Advertisement

The Middle and External Ears of Terrestrial Vertebrates as Mechanical and Acoustic Transducers

  • John J. Rosowski

Abstract

The external and middle ears of terrestrial vertebrates work together to transform sound in free air to sound pressures and volume velocities in the fluid in the vestibule of the auditory inner ear. The primary structural bases for this transformation are the acoustics of the ear canal and the ratio of the areas of the tympanic membrane and the stapes footplate. The efficiency of this transformation and the extreme sensitivity of the auditory inner ear to sound enable vertebrates to hear sounds that produce sub-Angstrom displacements of middle-ear structures. Nonetheless, the absolute size and the form of the tympanic membrane, ossicles and ossicular suspension make the transformation process frequency selective, and it is argued that this selectivity is the primary force shaping what sounds are audible by different animal species. This chapter quantifies sound transformation through the ear of several vertebrates and discusses the structures that affect the frequency selectivity of these processes.

Keywords

Sound Pressure Tympanic Membrane Sound Power Acoustic Transducer Stapes Footplate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aibara R, Welsh JT, Puria S, Goode RL (2001) Human middle-ear sound transfer function and cochlear input impedance. Hearing Res 152: 100–109CrossRefGoogle Scholar
  2. Dallos P (1973) The Auditory Periphery. Academic Press, New York, 548 pGoogle Scholar
  3. Décory L (1989) Origine des différences interspe-cifiques de susceptibilité à bruit. Thèse de Doc-torat de I’Université; de Bordeaux, FranceGoogle Scholar
  4. Decraemer WF, Khanna SM, Funnell WRJ (1995) Bending of the manubrium in cat under normal sound stimulation. Progress in Biomedical Op-tics 2329: 74–84Google Scholar
  5. Fleischer G (1973) Studien am Skelett des Gehörorgans der Säugetiere, einschliesslich des Menschen. Säugetierkundl Mitt (München) 21: 131–239Google Scholar
  6. Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Anat, Embryol and Cell Biol 55: 3–69Google Scholar
  7. Guinan JJ Jr, Peake WT (1967) Middle-ear characteristics of anesthetized cats. J Acoust Soc Am 41: 1237–1261PubMedCrossRefGoogle Scholar
  8. Gummer AW, Smolders JWT, Klinke R (1989) Mechanics of a single-ossicle ear: II. The columella footplate of the pigeon. Hearing Res 39: 15–26CrossRefGoogle Scholar
  9. Heffner RS, Heffner HE (1985) Hearing range of the domestic cat. Hearing Res 19: 85–88CrossRefGoogle Scholar
  10. Helmholtz HL von (1868) Die Mechanik der Gehörknöchelchen und des Trommelfells. Pflüg Arch ges Physiol 1: 1–60CrossRefGoogle Scholar
  11. Henson OW (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology: Vol V/1 The Auditory System. Springer, Wien New York pp 39–110Google Scholar
  12. Hienz RD, Sinnott JM, Sachs MB (1977) Auditory sensitivity of the redwing blackbird (Agelaius phoeniceus) and brown-headed cowbird (Molothrus ater). J Comp Physiol Psychol 91: 1365–1376CrossRefGoogle Scholar
  13. Huang GT, Rosowski JJ, Flandermeyer DT, Lynch TJ III, Peake WT (1997) The middle ear of a lion: Comparison of structure and function to domestic cat. J Acoust Soc Am 101: 1532–1549PubMedCrossRefGoogle Scholar
  14. Huang GT, Rosowski JJ, Peake WT (2000) Relating middle-ear acoustic performance to body size in the cat family; measurements and models. J Comp Physiol A 186: 447–465PubMedCrossRefGoogle Scholar
  15. Hunt RM, Korth WW (1980) The auditory region of Dermoptera: morphology and function relative to other living mammals. J Morphol 164: 167–211CrossRefGoogle Scholar
