Skip to main content

Biologically-Inspired Microfabricated Force and Position Mechano-Sensors

  • Chapter
Sensors and Sensing in Biology and Engineering

Abstract

The aim of this paper is to discuss an ideal design procedure for biologically-inspired mechano-sensors. The main steps of this procedure are the following: (1) analysis of force and position sensors in humans; (2) analysis of technologies available for MEMS (Micro Electro Mechanical Systems) and (3) design and implementation of biologically-inspired sensors in innovative mechatronic and biomechatronic systems (e.g., anthropomorphic robots, prostheses, and neuroprostheses).

According to this sequence, the first part of the paper is dedicated to the presentation of some features of force and motion sensors in humans. Then, technologies for fabricating miniaturized force and motion sensors (and some examples of such sensors) are briefly presented. Finally, some applications of biologically-inspired systems developed by the authors to sense force and position in anthropomorphic robots and in prosthetics are illustrated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey SA, Cham JG, Cutkosky MR, Full RJ (2000) Biomimetic robotic mechanisms via shape deposition manufacturing. In: Hollerbach J, Koditschek D (eds) Robotics Research: the Ninth International Symposium, Springer-Verlag, London

    Google Scholar 

  • Bove M, Grattarola M, Verreschi G (1997) In vitro 2-D networks of neurons characterized by processing the signals recorded with a planar microtransducer array. IEEE Trans Biomedical Eng 44: 964–977

    Article  CAS  Google Scholar 

  • Brooks RA (1997) The cog project. Advanced Robotics 15(7): 968–970

    Google Scholar 

  • Brooks RA (2000) Cambrian Intelligence. MIT Press, Cambridge

    Google Scholar 

  • Brooks RA, Stein LA (1994) Building brains for bodies. Autonomous Robots 1: 7–25

    Article  Google Scholar 

  • Caiti A, Canepa G, De Rossi D, Germagnoli F, Maganes G, Parisini T (1995) Towards the realization of an artificial tactile system: fine-form discrimination by a tensorial tactile sensor array and neural inversion algorithms. IEEE Transaction on System, Man and Cybernetics 25: 933–946

    Article  Google Scholar 

  • Carrozza MC, Dario P, Lazzarini R, Massa B, Zecca M, Roccella S, Sacchetti R (2000) An actuating system for a novel biomechatronic prosthetic hand. Actuator 2000: 19–21 June 2000, Bremen

    Google Scholar 

  • Carrozza MC, Massa B, Dario P, Lazzarini R, Zecca M, Micera S, Pastacaldi P (2002) A Two-DOF finger for a biomechatronic artificial hand. Technology and Healthcare, 10: 77–89

    CAS  Google Scholar 

  • Dario P, Carrozza MC, Allotta B, Guglielmelli E (1996) Micromechatronics in Medicine. IEEE/ASME Trans on Mechatronics 1: 137–148

    Article  Google Scholar 

  • Dario P, De Rossi D, Domenici C, Francesconi R (1984) Ferroelectric polymer tactile sensors with anthropomorphic features. In: IEEE Int Conf Rob, pp 332–340

    Google Scholar 

  • Dario P, Fukuda T (1998) Guest editorial, IEEE/ASME Transaction on Mechatronics 3: 1–2

    Article  Google Scholar 

  • Dario P, Garzella P, Toro M, Micera S, Alavi M, Meyer J-U, Valderrama E, Sebastiani L, Ghelarducci B, Mazzoni C, Pastacaldi P (1998a) Neural interfaces for regenerated nerve stimulation and recording. IEEE Transactions on Rehabilitation Engineering 6: 353–363

    Article  CAS  Google Scholar 

  • Dario P, Laschi C, Guglielmelli E (1998b) Sensors and actuators for ’humanoid’ robots. Advanced Robotics, Special Issue on Humanoid 11(6): 567–584

    Google Scholar 

  • Dario P, Lazzarini R, Magni R (1996) An integrated miniature fingertip sensor. Machine Human Science, Nagoya, pp 91–97

    Google Scholar 

  • Dario P, Sandini G, Abisher P (eds) (1989) Robots and Biological Systems: Towards a New Bionics?, NATO ASI Series

    Google Scholar 

  • De Rossi D, Ahluwalia A (2000) Biomimetics: new tools for an old myth. In: 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, October 12–14, 2000, Lyon, France, pp 15–17

    Google Scholar 

  • Despont M (1992) A comparative study of bearing designs and operational environments for harmonic side-drive micromotors. In: proceedings of MEMS 92: 171–176

    Google Scholar 

  • Fatikow S, Rembold U (1997) Microsystem Technology. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Ferrari M (1999) Editorial, Journal of Biomedical Microdevices 1: 97–98

    Article  Google Scholar 

  • Fischer K (1991) Mikromechanik und Mikroelektronik vereint mit Optik. Technische Rundschau 106–108

    Google Scholar 

  • Freschi C, Vecchi F, Micera S, Sabatini AM, Dario P (2000) Force control during grasp using FES techniques: preliminary results. 5th Annual Conference of the International Functional Electrical Stimulation Society (IFESS 2000), 17–24 June 2000, Aalborg

    Google Scholar 

  • Fujimasa I (1996) Micromachines, a New Era in Mechanical Engineering. Oxford University Press, Oxford

    Google Scholar 

  • Fujita M (1999) AIBO: Towards the era of digital creatures. In: International Symposium on Robotics Research, Snowbird UH, October 9–12, pp 257–262

    Google Scholar 

  • Fukuda T, Menz W (1998) Handbook of Sensors and Actuators. Micro Mechanical Systems. Elsevier Science, Amsterdam

