Skip to main content

Mechanisms for Gradient Following

  • Chapter

Abstract

Many organisms move up or down stimulus gradients to a more favorable environment. Investigation over more than a century has revealed that a variety of mechanisms are used by different organisms. There are tradeoffs among these strategies between the number of sensors, the movements required of the searcher, and physical constraints on its orientation. Recently, theoretical analysis and computer simulation have been used to explore these tradeoffs quantitatively. This information may be useful in the design of autonomous vehicles that might also follow stimulus gradients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam G, Delbrück M (1968) Reduction of dimensionality in biological diffusion processes. In: Rich A, Davidson N (eds) Structural Chemistry and Molecular Biology. W.H. Freeman & Co., San Francisco, pp 198–215

    Google Scholar 

  • Armitage JP (1992a) Bacterial motility and chemotaxis. Sci Prog 76: 451–477

    PubMed  CAS  Google Scholar 

  • Armitage JP (1992b) Behavioral responses in bacteria. Ann Rev Physiol 54: 683–714

    Article  CAS  Google Scholar 

  • Armitage J (1999) Bacterial tactic responses. Adv Microbial Physiol 41: 229–289

    Article  CAS  Google Scholar 

  • Berg HC, Brown DA (1972) Chemotaxis in Escherichia cob analyzed by three-dimensional tracking. Nature 239: 500–504

    Article  PubMed  CAS  Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20: 193–219

    Article  PubMed  CAS  Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190: 377–379

    Article  PubMed  CAS  Google Scholar 

  • Blakemore RP (1982) Magnetotactic bacteria. Ann Rev Microbiol 36: 217–38

    Article  CAS  Google Scholar 

  • Block SM, Segall JE, Berg HC (1982) Impulse responses in bacterial chemotaxis Cell 31: 215–226

    Google Scholar 

  • Crenshaw HC (1993a) Orientation by helical motion-I. Kinematics of the helical motion of organisms with up to six degrees of freedom. Bull Math Biol 55: 197–212

    Google Scholar 

  • Crenshaw HC (1993b) Orientation by helical motion-III. Microorganisms can orient to stimuli by changing the direction of their rotational velocity. Bull Math Biol 55: 231–255

    Google Scholar 

  • Crenshaw HC, Edelstein-Keshet L (1993) Orientation by helical motion-II. Changing the direction of the axis of motion. Bull Math Biol 55: 213–230

    Google Scholar 

  • Diez JA, Dusenbery DB (1989a) Preferred temperature of Meloidogyne incognita. J Nematol 21: 99–104

    PubMed  CAS  Google Scholar 

  • Diez JA, Dusenbery DB (1989b) Repellent of root-knot nematodes from exudate of host roots. J Chem Ecol 15: 2445–2455

    Article  Google Scholar 

  • Dusenbery DB (1980) Responses of the nematode Caenorhabditis elegans to controlled chemical stimulation. J Comp Physiol A 136: 327–331 Dusenbery DB (1988) Behavioral responses of Meloidogyne incognita to small temperature changes. J Nematol 20: 351–355

    Article  Google Scholar 

  • Dusenbery DB (1989a) Efficiency and the role of adaptation in klinokinesis. J Theoret Biol 136: 281–293

    Article  CAS  Google Scholar 

  • Dusenbery DB (1989b) A simple animal can use a complex stimulus pattern to find a location: nematode thermotaxis in soil. Biol Cybernetics 60: 431–438

    Article  Google Scholar 

  • Dusenbery DB (1989c) The value of asymmetric signal processing in klinokinesis. Biol Cybernetics 61: 401–404

    Article  CAS  Google Scholar 

  • Dusenbery DB (1992) Sensory Ecology. W.H. Freeman and Company, New York

    Google Scholar 

  • Dusenbery DB (1997) Minimum size limit for useful locomotion by free-swimming microbes. Proc Natl Acad Sci USA 94: 10949–10954

    Article  PubMed  CAS  Google Scholar 

  • Dusenbery DB (1998a) Fitness landscapes for effects of shape on chemotaxis and other behaviors of bacteria. J Bact 180: 5978–5983

    PubMed  CAS  Google Scholar 

  • Dusenbery DB (1998b) Spatial sensing of stimulus gradients can be superior to temporal sensing for free-swimming bacteria. Biophys J 74: 2272–2277

    Article  PubMed  CAS  Google Scholar 

  • Dusenbery DB (2001a) Performance of basic strategies for following gradients in two dimensions. J Theor Biol 208: 345–360

