Embedded Mechanical Sensors in Artificial and Biological Systems

  • Paul Calvert


Animals have many mechanical sensors to monitor the stresses on their structure and so allow control of motion. Machines also contain sensors which monitor their action, but only a few, with each sensor closely tied to the control of a particular parameter. There have been many studies of embedded stress sensors, particularly for damage detection in composite materials and for “health monitoring” of bridges. Wider use would be made of embedded mechanical sensing if there were simpler systems for incorporating them into composite and concrete structures and simpler readout methods.


Carbon Fiber Fiber Bragg Grating Health Monitoring Damage Detection Strain Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abry J, Choi Y, Chateauminois A, Dalloz B, Giraud G, Salvia M (2001) In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements. Compos Sci Technol 61: 855–864CrossRefGoogle Scholar
  2. Aktan A, Helmicki A, Hunt V (1998) Issues in health monitoring intelligent infrastructure. Smart Mater Struct 7: 674–692CrossRefGoogle Scholar
  3. Barth FG (1985) Slit sensilla and the measurement of cuticular strains. In: Barth FG (ed) Neurobiology of Arachnids. Springer Verlag Berlin pp 162–188CrossRefGoogle Scholar
  4. Barth FG (2002) A Spider’s World: Senses and Behavior. Springer Verlag, BerlinGoogle Scholar
  5. Beall G (2000) Glass-ceramics for photonic applications. Glass Science and Technology-Glastechnische Berichte 73 Suppl CI: 3–11Google Scholar
  6. Beard S, Chang F (1997) Active damage detection in filament wound composite tubes using built-in sensors and actuators. J Intell Mater Syst Struct 8: 891–897CrossRefGoogle Scholar
  7. Blickhan R, Barth FG (1985) Strains in the exoskeleton of spiders. J Comp Physiol A 157: 115–147CrossRefGoogle Scholar
  8. Bocherens E, Bourasseau S, Dewynter-Marty V, Py S, Dupon M, Ferdinand P, Berenger H (2000) Damage detection in a radome sandwich material with embedded fiber optic sensors. Smart Mater Struct 9: 310–315CrossRefGoogle Scholar
  9. Calvert P, George G, Rintoul L (1996) Monitoring of cure and water uptake in a freeformed epoxy resin by an embedded optical fiber. Chem Mater 8: 1298–1301CrossRefGoogle Scholar
  10. Calvert PD, Denham HB, Anderson TA (1999) Free-form fabrication of composites with embedded sensors. Proc SPIE 3670: 128–133CrossRefGoogle Scholar
  11. Carman G, Sendeckyj G (1995) Review of the mechanics of embedded optical sensors. J Compos Technol Res 17: 183–193CrossRefGoogle Scholar
  12. Case S, Carman G (1994) Compression strength of composites containing embedded sensors or actuators. J Intell Mater Syst Struct 5: 4–11CrossRefGoogle Scholar
  13. Cavaleiro P, Araujo F, Ferreira L, Santos J, Farahi F (1999) Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germa-nosilicate fibers. IEEE Photonic Tech L 11: 1635–1637CrossRefGoogle Scholar
  14. Cusanoa A, Breglioa G, Giordano M, Calabrò A, Cutoloa A, Nicolais L (2000) An optoelectronic sensor for cure monitoring in thermoset-based composites. Sens Actuator A-Phys 84: 270–275CrossRefGoogle Scholar
  15. DeRossi D, Nannina A, Domenici C (1987) Biomimetic tactile sensors with stress-component discrimination capability. J Mol Electronics 3: 173–181Google Scholar
  16. De Rossi D, Delia Santa A, Mazzoldi A (1999) Dressware: Wearable hardware. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 7: 31–35CrossRefGoogle Scholar
  17. Denham H, George G, Rintoul L, Calvert P (1996) Fabrication of polymers and composites containing embedded sensors. Proc SPIE 2779: 742–747CrossRefGoogle Scholar
  18. Denham HB, Anderson TA, Madenci E, Calvert P (1997) Embedded pvf2 sensors for smart composites. Proc SPIE 3040: 138–147CrossRefGoogle Scholar
  19. Derby CD, Steullet P (2001) Why do animals have so many receptors? The role of multiple chemo-sensors in animal perception. Biol Bull 200: 211–215PubMedCrossRefGoogle Scholar
  20. Domenici C, DeRossi D (1992) A stress component-selective tactile sensor array. Sensors and Actuators A: Physics 31: 97–100CrossRefGoogle Scholar
  21. Doyle C, Martin A, Liu T, Wu M, Hayes S, Crosby P, Powell G, Brooks D, Fernando G (1998) Insitu process and condition monitoring of advanced fibre-reinforced composite materials using optical fibre sensors. Smart Mater Struct 7: 145–158CrossRefGoogle Scholar
  22. Dry C (1996) Procedures developed for self-repair of polymer matrix composite materials. Compos Struct 35: 263–269CrossRefGoogle Scholar
  23. Dry C, McMillan W (1996) Three-part methyl-methacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Mater Struct 5: 297–300CrossRefGoogle Scholar
  24. Egusa S, Iwasawa N (1998) Piezoelectric paints as one approach to smart structural materials with health-monitoring capabilities. Smart Mater Struct 7: 438–445CrossRefGoogle Scholar
  25. Fankhanel B, Muller E, Mosler U, Siegel W, Beier W (2001) Electrical properties and damage monitoring of SiC-fibre-reinforced glasses. Compos Sci Technol 61: 825–830CrossRefGoogle Scholar
  26. Fanucci JP (1991) Smart structures. In: Lee SM (ed) International Encyclopedia of Composites. VCH Publishers, Weinheim, Germany 5: 155–168Google Scholar
  27. Fink BK, Walsh SM, DeSchepper DC, Gillespie JW, McCullough RL, Don RC, Waibel BJ (1995) Advances in resin transfer molding flow monitoring using smart weave sensors. Proc ASME Materials Division 69: 999–1015Google Scholar
  28. Fletcher R (1996) Force transduction materials for human-technology interfaces. IBM Systems J 35: 630–638CrossRefGoogle Scholar
  29. Golnas T, Prinz F (1998) Thin film thermo-mechanical sensors embedded in metallic structures. Materials Science Forum 287–2: 201–204CrossRefGoogle Scholar
  30. Hasan Z, Stuart DG (1988) Animal solutions to problems of movement control: The role of proprioceptors. In: Cowan WM, Shooter EM, Stevens CF, Thompson RF (eds) Annual Reviews in Neuroscience. Annual Reviews Inc., Palo Alto CA 11: 199–224Google Scholar
  31. Hautamaki C, Zurn S, Mantell S, Polla D (1999) Experimental evaluation of MEMs strain sensors embedded in composites. J Micro-electromech Syst 8: 72–279Google Scholar
  32. Houk JC, Rymer WZ (1981) Neural control of muscle length and tension. In: Brooks VB (ed) Handbook of Physiology, Section 1 The Nervous System. Amer Physiol Soc, Bethesda MD, Vol II Pt 1: 257–323Google Scholar
  33. Huang S, Ohn M, Measures R (1996) Phase-based Bragg intragrating distributed strain sensor. Appl Optics 35: 1135–1142CrossRefGoogle Scholar
  34. Idriss R, Kodindouma M, Kersey A, Davis M (1998) Multiplexed Bragg grating optical fiber sensors for damage evaluation in highway bridges. Smart Mater Struct 7: 209–216CrossRefGoogle Scholar
  35. Jang B, Toyama N, Koo J, Kishi T (2001) Mechanical properties and manufacturing of TiNi/GFRP smart composites. Int J Mater Prod Technol 16: 117–124Google Scholar
  36. Jarlas R, Levin K (1999) Location of embedded fiber optic sensors for minimized impact vulnerability. J Intell Mater Syst Struct 10: 187–194Google Scholar
  37. Javidinejad A, Joshi S (2001) Autoclave reliability of MEMs pressure and temperature sensors embedded in carbon fiber composites. J Electron Packaging 123: 79–82CrossRefGoogle Scholar
  38. Jin X, Sirkis J, Chung J, Venkat V (1998) Em-bedded in-line fiber etalon/Bragg grating hybrid sensor to measure strain and temperature in a composite beam. J Intell Mater Syst Struct 9: 171–181CrossRefGoogle Scholar
  39. Kageyama K, Kimpara I, Suzuki T, Ohsawa I, Murayama H, Ito K (1998) Smart marine struc-tures: An approach to the monitoring of ship structures with fiber-optic sensors. Smart Mater Struct 7: 472–478CrossRefGoogle Scholar
  40. Kalamkarov A, Fitzgerald S, MacDonald D, Georgiades A (1999) On the processing and evaluation of pultruded smart composites. Compos Pt B-Eng 30: 753–763CrossRefGoogle Scholar
  41. Kalamkarov A, Fitzgerald S, MacDonald D, Georgiades A (2000) The mechanical performance of pultruded composite rods with embedded fiber-optic sensors. Compos Sci Technol 60: 1161–1169CrossRefGoogle Scholar
  42. Kepler R, Anderson R (1992) Ferroelectric polymers. Adv Phys 41: 1–57CrossRefGoogle Scholar
  43. Kersey AD, Koo KP, Davis M (1994) Fiber optic Bragg grating laser sensors. SPIE Proceedings 2292: 102–112CrossRefGoogle Scholar
  44. Koh Y, Chiu W, Marshall I, Rajic N, Galea S (2001) Detection of disbonding in a repair patch by means of an array of lead zirconate titanate and polyvinylidene fluoride sensors and actuators. Smart Mater Struct 10: 946–962CrossRefGoogle Scholar
  45. Kowbel W, Xia X, Champion W, Withers JC, Wada BK (1999) Pzt/polymer flexible composites for embedded actuator and sensor applications. Proc SPIE 3675: 32–42CrossRefGoogle Scholar
  46. Krohn DA (1991) Fiber Optic Sensors. Research Triangle Park, NC, Instrument Society of AmericaGoogle Scholar
  47. Kuang K, Kenny R, Whelan M, Cantwell W, Chalker P (2001) Residual strain measurement and impact response of optical fibre Bragg grating sensors in fibre metal laminates. Smart Mater Struct 10: 338–346CrossRefGoogle Scholar
  48. Lee D, Lee J, Kwon I, Seo D (2001) Monitoring of fatigue damage of composite structures by using embedded intensity-based optical fiber sensors. Smart Mater Struct 10: 285–292CrossRefGoogle Scholar
  49. Li V, Lim Y, Chan Y (1998) Feasibility study of a passive smart self-healing cementitious composite. Compos Pt B-Eng 29: 819–827CrossRefGoogle Scholar
  50. Li X, Prinz F, Seim J (2001) Thermal behavior of a metal embedded fiber Bragg grating sensor. Smart Mater Struct 10: 575–579CrossRefGoogle Scholar
  51. Loeb G (2001) Learning from the spinal chord. J Physiol 533: 111–117PubMedCrossRefGoogle Scholar
  52. Lopes V, Park G, Cudney H, Inman D (2000) Impedance-based structural health monitoring with artificial neural networks. J Intell Mater Syst Struct 11: 206–214Google Scholar
  53. Luo F, Liu J, Ma N, Morse T (1999) A fiber optic microbend sensor for distributed sensing application in the structural strain monitoring. Sens Actuator A-Phys 75: 41–44CrossRefGoogle Scholar
  54. Mall S, Coleman J (1998) Monotonic and fatigue loading behavior of quasi-isotropic graphite/epoxy laminate embedded with piezoelectric sensor. Smart Mater Struct 7: 822–832CrossRefGoogle Scholar
  55. Marra S, Ramesh K, Douglas A (1999 a) The mechanical and electromechanical properties of calcium-modified lead titanate/poly(vinylidene lidene fluoride-trifluoroethylene) 0–3 composites. Smart Mater Struct 8: 57–63CrossRefGoogle Scholar
  56. Marra S, Ramesh K, Douglas A (1999b) The mechanical properties of lead-titanate/polymer 0–3 composites. Compos Sci Technol 59: 2163–2173CrossRefGoogle Scholar
  57. Mathur R, Heider D, Hoffmann C, Gillespie J, Advani S, Fink B (2001) Flow front measurements and model validation in the vacuum assisted resin transfer molding process. Polym Compos 22: 477–490CrossRefGoogle Scholar
  58. Matthews P (1981) Muscle spindles. In: Brooks VB (ed) Handbook of Physiology. Section 1: The Nervous System. Amer Physiol Soc Bethesda MD, Vol II Pt 1: 189–228Google Scholar
  59. Mdver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 6 Nervous System: Sensory. Pergamon Press, Oxford, pp 71–132Google Scholar
  60. McKenzie I, Jones R, Marshall I, Galea S (2000) Optical fibre sensors for health monitoring of bonded repair systems. Compos Struct 50: 405–416CrossRefGoogle Scholar
  61. Measures R (1993) Fiber optic sensing for composite smart structures. Composites Engineering 3: 715–750CrossRefGoogle Scholar
  62. “Monroe” (2002) Website Http://www. Mechatronics.Mech.Tohoku.Ac.Jp/ ~ kumagai /research/monroe/biped_e.HtmlGoogle Scholar
  63. Morey WW, Meltz G, Glenn WH (1989) Fiberoptic Bragg grating sensor. Proc SPIE 1169: 98–107CrossRefGoogle Scholar
  64. Morita H, Shiaishi A (1985) Chemoreception physiology. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Bio-chemistry, and Pharmacology, Vol. 6 Nervous System: Sensory. Pergamon Press, Oxford pp 133–170Google Scholar
  65. Moulson AJ, Herbert JM (1990) Electroceramics: Materials, Properties, and Applications. Chapman and Hall, LondonGoogle Scholar
  66. Murukeshan V, Chan P, Ong L, Seah L (2000) Cure monitoring of smart composites using fi-ber Bragg grating based embedded sensors. Sens Actuator A-Phys 79: 153–161CrossRefGoogle Scholar
  67. Newnham RE, Ruschau GR (1991) Smart electroceramics. J Am Ceramics Soc 74: 463–480CrossRefGoogle Scholar
  68. Ohno H, Naruse H, Kihara M, Shimada A (2001) Industrial applications of the BOTDR optical fiber strain sensor. Opt Fiber Technol 7: 45–64CrossRefGoogle Scholar
  69. Peters K, Studer M, Botsis J, Iocco A, Limberger H, Salathe R (2001) Embedded optical fiber Bragg grating sensor in a nonuniform strain field: Measurements and simulations. Exp Mech 41: 19–28CrossRefGoogle Scholar
  70. Ray L, Koh B, Tian L (2000) Damage detection and vibration control in smart plates: Towards multifunctional smart structures. J Intell Mater Syst Struct 11: 725–739CrossRefGoogle Scholar
  71. Rebel G, Chaplin C, Groves-Kirkby C, Ridge I (2000) Condition monitoring techniques for fibre mooring ropes. Insight 42: 384–390Google Scholar
  72. Rippert L, Weavers M, Van Huffel S (2000) Optical and acoustic damage detection in laminated CFRP composite materials. Compos Sci Technol 60: 2713–2724CrossRefGoogle Scholar
  73. Safari A, Danforth SC (1998) Development of novel piezoelectric ceramics and composites for transducer applications. Proc SPIE 3341: 184–195CrossRefGoogle Scholar
  74. Sage I, Bourhill G (2001) Triboluminescent materials for structural damage monitoring. J Mater Chem 11: 231–245CrossRefGoogle Scholar
  75. Sage I, Humberstone L, Oswald I, Lloyd P, Bourhill G (2001) Getting light through black composites: Embedded triboluminescent structural damage sensors. Smart Mater Struct 10: 332–337CrossRefGoogle Scholar
  76. Salzano T, Calder C, Dehart D (1992) Embedded-strain-sensor development for composite smart structures. Exp Mech 32: 225–229CrossRefGoogle Scholar
  77. Schueler R, Joshi S, Schulte K (2001) Damage detection in CFRP by electrical conductivity mapping. Compos Sci Technol 61: 921–930CrossRefGoogle Scholar
  78. Senturia S, Sheppard N (1986) Dielectric analysis of thermoset cure. Adv Polymer Science 80: 1–47CrossRefGoogle Scholar
  79. Senturia S, Sheppard N, Lee H, Marshall S (1983) Cure monitoring and control with combined dielectric temperature probes. SAMPE Journal 19: 22–26Google Scholar
  80. Surgeon M, Wevers M (2001) The influence of embedded optical fibres on the fatigue damage progress in quasi-isotropic CFRP laminates. J Compos Mater 35: 931–940Google Scholar
  81. Tamiatto C, Krawczak P, Pabiot J, Laurent F (1998) Integrated sensors for in-service health monitoring of glass resin composites. J Adv Mater 30: 32–37Google Scholar
  82. Tang L, Tao X, Du W, Choy C (1998) Reliability of fiber Bragg grating sensors embedded in textile composites. Compos Interfaces 5: 421–435CrossRefGoogle Scholar
  83. Vaidya U, Abraham A, Bhide S (2001) Affordable processing of thick section and integral multifunctional composites. Compos Pt A-Appl Sci Manuf 32: 1133–1142CrossRefGoogle Scholar
  84. Wang C, Wu F, Chang F (2001) Structural health monitoring from fiber-reinforced composites to steel-reinforced concrete. Smart Mater Struct 10: 548–552CrossRefGoogle Scholar
  85. Wang G, Pran K, Sagvolden G, Havsgard G, Jensen A, Johnson G, Vohra S (2001) Ship hull structure monitoring using fibre optic sensors. Smart Mater Struct 10: 472–478CrossRefGoogle Scholar
  86. Wang X, Chung DDL (1998) Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar. Sensors and Actuators A: Physical 71: 208–212CrossRefGoogle Scholar
  87. Wang X, Fu X, Chung D (1999) Strain sensing using carbon fiber. J Mater Res 14: 790–802CrossRefGoogle Scholar
  88. White S, Sottos N, Geubelle P, Moore J, Kessler M, Sriram S, Brown E, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409: 794–797PubMedCrossRefGoogle Scholar
  89. Zellouf D, Saint-Pierre N, Jayet Y, Tatibouet J (1996) Piezoelectric implants: Monitoring the water degradation in polymer-based composites. Proc SPIE 2779: 58–163Google Scholar
  90. Zhang Q, Scheinbeim J (2001) Electric EAP. In: Bar-Cohen Y (ed) Electroactive Polymer Actuators as Artificial Muscles. SPIE Press, Bellingham, WA pp 89–122Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Paul Calvert

There are no affiliations available

Personalised recommendations