  16. Khanna SM, Sherrick C (1981) The comparative sensitivity of selected receptor systems. In: Gualtierotti T (ed) The Vestibular System: Function and Morphology. Springer-Verlag, New York, pp 337–348CrossRefGoogle Scholar
  17. Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-averaged holography. J Acoust Soc Am 51: 1904–1920PubMedCrossRefGoogle Scholar
  18. Kringlebotn M, Gundersen T (1985) Frequency characteristics of the middle ear. J Acoust Soc Am 77: 159–164PubMedCrossRefGoogle Scholar
  19. Long GR, Schnitzler H-U (1975) Behavioral audiograms from the bat, Rhinolophus ferrumequinum. J Comp Physiol A 100: 211–219CrossRefGoogle Scholar
  20. Megela-Simmons A, Moss CF, Danile KM (1985) Behavioral audiograms of the bullfrog (Rana catesbeiana) and the green treefrog (Hyla cinerea). J Acoust Soc Am 78: 1236–1244PubMedCrossRefGoogle Scholar
  21. Nedzelnitsky V (1980). Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68: 1676–1689PubMedCrossRefGoogle Scholar
  22. Puria S, Peake WT, Rosowski JJ (1997) Sound-pressure measurements in the cochlear vestibule of human cadavers. J Acoust Soc Am 101: 2745–2770CrossRefGoogle Scholar
  23. Rosowski JJ (1991a) The effects of external-and middle-ear filtering on auditory threshold and noise-induced hearing loss. J Acoust Soc Am 90: 124–135PubMedCrossRefGoogle Scholar
  24. Rosowski JJ (1991b) Erratum: The effects of external-and middle-ear filtering on auditory threshold and noise-induced hearing loss. [J Acoust Soc Am 1991; 90: 124–135] J Acoust Soc Am 90: 3373Google Scholar
  25. Rosowski JJ (1992) Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In: Popper AN, Fay RR, Webster DB (eds) The Evolutionary Biology of Hearing. Springer-Verlag, New York, pp 625–631Google Scholar
  26. Rosowski JJ (1994) Outer and middle ear. In Popper AN, Fay RR (eds) Springer Handbook of Auditory Research: Comparative Hearing: Mammals. Springer-Verlag, New York, pp 172–247Google Scholar
  27. Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linnean Soc 101: 131–168CrossRefGoogle Scholar
  28. Rosowski JJ, Carney LH, Lynch TJ III, Peake WT (1986) The effectiveness of external and middle ears in coupling acoustic power into the cochlea. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. Springer-Verlag, New York, pp 3–12Google Scholar
  29. Rosowski JJ, Peake WT, Lynch TJ III, Leong R, Weiss TF (1985) A model for signal transmission in an ear having hair cells with free-standing stereocilia, II. Macromechanical stage. Hearing Res 20: 139–155CrossRefGoogle Scholar
  30. Rosowski JJ, Carney LH, Peake WT (1988) The radiation impedance of the external ear of cat: Measurements and applications. J Acoust Soc Am 84: 1695–1708PubMedCrossRefGoogle Scholar
  31. Saunders JC, Johnstone BM (1972) A comparative analysis of middle-ear function in non-mammalian vertebrates. Acta Otolaryngol 73: 353–361PubMedCrossRefGoogle Scholar
  32. Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology: Vol V/1 The Auditory System. Springer-Verlag, New York, pp 455–490Google Scholar
  33. Shaw EAG (1988) Diffuse field response, receiver impedance and the acoustical reciprocity principle. J Acoust Soc Am 84: 2284–2287CrossRefGoogle Scholar
  34. Sivian U, White SD (1933) On minimum sound audible fields. J Acoust Soc Am 4: 288–321CrossRefGoogle Scholar
  35. Wilson JP, Bruns V (1983) Middle-ear mechanics in the CF-bat Rhinolopus ferrumequinum. Hearing Res 10: 1–13CrossRefGoogle Scholar
  36. Zwislocki J (1975) The role of the external and middle ear in sound transmission. In: Tower DB (ed) The Nervous System, Volume 3: Human Communication and its Disorders. Raven Press, New York, pp 45–55Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • John J. Rosowski

There are no affiliations available

Personalised recommendations