    Article  PubMed  CAS  Google Scholar 

  • Dusenbery DB (2001b) Physical constraints in sensory ecology. In Barth F, Schmid A (eds) Ecology of Sensing. Springer, Berlin, pp 1–17

    Google Scholar 

  • Ferr¨¦e TC, Lockery SR (1999) Computational rules for chemotaxis in the nematode C. elegans. J Comp Neurosci 6: 263–277

    Article  Google Scholar 

  • Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbiol Revs 44: 572–630

    CAS  Google Scholar 

  • Frankel RB, Blakemore RP, de Araujo FFT, Esquivel DMS, Danon J (1981) Magnetotactic bacteria at the geomagnetic equator. Science 212: 1269–1270

    Article  PubMed  CAS  Google Scholar 

  • Goode M, Dusenbery DB (1985) Behavior of tethered Meloidogyne incognita. J Nematol 17: 460–464

    PubMed  CAS  Google Scholar 

  • Jennings HS (1901) On the significance of the spiral swimming of organisms. Am Naturalist XXXV: 369–378

    Google Scholar 

  • Karp-Boss L, Boss E, Jumars PA (1996) Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanographic and Marine Biology: an Annual Review 34: 71–107

    Google Scholar 

  • Manson MD (1992) Bacterial motility and chemotaxis. Adv Microbial Physiol 33: 277–346

    Article  CAS  Google Scholar 

  • Morse TM, Ferr¨¦e TC, Lockery SR (1998) Robust spatial navigation in a robot inspired by chemotaxis in Caenorhabditis elegans. Adapt Behav 6: 393–410

    Article  Google Scholar 

  • Pline M, Diez JA, Dusenbery DB (1988) Extremely sensitive thermotaxis of the nematode Meloidogyne incognita. J Nematol 20: 605–608

    PubMed  CAS  Google Scholar 

  • Pline M, Dusenbery DB (1987) Responses of the plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J Chem Ecol 13: 1617–1624

    Article  Google Scholar 

  • Prot JC (1978) Behaviour of juveniles of Meloidogyne javanica in salt gradients. Rev Nematol 1: 135–142

    Google Scholar 

  • Purcell EM (1976) Life at low Reynolds number. In: Huang K (ed) Physics in Our World: A Symposium in Honor of Victor F. Weisskopf. American Institute of Physics, New York, pp 49–64

    Google Scholar 

  • Robinson AF (1995) Optimal release rates for attracting Meloidogyne incognita, Rotylenchulus reniformis,and other nematodes to carbon dioxide in soil. J Nematol 27: 42–52

    PubMed  CAS  Google Scholar 

  • Schöne H (1984) Spatial Orientation. Princeton University Press, Princeton, NJ Segall JE, Block SM, Berg HC (1986) Temporal comparisons in bacterial chemotaxis Proc Natl Acad Sci USA 83: 8987–8991

    Google Scholar 

  • Spormann AM, Wolfe RS (1984) Chemotactic, magnetotactic and tactile behavior in a magnetic spirillum. FEMS Microbiol Letts 22: 171–177

    Article  CAS  Google Scholar 

  • Tanford C (1963) Physical Chemistry of Macromolecules. Wiley, New York

    Google Scholar 

  • Tranquillo RT, Lauffenburger DA (1987) Stochastic model of leukocyte chemosensory movement. J math Biol 25: 229–262

    Article  PubMed  CAS  Google Scholar 

  • Tranquillo RT (1990) Theories and models of gradient perception. In Armitage JP, Lackie JM (eds) Biology of the Chemotactic Response. Cambridge University Press, Cambridge, pp 35–75

    Google Scholar 

  • Tranquillo RT, Lauffenburger DA, Zigmond SH (1988) A stochastic model of leukocyte random motility and chemotaxis based on receptor binding fluctuations. J Cell Biol 106: 303–309

    Article  PubMed  CAS  Google Scholar 

  • van Holde KE (1985) Physical Biochemistry. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: Identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci USA 70: 817–821

    Article  PubMed  CAS  Google Scholar 

  • Zigmond SH (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol 75: 606–616

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Dusenbery, D.B. (2003). Mechanisms for Gradient Following. In: Barth, F.G., Humphrey, J.A.C., Secomb, T.W. (eds) Sensors and Sensing in Biology and Engineering. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6025-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6025-1_21

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7287-2

  • Online ISBN: 978-3-7091-6025-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics