonas aureofaciens. III. Production of substituted pyrrolnitrins from tryptophan analogs. Appl Microbiol 19: 721

    CAS  Google Scholar 

  628. Arcamone F, Penco S, Delle Monache F (1969) Distamicina A - Nota III. Sintesi di analoghi contenenti modificazioni nelle catene laterali. Gazz chim ital 99: 620

    Google Scholar 

  629. Martin LL, Chang C-J, Floss HG, Mabe JA, Hagaman EW, Wenkert E (1972) A 13C-nuclear magnetic resonance study on the biosynthesis of pyrrolnitrin from tryptophan by Pseudomonas. J Am Chem Soc 94: 8942

    Article  CAS  Google Scholar 

  630. Chang CJ, Floss HG, Hook DJ, Mabe JA, Manni PE, Martin LL, Schröder K, Shieh TL (1981) The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas aureofaciens. J Antibiot 34: 555

    Article  CAS  Google Scholar 

  631. Hohaus K, Altmann A, Burd W, Fischer I, Hammer PE, Hill DS, Ligon JM, van Pée K-H (1997) NADH-dependent halogenases are more likely to be involved in metabolite biosynthesis than haloperoxidases. Angew Chem 109: 2102; Angew Chem Int Ed Engl 36: 2012

    Article  CAS  Google Scholar 

  632. Ajisaka M, Kariyone K, Jomon K, Yazawa H, Arima K (1969) Isolation of the bromo analogues of pyrrolnitrin from Pseudomonas pyrrolnitrica. Agr Biol Chem (Tokyo) 33: 294

    Article  CAS  Google Scholar 

  633. Ajisaka M, Kariyone K, Jomon K, Yazaw H (Fujisawa Pharm. Co.) (1972) Fermentative production of antibiotic bromonitrins A, B and C. Japan Pat 72 14 916. Chem Abstr (1972) 77: 60049

    Google Scholar 

  634. van Pee K-H, Salcher O, Fischer P, Bokel M, Lingens F (1983) The biosynthesis of brominated pyrrolnitrin derivatives by Pseudomonas aureofaciens. JAntibiot 36: 1735

    Article  Google Scholar 

  635. Hashimoto M, Hattori K (1968) A new metabolite from Pseudomonas pyrrolnitrica. Chem Pharm Bull (Tokyo) 16: 1144

    CAS  Google Scholar 

  636. Hashimoto M, Hattori K (1966) Isopyrrolnitrin: A metabolite from Pseudomonas. Bull Chem Soc Japan 39: 410

    Article  CAS  Google Scholar 

  637. Hashimoto M, Hattori K (1966) Oxypyrrolnitrin: A metabolite of Pseudomonas. Chem Pharm Bull (Tokyo) 14: 1314

    Article  CAS  Google Scholar 

  638. Shindo K, Yamagishi Y, Kawai H (1993) Thiazohalostatin, a new cytoprotective substance produced by Actinomadura. II. Physico-chemical properties and structure determination. J Antibiotics 46: 1638

    Article  CAS  Google Scholar 

  639. Kawamura N, Sawa R, Takahashi Y, Issiki K, Sawa T, Kinoshita N, Naganawa H, Hamada M, Takeuchi T (1995) Pyralomycins, new antibiotics from Actinomadura spiralis. J Antibiot 48: 435

    Article  CAS  Google Scholar 

  640. Kawamura N, Kinoshita N, Sawa R, Takahashi Y, Sawa T, Naganawa H, Hamada M, Takeuchi T (1996) Pyralomycins, novel antibiotics from Microtetraspora spiralis. I. Taxonomy and production. J Antibiot 49: 706

    Article  CAS  Google Scholar 

  641. Kawamura N, Sawa R, Takahashi Y, Isshiki K, Sawa T, Naganawa H,Takeuchi T (1996) Pyralomycins, novel antibiotics from Microtetraspora spiralis. II. Structure determination. J Antibiot 49: 651

    Article  CAS  Google Scholar 

  642. Kawamura N, Nakamura H, Sawa R, Takahashi Y, Sawa T, Naganawa H, Takeuchi T (1997) Pyralomycins, novel antibiotics from Microtetraspora spiralis. IV. Absolute configuration. J Antibiot 50: 147

    Article  CAS  Google Scholar 

  643. Tatsuta K, Takahashi M, Tanaka N (1999) The first total synthesis of pyralomycin 2c. Tetrahedon Lett 40: 1929

    Article  CAS  Google Scholar 

  644. Hayakawa Y, Kawakami K, Seto H, Furihata K (1992) Structure of a new antibiotic, roseophilin. Tetrahedron Lett 33: 2701

    Article  Google Scholar 

  645. Fürstner A, Weintritt H (1997) Total synthesis of the potent antitumor agent roseophilin: A concise approach to the macrotricyclic core. J Am Chem Soc 119: 2944;

    Article  Google Scholar 

  646. Fürstner A, Weintritt H (1998) Total synthesis of roseophilin. J Am Chem Soc 120: 2817

    Google Scholar 

  647. Mochizuki T, Itoh E, Shibata N, Nakatani S, Katoh T, Terashima S (1998) Studies toward the total synthesis of antibiotic roseophilin. A novel synthesis of the macrotricyclic part. Tetrahedron Lett 39: 6911

    Article  CAS  Google Scholar 

  648. Fürstner A, Gastner T, Weintritt H (1999) A second generation synthesis of roseophilin and chromophore analogues: J Org Chem 64: 2361

    Google Scholar 

  649. a. Robertson J, Hatley RJD (1999) Formal synthesis of roseophilin. Chem Commun 1455;

    Google Scholar 

  650. b. Robertson, J Hatley RJD, Watkin D (2000) Preparation of the tricyclic ketopyrrole core of roseophilin by radical macrocyclization and Paal-Knorr condensation. J Chem Soc Perkin Trans 1, 3389

    Article  Google Scholar 

  651. Harrington PE, Tius MA (2001) Synthesis and absolute stereochemistry of roseo-philin. J Am Chem Soc 123: 8509

    Google Scholar 

  652. Ninet L, Bénazet F, Charpentié Y, Dubost M, Florent J, Mancy D, Preud’Homme J, Threlfall TL, Vuillemin B, Wright DE, Abraham A, Cartier M, de Chezelles N, Godard C, Theilleux J (1972) La chlorobiocine (18.631 R.P.), nouvel antibiotique chloré produit par plusieurs espèces de streptomyces. C R Acad Sci Paris, 275: 455

    CAS  Google Scholar 

  653. Dolak L (1973) Structure of RP 18,631. J Antibiot 26: 121

    Article  CAS  Google Scholar 

  654. Kominek LA, Sebek OK (1974) Biosynthesis of novobiocin and related coumarin antibiotics. Dev Ind Microbiol 60

    Google Scholar 

  655. Kawaguchi H, Okanishi M, Miyaki T (1965) Coumermycin and its salts. US Pat. No. 3 201 386. Chem Abstr (1965) 63: 14011

    Google Scholar 

  656. Kawaguchi H, Tsukiura H, Okanishi M, Miyaki T, Ohmori T, Fujisawa K, Koshiyama H (1965) Studies on coumermycin. A new antibiotic. I. Production, isolation and characterization of coumermycin A1. J Antibiot (Tokyo) A18: 1

    Google Scholar 

  657. Kawaguchi H, Naito T, Tsukiura H (1965) Studies on coumermycin. A new antibiotic. II. Structure of coumermycin Al. J Antibiot (Tokyo) A18: 11

    Google Scholar 

  658. Kawaguchi H, Miyaki T, Tsukiura H (1965) Studies on coumermycin. A new antibiotic. III. Structure of coumermycin A2. J Antibiot (Tokyo) A18: 220

    Google Scholar 

  659. Berger J, Schocher AJ, Batcho AD, Pecherer B, Keller O, Maricq J, Kan AE, Vaterlaus BP, Furlenmeier A, Speigelberg H (1965) Production, isolation and synthesis of the coumermycins (sugordomycins), a new Streptomycete antibiotic complex. Antimicrob Agents Chemother 778

    Google Scholar 

  660. Hoffmann-LaRoche & Co., AG (1966) Preparation of antibiotics. Belg. Pat. 665 237. Chem Abstr (1966) 65: 11304

    Google Scholar 

  661. Kan AE (Hoffmann-LaRoche & Co., AG) (1970) Preparation of pure coumermycin Al. Ger. Offen. 1.905.328 (1969). Chem Abstr (1970) 72: 11385

    Google Scholar 

  662. Wick AE, Blount JF, Leimgruber W (1976) Stability determining factors in anomeric coumerosides. Tetrahedron 32: 2057

    Article  CAS  Google Scholar 

  663. Whitaker WD (Hoffmann-LaRoche & Co AG) (1968) 3-(Coumarinylaminocarbony1)- 2,4 - bis[4 - hydroxy - 8-methyl-7-[5,5-dimethyl-4-O-methyl-3-O-(5-methyl-2pyroyl)-a-L-lyxopyranosyloxy]-3-methylpyrole. Brit. Pat. 1 114 468. Chem Abstr (1968) 69: 67671