    Google Scholar 

  • GRIP Esprit LTR Project #26322 An integrated system for the neuroelectric control of grasp in disabled persons

    Google Scholar 

  • Harsanyi G (1995) Polymer Films in Sensor Applications. Technomic Publishing Co., Basel

    Google Scholar 

  • Hashimoto S (2000) Humanoid robots in Waseda University — Hadaly-2 and Wabian. In: First IEEE-RAS International Conference on Humanoid Robots — Humanoids 2000, Cambridge, MA, September 7–8

    Google Scholar 

  • Heuberger A (1991) Mikromechanik: Mikrofertigung mit Methoden der Halbleitertechnologie. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Heuschkel MO, Guerin L, Buisson B, Bertrand D, Renaud P (1998) Buried microchannels in photopolymer for delivering of solutions to neurons in a network. Sensors and Actuators B48: 356–361

    CAS  Google Scholar 

  • Hirose H (1993) Biologically Inspired Robots (Snake-like Locomotor and Manipulator). Oxford University Press, Oxford

    Google Scholar 

  • Howe RD, Cutkosky MR (1992) Touch Sensing for Manipulation and Recognition. In: Kathib O, Craig J, Lozano-Pérez T (eds) The Robotics Review 2: 55–112, MIT Press, Cambridge Masshttp://csmt.jpl.nasa.gov/csmtpages/Technologies/mgyro/mgyro.html

    Google Scholar 

  • Inoue H (2000) HRP: Humanoid Robotics Project of MITI. In: First IEEE-RAS International Conference on Humanoid Robots — Humanoids 2000, Cambridge Mass, September 7–8

    Google Scholar 

  • INTER Project promoted by the European Commission (“Intelligent Neural Interface” Esprit Basic Research Project #8897)

    Google Scholar 

  • Johnson MW, Peckham PH, Bhadra N, Kilgore KL, Gazdik MM, Keith MW, Strojnik P (1999) Implantable transducer for two-degree-of-freedom joint angle sensing“. IEEE Trans Biomed Eng 7(3): 349–359

    CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM (1991) Principles of Neural Science, 3rd edition. Elsevier Science, New York

    Google Scholar 

  • Langer R, Vacanti J (1993) Tissue engineering. Science 260: 920–926

    Article  PubMed  CAS  Google Scholar 

  • Lazzarini R, Magni R, Dario P (1995) A tactile array sensor layered in an artificial skin. In: Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Iros ’95, 3: 114–119

    Google Scholar 

  • Madou M (1997) Fundamentals of Microfabrication. CRC Press, Boca Raton, New York

    Google Scholar 

  • Mannion P (1999) Integration and Inductive Sensing Combine to Improve Automotive/Industrial Sensing. Electronic Design

    Google Scholar 

  • Mehlhorn T (1992) CMOS-compatible capacitive silicon pressure sensors. Micro System Technologies 92: 277–285

    Google Scholar 

  • Menzel P, D’Aluisio F, Mann CC (2000) RoboSapiens. MIT Press, Cambridge Mass

    Google Scholar 

  • Muller RS, Howe RT, Senturia SD, Smith RL, White RM (1991) Microsensors, IEEE Press, New York

    Google Scholar 

  • Najafi K, Wise KD, Mochizuki T (1985) A High-Yield IC- Compatible Multichannel Recording Array. IEEE Trans Electronic Devices ED-32: 1206–1211

    Article  Google Scholar 

  • Nicholls HR, Lee MH (1989) A survey of robot tactile sensing technology. Int J Robotics Research 8: 3–30

    Article  Google Scholar 

  • Nicholls HR, Lee MH (1999) Tactile sensing for mechatronics — a state of the art survey. Mechatronics 9: 1–32

    Article  Google Scholar 

  • Russel RA (1990) Robot Tactile Sensing. Prentice Hall Ltd, Australia

    Google Scholar 

  • Schuettler M, Stieglitz T, Meyer J-U (1999) A multipolar precision hybrid cuff electrode for FES on large peripheral nerves. 21st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October 13–16, Atlanta, USA, 1999

    Google Scholar 

  • Shibata T, Tanie K (1999) Creation of subjective value through physical interaction between human and machine. In: 4th International Symposium on Artificial Life and Robotics, January 19–22, Oita, Japan

    Google Scholar 

  • Sinkjaer T, Haugland M, Struijk J, Riso RR (1999) Long-term cuff electrode recordings from peripheral nerves in animals and humans. In: Windhorst U, Johansson H (eds) Modern Techniques in Neuroscience Research. Springer-Verlag, New York Stanford University, http://www-cdr.stanford.edu

    Google Scholar 

  • Tilmans H, Bouwstra S (1993) A novel design of a highly sensitive low differential-pressure sensor using built-in resonant strain gauges. J Micromech Microeng 3: 198–202

    Article  Google Scholar 

  • Vecchi F, Freschi C, Micera S, Sabatini AM, Dario P (2000) Experimental evaluation of two commercial force sensors for applications in biomechanics and motor control. 5th Annual Conference of the International Functional Electrical Stimulation Sociaty (IFESS 2000), June 17–24, 2000, Aalborg

    Google Scholar 

  • Webster JG (1988) Tactile Sensors for Robotics and Medicine. John Wiley & Sons, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Dario, P. et al. (2003). Biologically-Inspired Microfabricated Force and Position Mechano-Sensors. In: Barth, F.G., Humphrey, J.A.C., Secomb, T.W. (eds) Sensors and Sensing in Biology and Engineering. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6025-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6025-1_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7287-2

  • Online ISBN: 978-3-7091-6025-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics