Microcantilevers for Physical, Chemical, and Biological Sensing

  • Thomas Thundat
  • Arun Majumdar


Recent advances in designing and fabricating microcantilever beams capable of detecting extremely small forces, mechanical stresses, and mass additions offer the promising prospects of chemical, physical, and biological sensing with unprecedented sensitivity and dynamic range. Molecular adsorption on a cantilever surface can be detected by measuring the shift in the cantilever resonance frequency. If the adsorption is confined to one surface of a cantilever, the resulting differential surface stress leads to cantilever bending, thus providing an additional method of detecting molecular adsorption. Differential stresses can also be created by mismatches in thermal expansion of two cantilever materials, thus resulting in highly sensitive temperature and radiation sensors. By functionalizing cantilever beams with receptors, and by using the selectivity of chemical and biochemical receptor-ligand interactions, chemical and biological sensing can be achieved with high specificity and sensitivity. Here, we review the development of microcantilever sensors and sensor arrays, and present illustrative applications of chemical, physical, and biological sensing based on microcantilevers.


Surface Acoustic Wave Gold Film Cantilever Deflection Mercury Adsorption Probe ssDNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht TR, Akamine S, Carver TE, Quate CF (1990) Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol A8: 3386–3396Google Scholar
  2. Ballantine DS, White RM, Martin SJ, Ricco AJ, Frye GC, Zellers ET, Wohltjen H (1997) Acoustic Wave Sensors: Theory, Design, and Physicochemical Applications. Academic Press, San DiegoGoogle Scholar
  3. Baller MK, Lang HP, Fritz J, Gerber Ch, Gimzewski JK, Drechsler U, Rothuizen H, Despont M, Vettiger P, Battison FM, Ramseyer JP, Fornaro P, Mayer E, Guntherdot HJ (2000) A cantilever array based artificial nose. Ultra-microscopy 82: 1–9Google Scholar
  4. Barnes JR, Stephenson RJ, Welland ME, Gerber Ch, Gimzewski JK (1994) Photothermal spec-troscopy with femtojoule sensitivity using a mi-cromechanical device. Nature 372: 79–81CrossRefGoogle Scholar
  5. Battiston FM, Ramseyer JP, Lang HP, Baller, MK, Gerber Ch, Gimzewski JK, Mayer E, Guntherodt HJ (2001) A chemical sensor based on a microfabricated cantilever array with si-multaneous resonance-frequency and bending readout. Sens Actuator B 77: 122–131CrossRefGoogle Scholar
  6. Betts TA, Tipple CA, Sepaniak MJ, Datskos PG (2000) Selectivity of chemical sensors based on microcantilevers coated with thin polymer films. Anal Chim Acta 422: 89–99CrossRefGoogle Scholar
  7. Boisen A, Thaysen J, Jensenius H, Hansen O (2000) Environmental sensors based on micro-machined cantilevers with integrated readout. Ultramicroscopy 82: 11–16PubMedCrossRefGoogle Scholar
  8. Butt HJ (1996) A sensitive method to measure changes in surface stress of solids. J Coll Inter Sci 180: 251–260CrossRefGoogle Scholar
  9. Chen GY, Thundat T, Wachter EA, Warmack RJ (1995) Adsorption-induced surface stress and its effects on resonance frequency of microcan-tilevers. J Appl Phys 77: 3618–3622CrossRefGoogle Scholar
  10. Cowburn RP, Moulin AM, Welland WE (1997) High-sensitivity measurement of magnetic fields using microcantilevers. Appl Phys Lett 71: 2202–2204CrossRefGoogle Scholar
  11. Datskos PG, Oden PI, Thundat T, Wachter EA, Warmack RJ, Hunter RS (1996) Micromechan-ical temperature sensor. Appl Phys Lett 69: 2986–2988CrossRefGoogle Scholar
  12. Finot E, Lesniewska E, Goudonnet JP, Thundat T (2001) Measuring magnetic susceptibilities of nanogram quantities of materials using microcantilevers. Ultramicroscopy 86: 175–180PubMedCrossRefGoogle Scholar
  13. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Guntherodt HJ, Gerber Ch, Gimzewski JK (2000 a) Translating biomol-ecular recognition into nanomechanics. Science 288: 316–318CrossRefGoogle Scholar
  14. Fritz J, Baller MK, Lang HP, Strunz T, Meyer E, Guntherodt HJ, Delamarche HE, Gerber Ch, Gimzewski JK (2000 b) Stress at the solid-liquid interface of self-assembled monolayers on gold investigated with nanomechanical sensor. Langmuir 16: 9694CrossRefGoogle Scholar
  15. Gimzewski JK, Gerber CH, Mayer E, Schlitter RR (1994) Observations of a chemical reaction using micromechanical sensor. Chem Phys Lett 217: 589–594CrossRefGoogle Scholar
  16. Grate JW, Martin SJ, White RM (1993) Acoustic wave microsensors. Anal Chem 65: 978A–996ACrossRefGoogle Scholar
  17. Hansen KM, Ji HF, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimina-tion of DNA single-nucleotide mismatches. Anal Chem 73: 1567–1571PubMedCrossRefGoogle Scholar
  18. Hu Z, Thundat T, Warmack RJ (2001) Investiga-tions of adsorption and absorption-induced stresses using microcantilever sensors. J Appl Phys 90: 427–431CrossRefGoogle Scholar
  19. Jensenius H, Thaysen J, Rasmussen AA, Veje LH, Hansen O, Boisen A (2000) A microcanti-lever based alcohol vapor sensor¡ªapplication and response model. App Phys Lett 76: 2615–2617CrossRefGoogle Scholar
  20. Ji HF, Finot E, Thundat T, Dabestani R, Britt PF, Bonnesen PV, Brown GM (2000) A novel self-assembled monolayer (SAM) coated microcan-tilever for low level Cs ion detection. Chem Commun 6: 457–458CrossRefGoogle Scholar
  21. Ji HF, Hansen KM, Hu Z, Thundat T (2001) Detection of pH variation using modified microcantilever sensors. Sens Actuators B72: 233–238Google Scholar
  22. Lai J, Shi Z, Perazzo T, Majumdar A (1997) Opti-mization and performance of high-resolution micro-optomechanical thermal sensors. Sens Actuator 58: 113–119CrossRefGoogle Scholar
  23. Manalis SR, Minne SC, Quate CF, Yaralioglu GG, Atalar A (1997) Two dimensional micro-mechanical bimorph arrays for detection of thermal radiation. Appl Phys Lett 70: 3311–3313CrossRefGoogle Scholar
  24. McGill RA, Abraham MH, Grate JW (1994). Choosing polymer coatings for chemical sen-sors. CHEMTECH 24: 27–37Google Scholar
  25. Oden PI, Chen GY, Steele RA, Warmack RJ, Thundat T (1996 a) Viscous drag measure-ments utilizing microfabricated cantilevers. Appl Phys Lett 68: 1465–1469CrossRefGoogle Scholar
  26. Oden PI, Datskos PG, Thundat TG, Warmack RJ (1996 b) Uncooled thermal imaging using a piezoresistive microcantilever. Appl Phys Lett 99: 3277–3279CrossRefGoogle Scholar
  27. Perazzo T, Mao M, Kwon O, Majumdar A, Varesi J, Norton P (1999) Infrared vision using micro-optomechanical camera. Appl Phys Lett 74: 3567–3569CrossRefGoogle Scholar
  28. Raiteri R, Nelles G, Butt H-J, Knoll W, Skladal P (1999) Sensing biological substances based on the bending of microfabricated cantilevers. Sens Actuators B 61: 213–217CrossRefGoogle Scholar
  29. Salapaka MV, Bergh S, Lai J, Majumdar A, McFarland E (1997) Multimode noise analysis of cantilevers for scanning probe microscopy. J Appl Phys 81: 2480–2487CrossRefGoogle Scholar
  30. Sarid D (1994) Scanning Force Microscopy. Oxford University Press, New YorkGoogle Scholar
  31. Stephan SC, Gaulden T, Brown A-D, Smith M, Miller LF, Thundat T (2002) Microcantilever charged particle detector. Rev Sci Instrum 73: 36–41CrossRefGoogle Scholar
  32. Stoney GG (1909) The tension of metallic film deposited by electrolysis. Proc Roy Soc (London) 82: 172–175CrossRefGoogle Scholar
  33. Thundat T, Warmack RJ, Chen GY, Allison DP (1994) Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett 64: 2894–2896CrossRefGoogle Scholar
  34. Thundat T, Chen GY, Warmack RJ, Allison DP, Wachter EA (1995 a) Vapor detection using resonating microcantilevers. Anal Chem 67: 519–521CrossRefGoogle Scholar
  35. Thundat T, Wachter EA, Sharp SL, Warmack RJ (1995 b) Detection of mercury vapor using resonating cantilevers. Appl Phys Lett 66: 1695–1697CrossRefGoogle Scholar
  36. Thundat T, Oden PI, Warmack RJ (1997) Micro-cantilever sensors. Microscale Therm Eng 1: 185–199CrossRefGoogle Scholar
  37. Tulle ON, Stelzer EL (1993) Piezoresistive prop-erties of silicon diffused layers. J Appl Phys 34: 323–329Google Scholar
  38. Varesi J, Lai J, Shi Z, Perazzo T, Majumdar A (1997) Photothermal measurements with picowatt resolution using micro-optomechani-cal sensors. Appl Phys Lett 71: 306–308CrossRefGoogle Scholar
  39. Wachter EA, Thundat T, Datskos PG, Oden PI, Sharp SL, Warmack RJ (1996) Remote optical detection using microcantilevers. Rev Sci In-strum 67: 3434–3439CrossRefGoogle Scholar
  40. Ward MD, Buttry DA (1990) In-situ interfacial mass detection with piezoelectric transducers. Science 249: 1000–1007PubMedCrossRefGoogle Scholar
  41. Wu G, Ji HF, Hansen K, Thundat T, Datar R, Cote R, Hagan MF, Chakraborty A, Majumdar A (2001 a) Origin of nanomechanical cantilever motion-generated from biomolecular interac-tions. Proc Natl Acad Sci 98: 1560–1564CrossRefGoogle Scholar
  42. Wu G, Datar R, Hansen K, Thundat T, Cote R, Majumdar A (2001b) Nanomechanical bioassay of prostate specific antigen (PSA). Nat Biotechnol 19: 856–860CrossRefGoogle Scholar
  43. Zhao Y, Mao M, Majumdar A (1999) Application of Fourier optics for detecting deflections of infrared-sensing cantilever arrays. Microscale Therm Eng 3: 245–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Thomas Thundat
  • Arun Majumdar

There are no affiliations available

Personalised recommendations