    Google Scholar 

  664. Furlenmeier A, Schocher AJ, Spiegelberg H, Vaterlaus BP, Batcho AD, Berger J, Keller O, Pecherer B (Hoffmann-La Roche & Co, AG) (1969) Sugordomycin antibiotics. Swiss Pat. 467,799. Chem Abstr (1969) 71: 39352

    Google Scholar 

  665. Laurin P, Ferroud D, Klich M, Dupuis-Hamelin C, Mauvais P, Lassaigne P, Bonnefoy A, Musicki B (1999) Synthesis and in vitro evaluation of novel highly potent coumarin inhibitors of gyrase B. Bioorg Med Chem Lett 9: 2079

    Article  CAS  Google Scholar 

  666. Umezawa H, Hamada M, Takita T, Naganawa H (Microbiochemical Research Foundation) (1971) Coumermycin A1, Jap. Pat. 71 15,675. Chem Abstr (1971) 75: 87081

    Google Scholar 

  667. Duma RJ, Warner JF (1969) In vitro activity of coumermycin Al against Mycobacterium tuberculosis var. hominis. Appl Microbiol 18: 404

    CAS  Google Scholar 

  668. Fedorko J, Katz S, Allnoch H (1969) In vitro activity of coumermycin AI. Appl Microbiol 18: 869

    CAS  Google Scholar 

  669. Michaeli D, Meyers BR, Weinstein L (1969) In vitro studies of the activity of coumermycin-Al against Staphylococci resistant to methicillin and cephalothin. J Infec Dis 120: 488

    Article  CAS  Google Scholar 

  670. Devine LF, Hagerman CR (1970) Spectra of susceptibility of Neisseria meningitidis to antimicrobial agents in vitro. Appl Microbiol 19: 329

    CAS  Google Scholar 

  671. Grunberg E, Cleeland R, Titsworth E (1966) Further observations on chemotherapeutic activity of coumermycin Al. I. Activity against Neisseria meningitidis type A and Meningopneumonitis. Antimicrob Agents Chemother 397

    Google Scholar 

  672. Michaeli D, Meyers BR, Weinstein L (1969) Microbiological and pharmacological study of a new antibiotic, coumermycin A1. Antimicrob Agents Chemother 463

    Google Scholar 

  673. Gellert M, O’dea MH, Itoh T, Tomizawa J (1976) Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci USA 73: 4474

    Article  CAS  Google Scholar 

  674. Ferroud D, Collard J, Klich M, Dupuis-Hamelin C, Mauvais P, Lassaigne P, Bonnefoy A, Musicki B (1999) Synthesis and biological evaluation of coumarincarboxylic acids as inhibitors of gyrase B. L—Rhamnose as an effective substitute for L-noviose. Bioorg Med Chem Lett 9: 2881

    Article  CAS  Google Scholar 

  675. Ràd1 S (1990) Structure-ativity relationships in DNA gyrase inhibitors. Pharmac Ther 48: 1 and refeences given therein

    Google Scholar 

  676. Kaplan SA (1970) Pharmacokinetic profile of coumermycin Al. J Pharm Sci 59: 309

    Article  CAS  Google Scholar 

  677. Newmark HL, Berger J (1970) Coumermycin A1-Biopharmaceutical studies I. J Pharm Sci 59: 1246

    Article  CAS  Google Scholar 

  678. Newmark HL, Berger J, Carstensen JT (1970) Coumermycin Al - Biopharmaceutical studies II. J Pharm Sci 59: 1249

    Article  CAS  Google Scholar 

  679. Price KE, Chisholm DR, Godfrey JC, Misiek M, Gourevitch A (1970) Semisynthetic coumermycins: Structure-activity relationships. Appl Microbiol 19: 14

    CAS  Google Scholar 

  680. Keil JG, Godfrey JC, Cron MJ, Hooper IR, Nettleton DE, Price KE, Schmitz H (1971) Structure-activity relations in chemically modified coumermycin. Pure Appl Chem 28: 571

    Article  CAS  Google Scholar 

  681. Scannell J, Kong YL (1969) Biosynthesis of coumermycin Al: Incorporation of Lproline in the pyrrole groups. Antimicrob Agents Chemother 139

    Google Scholar 

  682. Celmer WD, Cullen WP, Moppett CE, Jefferson MT, Huang LH, Shibakawa R, Tone J (Pfizer Inc., New York) (1979) Antibiotics produced by new species of Nocardia. US Pat. 4 148 883. Chem Abstr (1979) 91: 54595

    Google Scholar 

  683. Celmer WD, Chmumy GN, Moppett CE, Ware RS, Watts PS, Whipple EB (1980) Structure of natural antibiotic CP-47,444. J Am Chem Soc 102: 4203

    Article  CAS  Google Scholar 

  684. Whaley HA, Chidester CG, Mizsak SA, Wnuk RJ (1980) Nodusmicin: The structure of a new antibiotic. Tetrahedron Lett 21: 3659

    Article  CAS  Google Scholar 

  685. Whaley HA, Coats JH (Upjohn Co.) (1983) Antibiotic composition of matter. US 4,351,769, 1982. Chem Abstr (1983) 98: 15 465

    Google Scholar 

  686. Cane DE, Yang C-C (1985) Nargenicin biosynthesis: Late stage oxidations and absolute configuration. J Antibiot 38: 423

    Article  CAS  Google Scholar 

  687. Magerlein BJ, Reid RJ (1982) Synthesis of 18-deoxynargenicin Al (antibiotic 367c) from nargenicin Al. J Antibiot 35: 254

    CAS  Google Scholar 

  688. Plata DJ, Kallmerten J (1988) Total synthesis of (+)-18-deoxynargenicin Al. J Am Chem Soc 110: 4041

    Article  CAS  Google Scholar 

  689. Cane DE, Yang C-C (1984) Biosynthetic origin of the carbon skeleton and oxygen atoms of nargenicin Al. J Am Chem Soc 106: 784

    Article  CAS  Google Scholar 

  690. Snyder WC, Rinehart Jr KL (1984) Biosynthesis of nargenicin and nodusmicin. J Am Chem Soc 106: 787

    Article  CAS  Google Scholar 

  691. Cane DE, Tan W, Ott WR (1993) Nergenicin biosynthesis. Incorporation of polyketide chain, elongation, intermediates, and support for a proposed intramolecular Diels-Alder Cyclization. J Am Chem Soc 115: 527

    Article  CAS  Google Scholar 

  692. Takiguchi Y, Mishima H, Okuda M, Terao M (1980) Milbemycins, a new family of macrolide antibiotics: Fermentation, isolation and physico-chemical properties. J Antibiot 33: 1120

    Article  CAS  Google Scholar 

  693. Ding W, Williams DR, Northcote P, Siegel MM, Tsao R, Ashcroft J, Morton GO, Alluri M, Abbanat D, Maiese WM, Ellestad GA (1994) Pyrroindomycins, novel antibiotics produced by Streptomyces rugosporus sp. LL-42D005. J Antibiotics 47: 1250

    Article  CAS  Google Scholar 

  694. Singh MP, Petersen PJ, Jacobus NV, Mroczenski-Wildey MJ, Maiese WM, Greenstein M, Steinberg DA (1994) Pyrroindomycins, novel antibiotics produced by Streptomyces rugosporus LL-42D005: II. Biological activities. J Antibiotics 47: 1258

    Article  CAS  Google Scholar 

  695. Schönewolf M, Grabley S, Hütter K, Machinek R, Wink J, Zeeck A, Rohr J (1991) Glycerinopyrin, a novel metabolite from Streptomyces violaceus. Liebigs Ann Chem 77

    Google Scholar 

  696. Schönewolf M, Rohr J (1991) Biogenesis of the carbon framework in glycerinopyrin: A new type biosynthesis pathway of pyrrole. Angew Chem 103: 211; Angew Chem Int Ed Engl 30: 183

    Article  Google Scholar 

  697. Kikuchi M, Kumagai K, Ishida N, Ito Y, Yamaguchi T, Furumai T, Okuda T (1965) Isolation, purification, and properties of kikumycins A and B. J Antibiot A18: 243

    Google Scholar 

  698. Takaishi T, Sugawara Y, Suzuki M (1972) Structure of kikumycins A and B. Tetrahedron Lett 1873

    Google Scholar 

  699. Takaishi T, Suzuki M, Tatematsu A (1974) Mass spectrometry of antibiotic kikumycin A, B and related Mass Spectrom 9: 635

    Article  CAS  Google Scholar 

  700. Lee M, Lown JW (1987) Synthesis of (4S)- and (4R)-methyl 2 amino-1-pyrroline-5carboxylates and their application to the preparation of (4S)-(+)- and (4R)-(-)dihydrokikumycin B. J Org Chem 52: 5717

    Article  CAS  Google Scholar 

  701. Finlay AC, Hochstein FA, Sobin BA, Murphy FX (1951) Netropsin. a new anibiotic produced by a Streptomyces. J Am Chem Soc 73: 341

    Article  CAS  Google Scholar 

  702. Watanabe K (1956) Sinanomycin (Netropsin) produced by Streptomyces sp. No. 7618. J Antibiotics (Tokyo) A9: 102

    Google Scholar 

  703. Weiss MJ, Webb JS, Smith Jr JM (1957) The structure of antibiotic T-1384. Synthesis of the degradation fragments. J Am Chem Soc 79: 1266

    Article  CAS  Google Scholar 

  704. Thrum H (1959) Eine neue, von einer Spezies der Streptomycetes-reticuli-Gruppe gebildete Antibiotikakombination. Naturwiss 46: 87

    Article  Google Scholar 

  705. van Tamelen EE, White DM, Kogon IC, Powell ADG (1956) Structural studies on the antibiotic netropsin. J Am Chem Soc 78: 2157

    Article  Google Scholar 

  706. Waller CW, Wolf CF, Stein WJ, Hutschings BL (1957) The structure of antibiotic T1384. J Am Chem Soc 79: 1265

    Article  CAS  Google Scholar 

  707. Julia M, Joseph N (1956) Premières études sur la structure chimique d’un nouvel antibiotique, la congocidine. Compt Rend 243: 961

    CAS  Google Scholar 

  708. Nakamura S, Yonehara H, Umezawa S (1964) On the structure of netropsin. J Antibiot A17: 220

    Google Scholar 

  709. Cosar C, Ninet L, Pinnert-Sindico S, Preud’Homme J (1952) Activité trypanocide d’un antibiotique produit par un streptomyces. Compt Rend 234: 1498

    CAS  Google Scholar 

  710. a.Julia M, Préau-Joseph N (1963) Structure et synthèse de la congocidine. Compt Rend. 257: 1115;

    CAS  Google Scholar 

  711. b.Julia M, Préau-Joseph N (1967) Amidines et guanidines apparentées à la congocidine. I. Structure de la congocidine. Bull Soc Chim Fr 4348

    Google Scholar 

  712. Lown JW, Krowicki K (1985) Efficient total synthesis of the oligopeptide antibiotics netropsin and distamycin. J Org Chem 50: 3774

    Article  CAS  Google Scholar 

  713. Wildfeuer ME (1964) The biosynthesis of netropsin. Diss. Abstr. University Ann Arbor, Mich. 24: 3090. [Chem Abstr (1964) 60: 14854]

    Google Scholar 

  714. Arcamone F, Orezzi PG, Barbieri W, Nicolella V, Penco S (1967) Distamicina A - Nota I. Isolamento e struttura dell’agente antivirale distamicina A. Gazz chim ital 97: 1097

    CAS  Google Scholar 

  715. Arcamone F, Penco S, Orezzi P, Nicolella V, Pirelli A (1964) Structure and synthesis of Distamycin A. Nature 203: 1064

    Article  CAS  Google Scholar 

  716. Penco S, Redaelli S, Arcamone F (1967) Distamicina A - Nota II. Sintesi totale. Gazz chim ital 97: 1110

    CAS  Google Scholar 

  717. Grokhovskii SL, Zhuze AL, Gottikh BP (1975) Ligands possessing affinity for definite pairs of DNA bases. I. Synthesis of distamycin A and its analogs with different numbers of N-methyl and N-propylpyrrole residues in the molecule. Bioorg Khim 1: 1616

    CAS  Google Scholar 

  718. Bialer M, Yagen B, Mechoulam R (1978) A total synthesis of distamycin A (V), an antiviral antibiotic. Tetrahedron 34: 2389

    Article  CAS  Google Scholar 

  719. Grehn L, Ragnarsson U (1981) Novel efficient total synthesis of antiviral antibiotic distamycin A. J Org Chem 46: 3492

    Article  CAS  Google Scholar 

  720. Arcamone F, Penco S, Delle Monache F (1969) Distamicina A - Nota III. Sintesi di analoghi contenenti modificazioni nelle catene laterali. Gazz chim ital 99: 620

    CAS  Google Scholar 

  721. Arcamone F, Nicolella V, Penco S, Redaelli S (1969) Distamicina A - Nota III. Sintesi di analoghi con diverso numero di resti dell’acido l-metil-4-amminopirrolo2-carbossilico. Gazz chim ital 99: 632

    CAS  Google Scholar 

  722. Bialer M, Yagen B, Mechoulam R, Becker Y (1979) Structure-activity relationships of pyrrole amidine antiviral antibiotics. 1. Modifications of the alkylamidine side chain. J Med Chem 22: 1296

    Article  CAS  Google Scholar 

  723. Lown JW, Krowicki K, Bhat UG, Skorobogaty A, Ward B, Dabrowiak JC (1986) Molecular recognition between oligopeptides and nucleic acids: Novel imidazolecontaining oligopeptides related to netropsin that exhibit altered DNA sequence specificity. Biochemistry 25: 7408

    Article  CAS  Google Scholar 

  724. Cozzi P, Beria I, Caldarelli M, Capolongo L, Geroni C, Mongelli N (2000) Cytotoxic a-bromoacrylic derivatives of distamycin analogues modified at the amidino moiety. Bioorg Med Chem Lett 10: 1273

    Article  CAS  Google Scholar 

  725. Cozzi P, Beria I, Caldarelli M, Geroni C, Mongelli N, Pennella G (2000) Cytotoxic Halogenoacrylic derivatives of distamycin A. Bioorg Med Chem Lett 10: 1269

    Article  CAS  Google Scholar 

  726. Cozzi P, Beria I, Caldarelli M, Capolongo L, Geroni C, Mazzini S, Ragg E (2000) Phenyl sulfur mustard derivatives of distamycin A. Bioorg Med Chem Lett 10: 1653

    Article  CAS  Google Scholar 

  727. Chandra P (1974) Molecular approaches for designing antiviral and antitumor compounds. Top Curr Chem 52: 99 and references given therein

    Google Scholar 

  728. Hahn FE (1975) Distamycin A and netropsin in Corcoran JW, Hahn FE (eds) Antibiotics. Mechanism of Action of Antimicrobial and Antitumor Agents, vol 3. Springer Verlag, New York, pp 79–100 and references given therein

    Google Scholar 

  729. Zimmer C (1975) Effects of the antibiotics netropsin and distamycin A on the structure and function of nucleic acids: Progr Nucleic Acid Res Mol Bio115: 285 and references given therein

    Google Scholar 

  730. Wartell RM, Larson JE, Wells RE (1974) Netropsin. Specific probe for A-T regions of duplex deoxyribonucleic acid. J Biol Chem 249: 6719

    CAS  Google Scholar 

  731. Kopka ML, Yoon C, Goodsell D, Pjura P, Dickerson RE (1985) The molecular origin of DNA-drug specifity in netropsin and distamycin. Proc Natl Acad Sci USA 82: 1376

    Article  CAS  Google Scholar 

  732. Baker BF, Dervan PB (1985) Sequence-specific cleavage of double-helical DNA by N-bromoacetyl-distamycin. J Am Chem Soc 107: 8266

    Article  CAS  Google Scholar 

  733. Zimmer C, Wähnert U (1986) Nonintercalating DNA-binding ligands: Specifity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Progr Biophys Mol Biol 47: 31

    Article  CAS  Google Scholar 

  734. Patel DJ, Shapiro L (1986) Sequence-dependent recognition of DNA duplexes. Netropsin complexation to the AATT site of the d(G-G-A-A-T-T-C-C) duplex in aqueous solution. J Biol Chem 261: 1230

    CAS  Google Scholar 

  735. Klevit RE, Wemmer DE, Reid BR (1986) 1H NMR studies on the inteaction between distamycin A and a symmetrical DNA dodecamer. Biochemistry 25: 3296

    Article  CAS  Google Scholar 

  736. Lown JW, Kowicki K, Bath UG, Skorobogaty A, Ward B, Dabrowiak JC (1986) Molecular recognition between oligopeptides and nucleic acids: Novel imidazolecontaining oligopeptides related to netropsin that exhibit altered DNA sequence specifity. Biochemistry 25: 7408

    Article  CAS  Google Scholar 

  737. Lee M, Krowicki K, Hartley JA, Pon RT, Lown JW (1988) Molecular regognition between oligopeptides and nucleic acids: Influence of van der Waals contacts in determining the 3’-terminus of DNA sequences read by monocationic lexitropsins. J Am Chem Soc 110: 3641

    Article  CAS  Google Scholar 

  738. Probst GW, Hoehn MM, Woods BL (1965) Anthelvencins, new antibotics with anthelmintic properties. Antimicrob Agents Chemother 789

    Google Scholar 

  739. Lee M, Shea RG, Hartley JA, Kissinger K, Pon RT, Vesnaver G, Breslauer KJ, Dabrowiak JC, Lown JW (1989) Molecular recognition between oligopeptides and nucleic acids: Sequence-specific binding of the naturally occurring antibiotic (4S)(+)-anthelvencin A and its (4R)-(—)-enantiomer to deoxyribonucleic acids deduced from ’H NMR, footprinting, and thermodynamic data. J Am Chem Soc 111: 345

    Article  CAS  Google Scholar 

  740. Lam KS, Hesler GA, Gustayson DR, Berry RL, Tomita K, MacBeth JL, Forenza S (1996) Pyrrolosporin A, a new antitumor antibiotic from Micromonospora sp. C39217–R109-7 I. Taxonomy of the producing organism, fermentation and biological activity. J Antibiotics 49: 860

