Biologically-Inspired Microfabricated Force and Position Mechano-Sensors

  • Paolo Dario
  • Cecilia Laschi
  • Silvestro Micera
  • Fabrizio Vecchi
  • Massimiliano Zecca
  • Arianna Menciassi
  • Barbara Mazzolai
  • Maria C. Carrozza


The aim of this paper is to discuss an ideal design procedure for biologically-inspired mechano-sensors. The main steps of this procedure are the following: (1) analysis of force and position sensors in humans; (2) analysis of technologies available for MEMS (Micro Electro Mechanical Systems) and (3) design and implementation of biologically-inspired sensors in innovative mechatronic and biomechatronic systems (e.g., anthropomorphic robots, prostheses, and neuroprostheses).

According to this sequence, the first part of the paper is dedicated to the presentation of some features of force and motion sensors in humans. Then, technologies for fabricating miniaturized force and motion sensors (and some examples of such sensors) are briefly presented. Finally, some applications of biologically-inspired systems developed by the authors to sense force and position in anthropomorphic robots and in prosthetics are illustrated and discussed.


Humanoid Robot Tactile Sensor Functional Electrical Stimulation Motion Sensor Hall Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey SA, Cham JG, Cutkosky MR, Full RJ (2000) Biomimetic robotic mechanisms via shape deposition manufacturing. In: Hollerbach J, Koditschek D (eds) Robotics Research: the Ninth International Symposium, Springer-Verlag, LondonGoogle Scholar
  2. Bove M, Grattarola M, Verreschi G (1997) In vitro 2-D networks of neurons characterized by processing the signals recorded with a planar microtransducer array. IEEE Trans Biomedical Eng 44: 964–977CrossRefGoogle Scholar
  3. Brooks RA (1997) The cog project. Advanced Robotics 15(7): 968–970Google Scholar
  4. Brooks RA (2000) Cambrian Intelligence. MIT Press, CambridgeGoogle Scholar
  5. Brooks RA, Stein LA (1994) Building brains for bodies. Autonomous Robots 1: 7–25CrossRefGoogle Scholar
  6. Caiti A, Canepa G, De Rossi D, Germagnoli F, Maganes G, Parisini T (1995) Towards the realization of an artificial tactile system: fine-form discrimination by a tensorial tactile sensor array and neural inversion algorithms. IEEE Transaction on System, Man and Cybernetics 25: 933–946CrossRefGoogle Scholar
  7. Carrozza MC, Dario P, Lazzarini R, Massa B, Zecca M, Roccella S, Sacchetti R (2000) An actuating system for a novel biomechatronic prosthetic hand. Actuator 2000: 19–21 June 2000, BremenGoogle Scholar
  8. Carrozza MC, Massa B, Dario P, Lazzarini R, Zecca M, Micera S, Pastacaldi P (2002) A Two-DOF finger for a biomechatronic artificial hand. Technology and Healthcare, 10: 77–89Google Scholar
  9. Dario P, Carrozza MC, Allotta B, Guglielmelli E (1996) Micromechatronics in Medicine. IEEE/ASME Trans on Mechatronics 1: 137–148CrossRefGoogle Scholar
  10. Dario P, De Rossi D, Domenici C, Francesconi R (1984) Ferroelectric polymer tactile sensors with anthropomorphic features. In: IEEE Int Conf Rob, pp 332–340Google Scholar
  11. Dario P, Fukuda T (1998) Guest editorial, IEEE/ASME Transaction on Mechatronics 3: 1–2CrossRefGoogle Scholar
  12. Dario P, Garzella P, Toro M, Micera S, Alavi M, Meyer J-U, Valderrama E, Sebastiani L, Ghelarducci B, Mazzoni C, Pastacaldi P (1998a) Neural interfaces for regenerated nerve stimulation and recording. IEEE Transactions on Rehabilitation Engineering 6: 353–363CrossRefGoogle Scholar
  13. Dario P, Laschi C, Guglielmelli E (1998b) Sensors and actuators for ’humanoid’ robots. Advanced Robotics, Special Issue on Humanoid 11(6): 567–584Google Scholar
  14. Dario P, Lazzarini R, Magni R (1996) An integrated miniature fingertip sensor. Machine Human Science, Nagoya, pp 91–97Google Scholar
  15. Dario P, Sandini G, Abisher P (eds) (1989) Robots and Biological Systems: Towards a New Bionics?, NATO ASI SeriesGoogle Scholar
  16. De Rossi D, Ahluwalia A (2000) Biomimetics: new tools for an old myth. In: 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, October 12–14, 2000, Lyon, France, pp 15–17Google Scholar
  17. Despont M (1992) A comparative study of bearing designs and operational environments for harmonic side-drive micromotors. In: proceedings of MEMS 92: 171–176Google Scholar
  18. Fatikow S, Rembold U (1997) Microsystem Technology. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  19. Ferrari M (1999) Editorial, Journal of Biomedical Microdevices 1: 97–98CrossRefGoogle Scholar
  20. Fischer K (1991) Mikromechanik und Mikroelektronik vereint mit Optik. Technische Rundschau 106–108Google Scholar
  21. Freschi C, Vecchi F, Micera S, Sabatini AM, Dario P (2000) Force control during grasp using FES techniques: preliminary results. 5th Annual Conference of the International Functional Electrical Stimulation Society (IFESS 2000), 17–24 June 2000, AalborgGoogle Scholar
  22. Fujimasa I (1996) Micromachines, a New Era in Mechanical Engineering. Oxford University Press, OxfordGoogle Scholar
  23. Fujita M (1999) AIBO: Towards the era of digital creatures. In: International Symposium on Robotics Research, Snowbird UH, October 9–12, pp 257–262Google Scholar
  24. Fukuda T, Menz W (1998) Handbook of Sensors and Actuators. Micro Mechanical Systems. Elsevier Science, AmsterdamGoogle Scholar
  25. GRIP Esprit LTR Project #26322 An integrated system for the neuroelectric control of grasp in disabled personsGoogle Scholar
  26. Harsanyi G (1995) Polymer Films in Sensor Applications. Technomic Publishing Co., BaselGoogle Scholar
  27. Hashimoto S (2000) Humanoid robots in Waseda University — Hadaly-2 and Wabian. In: First IEEE-RAS International Conference on Humanoid Robots — Humanoids 2000, Cambridge, MA, September 7–8Google Scholar
  28. Heuberger A (1991) Mikromechanik: Mikrofertigung mit Methoden der Halbleitertechnologie. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  29. Heuschkel MO, Guerin L, Buisson B, Bertrand D, Renaud P (1998) Buried microchannels in photopolymer for delivering of solutions to neurons in a network. Sensors and Actuators B48: 356–361Google Scholar
  30. Hirose H (1993) Biologically Inspired Robots (Snake-like Locomotor and Manipulator). Oxford University Press, OxfordGoogle Scholar
  31. Howe RD, Cutkosky MR (1992) Touch Sensing for Manipulation and Recognition. In: Kathib O, Craig J, Lozano-Pérez T (eds) The Robotics Review 2: 55–112, MIT Press, Cambridge Mass Google Scholar
  32. Inoue H (2000) HRP: Humanoid Robotics Project of MITI. In: First IEEE-RAS International Conference on Humanoid Robots — Humanoids 2000, Cambridge Mass, September 7–8Google Scholar
  33. INTER Project promoted by the European Commission (“Intelligent Neural Interface” Esprit Basic Research Project #8897)Google Scholar
  34. Johnson MW, Peckham PH, Bhadra N, Kilgore KL, Gazdik MM, Keith MW, Strojnik P (1999) Implantable transducer for two-degree-of-freedom joint angle sensing“. IEEE Trans Biomed Eng 7(3): 349–359Google Scholar
  35. Kandel ER, Schwartz JH, Jessel TM (1991) Principles of Neural Science, 3rd edition. Elsevier Science, New YorkGoogle Scholar
  36. Langer R, Vacanti J (1993) Tissue engineering. Science 260: 920–926PubMedCrossRefGoogle Scholar
  37. Lazzarini R, Magni R, Dario P (1995) A tactile array sensor layered in an artificial skin. In: Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Iros ’95, 3: 114–119Google Scholar
  38. Madou M (1997) Fundamentals of Microfabrication. CRC Press, Boca Raton, New YorkGoogle Scholar
  39. Mannion P (1999) Integration and Inductive Sensing Combine to Improve Automotive/Industrial Sensing. Electronic DesignGoogle Scholar
  40. Mehlhorn T (1992) CMOS-compatible capacitive silicon pressure sensors. Micro System Technologies 92: 277–285Google Scholar
  41. Menzel P, D’Aluisio F, Mann CC (2000) RoboSapiens. MIT Press, Cambridge MassGoogle Scholar
  42. Muller RS, Howe RT, Senturia SD, Smith RL, White RM (1991) Microsensors, IEEE Press, New YorkGoogle Scholar
  43. Najafi K, Wise KD, Mochizuki T (1985) A High-Yield IC- Compatible Multichannel Recording Array. IEEE Trans Electronic Devices ED-32: 1206–1211CrossRefGoogle Scholar
  44. Nicholls HR, Lee MH (1989) A survey of robot tactile sensing technology. Int J Robotics Research 8: 3–30CrossRefGoogle Scholar
  45. Nicholls HR, Lee MH (1999) Tactile sensing for mechatronics — a state of the art survey. Mechatronics 9: 1–32CrossRefGoogle Scholar
  46. Russel RA (1990) Robot Tactile Sensing. Prentice Hall Ltd, AustraliaGoogle Scholar
  47. Schuettler M, Stieglitz T, Meyer J-U (1999) A multipolar precision hybrid cuff electrode for FES on large peripheral nerves. 21st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October 13–16, Atlanta, USA, 1999Google Scholar
  48. Shibata T, Tanie K (1999) Creation of subjective value through physical interaction between human and machine. In: 4th International Symposium on Artificial Life and Robotics, January 19–22, Oita, JapanGoogle Scholar
  49. Sinkjaer T, Haugland M, Struijk J, Riso RR (1999) Long-term cuff electrode recordings from peripheral nerves in animals and humans. In: Windhorst U, Johansson H (eds) Modern Techniques in Neuroscience Research. Springer-Verlag, New York Stanford University, Google Scholar
  50. Tilmans H, Bouwstra S (1993) A novel design of a highly sensitive low differential-pressure sensor using built-in resonant strain gauges. J Micromech Microeng 3: 198–202CrossRefGoogle Scholar
  51. Vecchi F, Freschi C, Micera S, Sabatini AM, Dario P (2000) Experimental evaluation of two commercial force sensors for applications in biomechanics and motor control. 5th Annual Conference of the International Functional Electrical Stimulation Sociaty (IFESS 2000), June 17–24, 2000, AalborgGoogle Scholar
  52. Webster JG (1988) Tactile Sensors for Robotics and Medicine. John Wiley & Sons, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Paolo Dario
  • Cecilia Laschi
  • Silvestro Micera
  • Fabrizio Vecchi
  • Massimiliano Zecca
  • Arianna Menciassi
  • Barbara Mazzolai
  • Maria C. Carrozza

There are no affiliations available

Personalised recommendations