    Article  CAS  Google Scholar 

  741. Schröder DR, Colson KL, Klohr SE, Lee MS, Matson JA, Brinen LS, Clardy J (1996) Pyrrolosporin A, a new antitumor antibiotic from Micromonospora sp. C39217–R109-7. II. Isolation, physico-chemical properties, spectroscopic study and X-ray analysis. J Antibiot 49: 865

    Article  Google Scholar 

  742. Deschamps M, Floc HF, Jung G, Margraff R (Rhone-Poulenc Sante) (1988) Immunosuppressive compounds, their preparation by cultivating Streptomyces (CBS 162.86) and pharmaceutical compositions containing them. Eur Pat Appl EP 246,975. Chem Abstr (1988) 109: 21631

    Google Scholar 

  743. Andres N, Wolf H, Zähner H, Rössner E, Zeeck A, König WA, Sinnwell V (1989) Stoffwechselprodukte von Mikroorganismen. 253. Mitt.: Hormaomycin, ein neues Peptidlacton mit morphogener Aktivität auf Streptomyceten. Hely Chim Acta 72: 426

    Article  CAS  Google Scholar 

  744. Rössner E, Zeeck A, König WA (1990) Elucidation of the structure of hormaomycin. Angew Chem 102: 84; Angew Chem Int Ed Engl 29: 64

    Article  Google Scholar 

  745. Kavai Y, Furihata K, Seto H, Otake N (1985) The structure of a new antibiotic, chromoxymycin. Tetrahedron Lett 26: 3273

    Article  Google Scholar 

  746. S¨¦quin U, Furukawa M (1978) The structure of the antibiotic hedamycin. III13CNMR spectra of hedamycin and kidamycin. Tetrahedon 34: 3623

    Article  Google Scholar 

  747. Reed PW, Lardy HA (1972) A-23187: a divalent cation ionophore. J Biol Chem 247: 6970

    CAS  Google Scholar 

  748. Chaney MO, Demarco PV, Jones ND, Occolowitz JL (1974) The structure of A23187, a divalent cation ionophore. J Am Chem Soc 96: 1932

    Article  CAS  Google Scholar 

  749. Cresp TM, Probert CL, Sondheimer F (1978) An approach to the synthesis of ionophores related to A23187. Tetrahedron Lett 3955

    Google Scholar 

  750. Grieco PA, Kanai K, Williams E (1979) Studies directed the total synthesis of calcimycin (A-23187). Heterocycles 12: 1623

    Article  Google Scholar 

  751. Evans DA, Sacks CE, Kleschick WA, Taber TR (1979) Polyether antibiotics synthesis. Total synthesis and absolute configuration of the ionophore A-23187. J Am Chem Soc 101: 6789

    Article  CAS  Google Scholar 

  752. Grieco PA, Williams E, Tanaka H, Gilman SJ (1980) Elaboration of the C(3)-C(12) carbon fragment of calcimycin (A-23187). Formal synthesis of calcimycin. J Org Chem 45: 3537

    Article  CAS  Google Scholar 

  753. Hanessian S, Tyler PC, Chapleur Y (1981) Reaction of lithium dimethylcuprate with conformationally biased ß-acyloxy enol esters — Regio and stereocontrolled access to functionalized six-carbon chiral synthons. Tetrahedron Lett 22: 4583

    Article  CAS  Google Scholar 

  754. Martinez GR, Grieco PA, Williams E, Kanai K, Srinivasan CV (1982) Stereocontrolled total synthesis of antibiotic A-23187 (calcimycin). J Am Chem Soc 104: 1436

    Article  CAS  Google Scholar 

  755. Hoppe D (1982) Total Synthese von Calcimycin. Nach Chem Tech Lab 30: 581 and references given therein

    Google Scholar 

  756. Nakahara Y, Fujita A, Ogawa T (1984) Total Synthesis of Antibiotic A23187 (Calcimycin) from D-Glucose. J Carbohydr Chem 3: 487

    Article  CAS  Google Scholar 

  757. Nakahara Y, Fujita A, Beppu K, Ogawa T (1986) Total synthesis of antibiotic A23187 (calcimycin) from D-glucose. Tetrahedron 42: 6465

    Article  CAS  Google Scholar 

  758. Negri DP, Kishi Y (1987) A total synthesis of polyether antibiotic (—)-A23187 (calcimycin). Tetrahedron Lett 28: 1063

    Article  CAS  Google Scholar 

  759. Boeckman Jr RK, Charette AB, Asberom T, Johnston BH (1987) A convergent general synthetic protocol for construction of spirocyclic ketal ionophores: An application to the total synthesis of (—)-A23187 (calcimycin). J Am Chem Soc 109: 7553

    Article  CAS  Google Scholar 

  760. Ziegler FE, Cain DM (1989) Formal synthesis of (—)-calcimycin (A-23187) via the 3methyl-y-butyrolactone approach. J Org Chem 54: 3347

    Article  CAS  Google Scholar 

  761. Boeckman Jr RK, Charette AB, Asberom T, Johnston BH (1991) The chemistry of cyclic vinyl ethers. 6. Total synthesis of polyether ionophore antibiotics of the calcimyin (A-23187) class. J Am Chem Soc 113: 5337

    Article  CAS  Google Scholar 

  762. Pfeiffer DR, Taylor RW, Lardy HA (1978) Ionphore A23187; Cation binding and transport properties. Ann N Y Acad Sci 307: 402 and references given therein

    Google Scholar 

  763. Tissier C, Juillard J, Dupin M, Jeminet G (1979) Mode d’action de la calcimycine (A. 23187). I. Equilibre avec les ions alcalins et alcalino-terreux en milieu homog¨¨ne. J Chim Phys 76: 611

    CAS  Google Scholar 

  764. Thomas TP, Pfeiffer DR, Taylor RW (1987) Formation and dissociation kinetics of nickel(II) with ionophore A23187 in 80% methanol-water. J Am Chem Soc 109: 6670

    Article  CAS  Google Scholar 

  765. Pfeiffer DR, Reed PW, Lardy HA (1974) Ultraviolet and fluorescent spectral properties of the divalent cation chromophore A23187 and its metal ion complexes. Biochemistry 19: 4007

    Article  Google Scholar 

  766. Tissier C, Juillard J, Boyd DW, Albrecht-Gary AM (1985) Mode of action of calcimycin (A23187) — II — A study of its interactions with alkali and alkali-earth cations in methanol-water mixtures. J Chim Phys 82: 899

    Article  CAS  Google Scholar 

  767. Chapman CJ, Puri AK, Taylor RW, Pfeiffer DR (1987) Equilibria between ionophore A23187 and divalent cations: Stability of 1:1 complexes in solutions of 80% methanol/water. Biochemistry 26: 5009

    Article  CAS  Google Scholar 

  768. Nelson A (1991) Electrochemical studies of Antibiotic 23187 (A23187). Mediated permeability to divalent heavy-metal ions in phospholipid monolayers adsorbed on mercury electrodes. J Chem Soc Faraday Trans: Phys Chem 87: 1851

    Article  CAS  Google Scholar 

  769. Pfeiffer DR, Deber CM (1979) Isosteric metal complexes of ionophore A23187. A basis for cation selectivity. FEBS Lett 105: 360

    Article  CAS  Google Scholar 

  770. Smith GD, Duax WL (1976) Crystal and molecular structure of the calcium ion complex of A23187. J Am Chem Soc 98: 1578

    Article  CAS  Google Scholar 

  771. All¨¦aume M, Barrans Y (1985) Structure cristalline du complexe de magn¨¦sium de la calcimycine (A. 23187). Can J Chem 63: 3482

    Article  Google Scholar 

  772. Kolber MA, Haynes DH (1981) Fluorescence study of the divalent cation-transport mechanisn of ionophore A23187 in phospholipid membranes. Biophys J 36: 369

    Article  CAS  Google Scholar 

  773. Yaginuma S, Awata M, Muto N, Kinoshita K, Mizuno K (1987) A novel polyether antibiotic, AC7230 (3-hydroxycezomycin or its stereoisomer). J Antibiot 40: 239

    Article  CAS  Google Scholar 

  774. David L, Kergomard A (1982) Production by controlled biosynthesis of a novel ionophore antibiotic, cezomycin (Demethylamino A23187). J Antibiot 35: 1409

    Article  CAS  Google Scholar 

  775. Westley JW, Liu C-M, Blount JF, Sello LH, Troupe N, Miller PA (1983) Isolation and characterization of a novel polyether antibiotic of the pyrrolether class. Antibiotic X-14885A. J Antibiotics 36: 1275

    Article  CAS  Google Scholar 

  776. Liu C-M, Chin M, Prosser B La T, Palleroni NJ, Westley JW, Miller PA (1983) X-14885A. a novel divalent cation ionophore produced by a Streptomyces culture: Discovery, fermentation, biological as well as ionophore properties and taxonomy of the producing culture. J Antibiot 36: 1118

    Article  CAS  Google Scholar 

  777. Albrecht-Gary AM, Blanc-Parasote S, Boyd DW, Dauphin G, Jeminet G, Juillard J, Prudhomme M, Tissier C (1989) X-14547 A: An ionophore closely related to calcimycin (A-23187). NMR, thermodynamic, and kinetic studies of cation selectivity. J Am Chem Soc 111: 8598

    Article  CAS  Google Scholar 

  778. Celmer WD, Cullen WP, Maeda H, Tone J (1986) Polyether antibiotic from Streptomyces. U S Pat 4,547, 523. Chem Abstr (1986) 104: 49 844

    Google Scholar 

  779. Diez-Martin D, Kotecha NR, Ley SV, Mantegani S, Men¨¦ndez JC, Organ HM, White AD, Banks BJ (1992) Total synthesis of the ionophore antibiotic CP-61,405 (routiennocin). Tetrahedron 48: 7899

    Article  CAS  Google Scholar 

  780. Edwards MP, Ley SV, Lister SG, Palmer BD, Williams DJ (1984) Total synthesis of ionophore antibiotic X-145474 (Indamomycin). J Org Chem 49: 3503

    Article  CAS  Google Scholar 

  781. Westley JW, Evans Jr. RH, Liu C-M, Hermann T, Blount JF (1978) Structure of antibiotic X-14547 A, a carboxylic acid ionophore produced by Streptomyces antibioticus NRRL 8167. J Am Chem Soc 1006784

    Article  CAS  Google Scholar 

  782. Liu C-M, Hermann TE, Liu M, Bull DN, Palleroni NJ, Prosser B La T, Westley JW, Miller PA (1979) X-14547A, a new ionophorous antibiotic produced by Streptomyces antibioticus NRRL 8167. J Antibiot 32: 95

    Article  CAS  Google Scholar 

  783. Westley JW, Evans Jr. RH, Sello LH, Troupe N, Liu C-M, Blount JF (1979) Isolation and characterization of antibiotic X-14547A. A novel monocarboxylic acid ionophore produced by Streptomyces antibioticus NRRL 8167. J Antibiot 32: 100

    Article  CAS  Google Scholar 

  784. Nicolaou KC, Papahatjis DP, Claremon DA, Dolle III, RE (1981) Total synthesis of ionophore antibiotic X-14547A. 1. Enantioselective synthesis of the tetrahydropyran and tetrahydroindan building blocks. J Am Chem Soc 103:6967;

    Article  CAS  Google Scholar 

  785. Nicolaou KC, Claremon DA, Papahatjis DP, Magolda RL (1981) Total synthesis of ionophore antibiotic X-14547 A. Part 2. Coupling of the tetrahydropyran and tetrahydroindan systems and construction of the butadienyl and ketopyrrole moietiesIbid 103: 6969

    CAS  Google Scholar 

  786. Roush WR, Peseckis SM, Waits AE (1984) Synthesis of antibiotic X-14547 A. J Org Chem 49: 3429

    Article  CAS  Google Scholar 

  787. Nicolaou KC, Papahatjis DP, Claremon DA, Magolda RL, Dolle RE (1985) Total synthesis of ionophore antibiotic X-14547A. J Org Chem 50: 1440

    Article  CAS  Google Scholar 

  788. Boeckman Jr. RK, Enholm EJ, Demko DM, Charette AB (1986) An efficient enantioselective total synthesis of (—)-X-14547 A (indanomycin). J Org Chem 51: 4743

    Article  CAS  Google Scholar 

  789. Burke SD, Piscopio AD, Kort ME, Matulenko ME, Parker MA, Armistead DM, Shankaran K (1994) Total synthesis of ionophore antibiotic X-14547A (Indanomycin). J Org Chem 59: 332

    Article  CAS  Google Scholar 

  790. Beloeil JC, Desluc MA, Lallemand JY, Dauphin G, Jeminet G (1984) Application of the homonuclear and heteronuclear two-dimensional chemical shift correlation NMR spectroscopy to the complete assignment of111- and13C-NMR spectra of ionophore antibiotic X.14547 A. J Org Chem 49: 1797

    Article  CAS  Google Scholar 

  791. Edwards MP, Ley SV (1984) Novel rearrangements of the ionophore antibiotic X14547 A (indanomycin) and related derivatives induced by lithium tetrafluoroborate. J Chem Soc Perkin Trans I, 1761

    Google Scholar 

  792. Grandjean J, Laszlo P (1984) Synergistic transport of Pr3 across lipid bilayers in the presence of two chemically distinct ionophoresJ Am Chem Soc 106: 1472

    Article  CAS  Google Scholar 

  793. Westley JW (1977) Polyether antibiotics: Versatile carboxylic acid ionophores produced by Streptomyces. Adv Appl Microbiol 22: 177

    Article  CAS  Google Scholar 

  794. Klika KD, Haansuu JP, Ovcharenko VV, Haahtela KK, Vuorela PM, Pihlaja K (2001) Frankiamide, a highly unusual macrocycle containing the imide and orthoamide functionalities from the symbiotic Actinomycete Frankia. J Org Chem 88: 4065

    Article  CAS  Google Scholar 

  795. Pouteau-Thouvenot M, Choussy M, Gaudemer A, Barbier M (1970) Sur la structure chimique de l’anhydro-pro-ferrorosamine B. Bull Soc Chim Biol 52: 51 [Chem Abstr (1970) 73: 55934]

    Google Scholar 

  796. Helbling AM, Viscontini M (1976) Naturstoffe aus Mikroorganismen. 8. Mitt. Optimale Gewinnung von Proferrorosamin A aus Pseudomonas roseus fluorescens J. C. Marchal 1973. Helv Chim Acta59: 2278;

    Article  CAS  Google Scholar 

  797. Naturstoffe aus Mikroorganismen. 9. Mitt. Über die Biogenese von Proferrorosamin A. 1bid 59: 2284

    Google Scholar 

  798. Anthony C, Zatman U (1964) The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonassp M27. Biochem J 92: 614;

    CAS  Google Scholar 

  799. Anthony C, Zatman LJ (1967) The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: A new oxidoreductase prosthetic group. Ibid 104: 960

    CAS  Google Scholar 

  800. Salisbury SA, Forrest HS, Cruse WBT, Kennard O (1979) A novel coenzyme from bacterial alcohol dehydrogenases. Nature 280: 843

    Article  CAS  Google Scholar 

  801. Duine JA, Frank Jr. J, Van Zeeland JK (1979) Glucose dehydrogenase from Acinetobacter calcoaceticus. FEBS Lett 108: 443

    Article  CAS  Google Scholar 

  802. Corey EJ, Tramontano AJ (1981) Total synthesis of the quinoid alcohol dehydrogenase coenzyme (1) of methylotropic bacteria. J Am Chem Soc 103: 5599

    Article  CAS  Google Scholar 

  803. Gainor JA, Weinreb SM (1982) Synthesis of the bacterial coenzyme methoxatin. J Org Chem 47: 2833

    Article  CAS  Google Scholar 

  804. Hendrickson JB, de Vries JG (1982) A convergent total synthesis of methoxatin. J Org Chem 47: 1148;

    Article  CAS  Google Scholar 

  805. Hendrickson JB, de Vries JG (1985) ibid 50: 1688

    Google Scholar 

  806. MacKenzie AR, Moody CJ, Rees CW (1986) Synthesis of the bacterial conzyme methoxatin. Tetrahedron 42: 3259

    Article  CAS  Google Scholar 

  807. Martin P, Steiner E, Auer K, Winkler T (1993) Zur Herstellung von PQQ in kg-Mengen. Helv Chim Acta 76: 1667

    Article  CAS  Google Scholar 

  808. Anthony C (1986) Bacterial oxidation of methane and methanol. Adv Microbiol Physiol 27: 113 and references given therein

    Google Scholar 

  809. Duine JA, Frank Jzn J,Jongejan JA (1987) Enzymology of quinoproteins. Adv Enzymol 59: 169

    CAS  Google Scholar 

  810. Anthony C (1993) Methanol dehydrogenase Gram-negative bacteria. In: Davidson VL (ed) Principles and Applications of Quinoproteins. Dekker, New York, p 17

    Google Scholar 

  811. Anthony C, Ghosh M, Blake CCF (1994) The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone. Biochem J 304: 665

    CAS  Google Scholar 

  812. Duine JA, Jongejan JA (1989) Pyrroloquinoline quinone: A novel cofactor. Vitam Horm 45: 223

    Article  CAS  Google Scholar 

  813. Duine JA (1991) Quinoproteins: enzymes containing the quinoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone. Eur J Biochem 200: 271 and references given therein

    Google Scholar 

  814. Matsushita K, Adachi O (1993) Bacterial quinoproteins glucose dehydrogenase and alcohol dehydrogenase. In: Davidson VL (ed) Principles and Applications of Quinoproteins. Dekker, New York, p 47

    Google Scholar 

  815. Anthony C (1996) Quinoprotein-catalyted reactions. Biochem J 320: 697

    CAS  Google Scholar 

  816. Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microbial Physiol 36: 247

    Article  CAS  Google Scholar 

  817. Duine JA, Frank Jr J (1980) (a) Studies on methanol dehydrogenase from Hyphomicrobium X. Biochem J 187: 213–219; (b) The prosthetic group of methanol dehydrogenase. Ibid 187: 221

    Google Scholar 

  818. Duine JA, Frank Jzn J, Verwiel PEJ (1980) Structure and activity of the prosthetic group of methanol dehydrogenase. Eur J Biochem 108: 187;

    Article  CAS  Google Scholar 

  819. Duine JA, Frank Jzn J, Verwiel PEJ (1981) Characterization of the second prosthetic group in methanol dehydrogenase from Hyphomicrobium X. Ibid 118: 395

    CAS  Google Scholar 

  820. Dekker RH, Duine JA, Frank J, Verwiel PEJ, Westerling J (1982) Covalent addition of H2O, enzyme substrates and activators to pyrrolo-quinoline quinone, the coenzyme of quinoproteins. Eur J Biochem 125: 69

    Article  CAS  Google Scholar 

  821. Frank J, Dijkstra M, Balny C, Verwiel PEJ, Duine JA (1989) Methanol dehydrogenase: Mechanism of action. In: Jongejan JA, Duine JA (eds) PQQ and Quinoproteins. Kluwer, Dordrecht, p 13

    Google Scholar 

  822. Ohshiro Y, Itoh S (1993) The chemistry of PQQ and related compounds. In: Davidson VL (ed) Principles and Applications of Quinoproteins. Dekker, New York, p 309

    Google Scholar 

  823. Duine JA, Frank Jzn J, De Ruiter LGJ (1979) Isolation of a methanol dehydrogenase with a functional coupling to cytochrome c. J Gen Microbiol 115: 523

    CAS  Google Scholar 

  824. Dijkstra M, Frank Jzn J, Duine JA (1989) Studies on electron transfer from methanol dehydrogenase to cytochrome cL, both purified from Hyphomicrobium X. Biochem J 257: 87

    CAS  Google Scholar 

  825. Frank Jzn J, Dijkstra M, Duine JA, Balny C (1988) Kinetic and spectral studies on the redox forms of methanol dehydrogenase from Hyphomicrobium X. Eur J Chem 174: 331

    Google Scholar 

  826. Frank Jr J, van Krimpen SH, Verwiel PEJ, Jongejan JA, Mulder AC, Duine JA (1989) On the mechanism of inhibition of methanol dehydrogenase by cyclopropane-derived inhibitors. Eur J Biochem 184: 187

    Article  CAS  Google Scholar 

  827. Goodwin MG, Anthony C (1996) Characterization of a novel methanol dehydrogenase containing a Bat+ ion at the active site. Biochem J 318: 673

    CAS  Google Scholar 

  828. Goodwin MG, Avezoux A, Dales SL, Anthony C (1996) Reconstitution of the quinoprotein methanol dehydrogenase from inactive Cat+-free enzyme with Ca2¡À, Sr2+ or Bat+. Biochem J 319: 839

    CAS  Google Scholar 

  829. Houk DR, Hanners JL, Unkefer CJ (1988) Biosynthesis of pyrroloquinoline quinone. 1. Identification of biosynthetic precursors using 13C-labelling and NMR spectroscopy. J Am Chem Soc 110: 6920

    Article  Google Scholar 

  830. Houk DR, Hanners JL, Unkefer CJ (1991) Biosynthesis of pyrroloquinoline quinone. 2. Biosynthetic assembly from glutamate and tyrosine J Am Chem Soc 113: 3162

    Google Scholar 

  831. Unkefer CJ, Houk DR, Britt BM, Sosnick, TR, Hanners JL (1995) Biogenesis of pyrroloquinoline quinone from 13C-labeled tyrosine. Meth Enzymol 258: 227

    Article  CAS  Google Scholar 

  832. Velterop JS, Sellink E, Meulenberg JJM, David S, Bulder I, Postma PW (1995) Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol 177: 5088

    CAS  Google Scholar 

  833. Ikegami S, Isomura H, Tsuchimori N, Osano YT, Hayase T, Yugami T, Ohkishi H, Matsuzaki T (1990) Structure of pyrrolosine: A new inhibitor of RNA synthesis, from the actinomycete Streptomyces albus. J Am Chem Soc 112: 9668

    Article  CAS  Google Scholar 

  834. Box SJ, Corbett DF (1981) Structure elucidation and synthesis of (2S)-4-oxo-1azabicyclo[3.3.0]octa-5,7-diene-2-carboxylic acid, a new metabolite isolated from Streptomyces olivaceus. Tetrahedron Lett 22: 3293

    Article  CAS  Google Scholar 

  835. Kojiri K, Nakajima S, Suzuki H, Okura A, Suda H (1993) A new antitumor substance, BE-18591, produced by a streptomycete. I. Fermentaion, isolation, physico-chemical and biological properties. J Antibiotcs 46: 1799;

    Article  CAS  Google Scholar 

  836. Nakajima S, Kojiri K, Suda H (1993) A new antitumor substance, BE-18591, produced by a streptomycete. II. Structure determination. J Antibiotcs 46: 1894

    Article  CAS  Google Scholar 

  837. Momen AZMR, MizuokaT Hoshino T (1998) Studies on the biosynthesis of violacein. Part 9. Green pigments possessing tetraindole and dipyrromethene moieties, chomoviridans and desoxy-chromoviridans, produced by a cell-free extract of Chromobacterium violaceum and their biosynthetic origins. J Chem Soc Perkin Trans 1, 3087

    Google Scholar 

  838. Variyar PS, Chander R, Venkatachalam SR, Bongirwar DR (2002) A new red pigment from an alkalophilic Micrococcus species. Indian J Chem Sect B: Org Chem Incl Med Chem 41: 232

    Google Scholar 

  839. Gaughran ERL (1969) From superstition to science: The history of a bacterium. Trans N Y Acad Sci 1131: 3

    Google Scholar 

  840. Kraft E (1902) PhD. doctoral thesis University of Würzburg (Germany)

    Google Scholar 

  841. Williams RP, Hearn WR (1967) Prodigiosin. In: Gottlieb D, Shaw PD (eds) Antibiotics, vol 2. Springer, Berlin, p 410. Addenda: ibid p 449

    Google Scholar 

  842. Feofilova EP (1968) Formation of prodigiosine and prodigiosine-like pigments by microorganisms. Usp Microbiol 5: 147

    CAS  Google Scholar 

  843. Wrede F, Hettche O (1929) Über das Prodigiosin, den roten Farbstoff des Bacillus prodigiosus. (I. Mitteil.) Chem Ber 62: 2678

    Google Scholar 

  844. Lewis SM, Corpe WA (1964) Prodigiosin-producing bacteria from marine sources. Appl Microbiol 12: 13

    CAS  Google Scholar 

  845. Gandhi NM, Nazareth PV, Divekar PV, Kohl H, de Souza NJ (1973) Magnesidin, a novel magnesium-containing antibiotic. J Antibiot 26: 797

    Article  CAS  Google Scholar 

  846. D’Aoust JY, Gerber NN (1974) Isolation and purification of prodigiosin from Vibrio psychoerythreus. J Bacteriol 118: 756

    Google Scholar 

  847. Gerber NN (1983) Cycloprodigiosin from Beneckea gazogenes. Tetrahedron Lett 24: 2797

    Article  CAS  Google Scholar 

  848. Sveshnikova MA, Timyk OE, Borisova VN, Fedorova GB (1983) Streptomyces variegatus sp nov, a new actinomycetous species producing an antibiotic from the ahydroxyketopentaene group. Antibiotiki (Moscow) 28: 723 [Chem Abstr (1983) 99: 209 437]

    CAS  Google Scholar 

  849. Wrede F, Rothhaas A (1933) Über das Prodigiosin, den roten Farbstoff des Bacillus prodigiosus. IV. Hoppe-Seyler’s Z Physiol Chem 219: 267

    Article  CAS  Google Scholar 

  850. Wrede F, Rothhaas A (1934) Über das Prodigiosin, den roten Farbstoff des Bacillus prodigiosus. VI. Hoppe-Seyler’s Z Physiol Chem 226: 95

    Article  CAS  Google Scholar 

  851. Treibs A, Zimmer-Galler R (1960) Zur Konstitution des Prodigiosins Hoppe-Seyler’s Z Physiol Chem 318: 12

    Google Scholar 

  852. Wasserman HH, McKeon JE, Smith L, Forgione P (1960) Prodigiosin. Structure and partial synthesis. J Am Chem Soc 82: 506

    Google Scholar 

  853. Wasserman HH, McKeon JE, Smith L, Forgione P (1966) Studies on prodigiosin and the bipyrrole precursor. Tetrahedron Suppl 8 Part II: 647 and references given therein

    Article  Google Scholar 

  854. Rapoport H, Holden KG (1962) The synthesis of prodigiosin. J Am Chem Soc 84: 635

    Article  Google Scholar 

  855. Hearn WR, Elson MK, Williams RH, Medina-Castro J (1970) Prodigiosene [5-(2pyrryl)-2,2’-dipyrrylmethene] and some substituted prodigiosenes. J Org Chem 35: 142

    Article  CAS  Google Scholar 

  856. Boger DL, Patel M (1988) Total synthesis of prodigiosin, prodigiosene, and desmethoxyprodigiosin: Diels-Alder reactions of heterocyclicazadienes and development of an effective palladium(II)-promoted 2,2’-bipyrrole coupling procedure. J Org Chem 53: 1405

    Article  CAS  Google Scholar 

  857. Wasserman HH, Lombardo LJ (1989) The chemistry of vicinal tricarbonyls: A total synthesis of prodigiosin. Tetrahedron Lett 30: 1725

    Article  CAS  Google Scholar 

  858. Castro AJ, Corwin AH, Waxham FJ, Beilby AL (1959) Products from Serratia marcescens. J Org Chem 24: 455

    Article  CAS  Google Scholar 

  859. Jackson AH, Kenner GW, Budzikiewicz H, Djerassi C, Wilson JM (1967) Pyrroles and related compounds — X. Mass spectra of linear di-, tri-and tetrapyrrolic compounds. Tetrahedron 23: 603

    Article  CAS  Google Scholar 

  860. Gerber NN (1969) Prodigiosin-like pigments from Actinomadura (Nocardia) pelletieri and Actinomadura madurae. Appl Microbiol 18: 1

    CAS  Google Scholar 

  861. Morgan EN, Tanner EM (1955) Prodigiosin. J Chem Soc 3305

    Google Scholar 

  862. Hearn WR, Medina-Castro J, Elson MK (1968) Colour change of prodigiosin. Nature 220: 170

    Article  CAS  Google Scholar 

  863. Dimitrov DP, Boyanoff TA, Todorov TA (1970) A study of the association of prodigiosin, isolated from Serratia marcescens. Z Naturforsch 25b: 46

    Google Scholar 

  864. Cruz-Camarillo R, Sànchez-Zùñiga AA (1968) Complex protein-prodigiosin in Serratia marcescens. Nature 218: 567

    Article  CAS  Google Scholar 

  865. Tsang JC, Kallvy DM (1971) Association of prodigiosin with outer cell wall components. Trans Ill State Acad Sci 64: 22

    CAS  Google Scholar 

  866. Yoshida S (1962) A study of a water-soluble complex of prodigiosin produced by a strain of Serrada marcescens. Can J Biochem Physiol 40: 1019

    Article  CAS  Google Scholar 

  867. Roth MM (1967) The photosensitizing ability of prodigiosin. Photochem Photobiol 6: 923

    Article  CAS  Google Scholar 

  868. Boryu SI (1957) Mechanism of antibiotic action of Bacterium prodigiosum (Serratia marcescens). Mikrobiologiya 26: 464 [Chem Abstr (1958) 52: 7432]

    CAS  Google Scholar 

  869. Castro AJ, Gale GR, Means GE, Tertzakian G (1967) Antimicrobial properties of pyrrole derivatives. J Med Chem 10: 29

    Article  CAS  Google Scholar 

  870. Barbagallo C, Maugeri TL, Pavone P, Terrasi TC (1979) Attività citologica della prodigiosina sul test Allium cepa L. Riv Biol Norm Patol 5: 25

    CAS  Google Scholar 

  871. Castro AJ (1967) Antimalarial activity of prodigiosin. Nature 213: 903

    Article  CAS  Google Scholar 

  872. Gerber NN (1975) A new prodiginine (prodigiosin-like) pigment from Streptomyces antimalarial activity of several prodiginines. J Antibiot 28: 194

    Article  CAS  Google Scholar 

  873. Wasserman HH, Friedland DJ, Morrison DA (1968) A novel dipyrrolyldipyrromethene prodigiosin analog from Serratia marcescens. Tetrahedron Lett 641

    Google Scholar 

  874. Hubbard R, Rimington C (1950) The biosynthesis of prodigiosin, the tripyrrylmethene pigment from Bacillus prodigiosus (Serratia marcescens). Biochem J 46: 220

    CAS  Google Scholar 

  875. Santer UV, Vogel HJ (1956) Prodigiosin synthesis in Serratia marcescens: Isolation of a pyrrole-containing precursor. Biochem Biophys Acta 1–9: 578

    Article  Google Scholar 

  876. Wasserman HH, McKeon JE, Santer UV(1960) Studies related to the biosynthesis of prodigiosin in Serratia marcescens. Biochem Biophys Res Commun 3: 146

    Article  CAS  Google Scholar 

  877. Tanaka WK, de Medina LB, Hearn WR (1972) Labeling patterns in prodigiosin biosynthesis. Biochem Biophys Res Commun 46: 731

    Article  CAS  Google Scholar 

  878. Marks GS, Bogorad L (1960) Studies on the biosynthesis of prodigiosin in Serratia marcescens. Proc Natl Acad Sci U S 46: 25

    Article  CAS  Google Scholar 

  879. Shrimpton DM, Marks GS, Bogorad L (1963) Studies on the biosynthesis of prodigiosin in Serrada marcescens. Biochim Biophys Acta 71: 408

    Article  CAS  Google Scholar 

  880. Williams RP, Gott CL, Qadri SMH (1971) Induction of pigmentation in nonproliferating cells of Serratia marcescens by addition of single amino acids. J Bacteriol 106: 444

    CAS  Google Scholar 

  881. Goldschmid MC, Williams RP (1968) Thiamine-induced formation of the mono-pyrrole moiety of prodigiosin. J Bacteriol 96: 609

    Google Scholar 

  882. Hussain Qadri SM, Williams RP (1971) Incorporation of methionine into prodigiosin. Biochim Biophys Acta 230: 181

    Article  Google Scholar 

  883. Cushley RJ, Anderson DR, Lipsky SR, Sykes RJ, Wasserman HH (1971) Carbon-13 Fourier transform nuclear magnetic resonance spectroscopy. II. The pattern of biosynthetic incorporation of [1-13C]- and [2-13C]-acetate into prodigiosin. J Am Chem Soc 93: 6284

    Article  CAS  Google Scholar 

  884. Cushley RJ, Sykes RJ, Shaw C-K, Wasserman HH (1973), Carbon-13 Fourier transform nuclear magnetic resonance. IX. Complete assignments of some prodigiosins. Bioincorporation of label. Can J Chem 53: 148

    Article  Google Scholar 

  885. Wasserman HH, Sykes RJ, Peverada P, Shaw CK, Cushley RJ, Lipsky SR (1973) Biosynthesis of prodigiosin. Incorporation patterns of 13C-labeled alanine, proline, glycine, and serine elucidated by Fourier transform nuclear magnetic resonance. J Am Chem Soc 95: 6874

    Article  CAS  Google Scholar 

  886. Lim DV, Hussain Qadri SM, Nichols C, Williams RP (1977) Biosynthesis of prodigiosin by non-proliferating wild-type Serratia marcescens and mutants deficient in catabolism of alanine, histidinem and proline. J Bacteriol 129: 124

    CAS  Google Scholar 

  887. Hearn WR, Worthington RE, Burgus RC, Williams RP (1964) Norprodigiosin: Occurrence in a mutant of Serratia marcescens. Biochem Biophys Res Commun 17: 517

    Article  CAS  Google Scholar 

  888. Deol BS, Alden JR, Still JL, Robertson AV, Winkler J (1974) Isolation and structure confirmation of norprodigiosin from Serratia marcescens mutant. Aust J Chem 27: 2657

    CAS  Google Scholar 

  889. Gerber NN, Gauthier MJ (1979) New prodigiosin-like pigment from Alteromonas rubra. Appl Environ Microbiol 37: 1176

    CAS  Google Scholar 

  890. Laatsch H, Thomson RH (1983) A revised structure for cycloprodigiosin. Tetrahedron Lett 24: 2701

    Article  CAS  Google Scholar 

  891. Wasserman HH, Fukuyama JM (1984) The synthesis of (f)-cycloprodigiosin. Tetrahedron Lett 25: 1387

    Article  CAS  Google Scholar 

  892. Brockmann H, Pini H (1947) Actinorhodin, ein roter Farbstoff aus Actinomyceten. Naturwissenschaften 34: 190

    Article  CAS  Google Scholar 

  893. Dietzel E (1949) Über prodigiosin-ähnliche Farbstoffe bei Actonomyceten. HoppeSeyler’s Z Physiol Chem 284: 262

    Article  CAS  Google Scholar 

  894. Gerber NN (1975) Prodigiosin-like pigments. CRC Crit Rev Microbiol 3: 469 and refeences given therein

    CAS  Google Scholar 

  895. Gerber NN, Lechevalier MP (1976) Prodiginine (prodigiosin-like) pigments from Streptomyces and other aerobic Actinomycetes. Can J Microbiol 22: 658 and references given therein

    Article  CAS  Google Scholar 

  896. Harashima K, Tsuchida N, Nagatsu J (1966) Prodigiosin-25 C. A new prodigiosinlike pigment. Agr Biol Chem (Tokyo) 30: 309

    Article  CAS  Google Scholar 

  897. Harashima K, Tsuchida N, Tanaka T, Nagatsu J (1967) Prodigiosin 25C. Isolation and the chemical structure. Agr Biol Chem (Tokyo) 31: 481

    Article  CAS  Google Scholar 

  898. Wasserman HH, Rodgers, Jr GC, Keith DD (1966) The structure and synthesis of undecylprodigiosin. A prodigiosin analogue from Streptomyces. J Chem Soc Chem Commun 825

    Google Scholar 

  899. Tsao S-W, Rudd BAM, He X-G, Chang C, Floss HG (1985) Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J Antibiot 38: 128

    Article  CAS  Google Scholar 

  900. Gerber NN (1971) Prodigiosin-like pigments from Actinomadura (Nocardia) pelletieri. J Antibiot (Tokyo) 24A: 636

    Google Scholar 

  901. Gerber NN, Stahly DP (1975) Prodiginine (prodigiosin-like) pigments from Streptoverticillium rubrireticuli an organism that causes pink staining of polyvinyl chloride. Appl Microbiol 30: 807

    CAS  Google Scholar 

  902. Wasserman HH, Rodgers GC, Keith DD (1976) Undecylprodigiosin. Tetrahedron 32: 1851

    Google Scholar 

  903. D’Alessio R, Rossi A (1996) Short synthesis of undecylprodigiosine. A new route to 2,2’-bipyrroylpyrromethene systems. Synlett 513

    Google Scholar 

  904. Thirumalachar MJ, Bringi NV, Deshmukh PV, Rahalkar PW, Indira R, Gopalkrishan KS (1964) Streptorubrin A and B. New antibiotics with cytostatic properties. Hind Antibiot Bull 7: 18

    CAS  Google Scholar 

  905. Wasserman HH, Rodgers GC, Keith DD (1969) Metacycloprodigiosin, a tripyrrole pigment from Streptomyces longisporus ruber. J Am Chem Soc 91: 1263

    Article  CAS  Google Scholar 

  906. Wasserman HH, Keith DD, Rodgers GC (1976) The structure of metacycloprodigiosin. Tetrahedron 32: 1855

    Article  CAS  Google Scholar 

  907. Wasserman HH, Keith DD, Nadelson J (1969) The synthesis of metacycloprodigiosin. JAm Chem Soc 91: 1264

    Article  CAS  Google Scholar 

  908. Wasserman HH, Keith DD, Nadelson J (1976) The synthesis of metacycloprodigiosin. Tetrahedron 32: 1867

    Article  CAS  Google Scholar 

  909. Fürstner A, Szillat H, Gabor B, Mynott R (1998) Platinum-and acid-catalyzed enyne methatesis reactions: Mechanistic studies and applications to the synthesis of streptorubin B and metacycloprodigiosin. J Arn Chem Soc 120: 8305

    Article  Google Scholar 

  910. Korenyako AI, Gavrilova OA (1962) Preparation of vitamycin.Vestn Akad Nauk SSSR 32: 80 [Chem Abstr (1962) 57: 17202]

    CAS  Google Scholar 

  911. Khokhlova YuM, Sergeeva LN, Vul’fson NS, Zaretskii VI, Zaikin VG, Sheichenko VI, Khokhlov AS (1968) Difference of vitamycin A from other natural analogs. Khim Prirod Soedin 4: 307

    CAS  Google Scholar 

  912. Laatsch H, Kellner M, Weyland H (1991) Butyl-meta-cycloheptylprodigiosine — A revison of the structure of the former ortho-isomer. J Antibiot 44: 187

    Article  CAS  Google Scholar 

  913. Gerber NN (1970) A novel, cyclic, tetrapyrrole pigment from Actinomadura (Nocardia) madurae. Tetrahedron Lett 809

    Google Scholar 

  914. Gerber NN (1973) Minor prodiginine pigments from Actinomadura madurae and Actinomadura pelletieri. J Heterocycl Chem 10: 925

    Article  CAS  Google Scholar 

  915. Gerber NN, McInnes AG, Smith DG, Walter JA, Wright JLC, Vining LC (1978) Biosynthesis of prodiginines. 13C resonance assigmements and enrichment patterns in nonyl-, cyclononyl-, methylcyclodecyl-, and butylcycloheptylprodiginine produced by actinomycete cultures supplemented with 13C-labeled acetate and 15N-labeled nitrate. Can J Chem 56: 1155

    Article  CAS  Google Scholar 

  916. Wasserman HH, Shaw CK, Sykes RJ (1974) Biosynthesis of prodigiosin. III. Carbon-13 Fourier transform NMR. Biosynthesis of metacycloprodigiosin and undecylprodigiosin. Tetrahedron Lett 2787

    Google Scholar 

  917. Magae J, Miller MW, Nagai K, Shearer GM (1996) Effect of metacycloprodigiosin, an inhibitor of killer T cells, on murine skin and heart transplantations. J Antibiot 49: 86 and references given therein

    Article  CAS  Google Scholar 

  918. Grote R, Zeeck A, Stüpfel J, Zähner H (1990) Metabolic products of microorganisms, 256. Pyrrolams, new pyrrolizidones produced by Streptomyces olivaceus. Liebigs Ann Chem 525

    Google Scholar 

  919. Aoyagi Y, Manabe T, Ohta A, Kurihara T, Pang G-L, Yuhara T (1996) First total synthesis of pyrrolam A. Tetrahedron 52: 869

    Article  CAS  Google Scholar 

  920. Kuroda Y, Okuhara M, Goto T, Yamashita M, Iguchi E, Kohsaka M, Aoki H, Imanaka H (1980) FR-900148, a new antibiotic. I. Taxonomy, fermentation, isolation and characterization. J Antibiot 33: 259

    Article  CAS  Google Scholar 

  921. Kuroda Y, Okuhara M, Goto T, Okamoto M, Yamashita M, Kohsaka M, Aoki H, Imanaka H (1980) FR-900148, a new antibiotic. II. Structure determination of FR-900148. J Antibiot 33: 267

    Article  CAS  Google Scholar 

  922. Chaiet L, Monaghan RL, Zimmerman SB, Sheldon B, Fernandez MIM (Merck and Co, Inc) (1985) (R)-(Z)-4-amino-3-chloro-2-pentenedioic acid, antibacterial agent. Eur Pat Appl EP 137,498. Chem Abstr (1985) 103: 21204

    Google Scholar 

  923. Nagle DG, Paul VJ, Roberts MA (1996) Ypaoamide, a new broadly acting feeding deterrent from the marine cyanobacterium Lyngbya majuscula. Tetrahedron Lett 37: 6263

    Article  CAS  Google Scholar 

  924. Moore RE, Entzeroth M (1988) Majusculamide D and deoxymajusculamide D, two cytotoxins from Lyngbya majuscula. Phytochemistry 27: 3101

    Article  CAS  Google Scholar 

  925. Koehn FE, Longley RE, Reed JK (1992) Microcolins A and B, new immunosuppressive peptides from the blue-green alga Lyngbya majuscula. J Nat Prod 55: 613

    Article  CAS  Google Scholar 

  926. Koehn FE, MacConnel OJ, Longley RE, Sennett SH, Reed JK (1994) Analogs of the marine immunosuppressant microcolin A: Preparation and biological activity. J Med Chem 37: 3181

    Article  CAS  Google Scholar 

  927. Decicco CP, Grover P (1996) Total asymmetric synthesis of the potent immunosuppressive marine natural product microcolin A. J Org Chem 61: 3534

    Article  CAS  Google Scholar 

  928. Cardellina II JH, Marner F-J, Moore RE (1979) Malyngamide A, a novel chlorinated metabolite of the marine cyanophyte Lyngbya majuscula. J Am Chem Soc 101: 240

    Article  CAS  Google Scholar 

  929. Kan Y, Sakamoto B, Fujita T, Nagai H (2000) New malyngamides from the Hawaiian Cyanobacterium Lyngbya majuscula. J Nat Prod 63: 1599

    Article  CAS  Google Scholar 

  930. Milligan KE, Marquez B, Williamson RT, Davies-Coleman M, Gerwick WH (2000) Two new malyngamides from a Madagascan Lyngbya majuscula. J Nat Prod 63: 965

    Article  CAS  Google Scholar 

  931. Simmons CJ, Marner F-J, Cardellina II JH, Moore RE, Seff K (1979) Pukeleimide C, a novel pyrrolic compound from the marine cyanophyte Lyngbya majuscula. Tetrahedron Lett 22: 2003

    Google Scholar 

  932. Cardellina II JH, Moore RE (1979) The structures of pukeleimides A, B, D, E, F, and G. Tetrahedron Lett 2007

    Google Scholar 

  933. James GD, Mills SD, Pattenden G (1993) Total synthesis of pukeleimide A, a 5ylidenepyrrol-2(5H)-one from blue geen algae. J Chem Soc Perkin Trans 1 2581

    Article  Google Scholar 

  934. Yamaguchi H, Nakayama Y, Takeda K, Tawara K, Maeda K, Takeuchi T, Umezawa H (1957) A new antibiotic, althiomycin. J Antibiot A10: 195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Gossauer, A. (2003). Monopyrrolic Natural Compounds Including Tetramic Acid Derivatives. In: Herz, W., Falk, H., Kirby, G.W. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 86. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6029-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6029-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7299-5

  • Online ISBN: 978-3-7091-6029-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics