Mechanisms for Gradient Following

  • David B. Dusenbery


Many organisms move up or down stimulus gradients to a more favorable environment. Investigation over more than a century has revealed that a variety of mechanisms are used by different organisms. There are tradeoffs among these strategies between the number of sensors, the movements required of the searcher, and physical constraints on its orientation. Recently, theoretical analysis and computer simulation have been used to explore these tradeoffs quantitatively. This information may be useful in the design of autonomous vehicles that might also follow stimulus gradients.


Brownian Motion Axial Ratio Rotational Diffusion Temporal Comparison Magnetotactic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam G, Delbrück M (1968) Reduction of dimensionality in biological diffusion processes. In: Rich A, Davidson N (eds) Structural Chemistry and Molecular Biology. W.H. Freeman & Co., San Francisco, pp 198–215Google Scholar
  2. Armitage JP (1992a) Bacterial motility and chemotaxis. Sci Prog 76: 451–477PubMedGoogle Scholar
  3. Armitage JP (1992b) Behavioral responses in bacteria. Ann Rev Physiol 54: 683–714CrossRefGoogle Scholar
  4. Armitage J (1999) Bacterial tactic responses. Adv Microbial Physiol 41: 229–289CrossRefGoogle Scholar
  5. Berg HC, Brown DA (1972) Chemotaxis in Escherichia cob analyzed by three-dimensional tracking. Nature 239: 500–504PubMedCrossRefGoogle Scholar
  6. Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20: 193–219PubMedCrossRefGoogle Scholar
  7. Blakemore RP (1975) Magnetotactic bacteria. Science 190: 377–379PubMedCrossRefGoogle Scholar
  8. Blakemore RP (1982) Magnetotactic bacteria. Ann Rev Microbiol 36: 217–38CrossRefGoogle Scholar
  9. Block SM, Segall JE, Berg HC (1982) Impulse responses in bacterial chemotaxis Cell 31: 215–226Google Scholar
  10. Crenshaw HC (1993a) Orientation by helical motion-I. Kinematics of the helical motion of organisms with up to six degrees of freedom. Bull Math Biol 55: 197–212Google Scholar
  11. Crenshaw HC (1993b) Orientation by helical motion-III. Microorganisms can orient to stimuli by changing the direction of their rotational velocity. Bull Math Biol 55: 231–255Google Scholar
  12. Crenshaw HC, Edelstein-Keshet L (1993) Orientation by helical motion-II. Changing the direction of the axis of motion. Bull Math Biol 55: 213–230Google Scholar
  13. Diez JA, Dusenbery DB (1989a) Preferred temperature of Meloidogyne incognita. J Nematol 21: 99–104PubMedGoogle Scholar
  14. Diez JA, Dusenbery DB (1989b) Repellent of root-knot nematodes from exudate of host roots. J Chem Ecol 15: 2445–2455CrossRefGoogle Scholar
  15. Dusenbery DB (1980) Responses of the nematode Caenorhabditis elegans to controlled chemical stimulation. J Comp Physiol A 136: 327–331 Dusenbery DB (1988) Behavioral responses of Meloidogyne incognita to small temperature changes. J Nematol 20: 351–355CrossRefGoogle Scholar
  16. Dusenbery DB (1989a) Efficiency and the role of adaptation in klinokinesis. J Theoret Biol 136: 281–293CrossRefGoogle Scholar
  17. Dusenbery DB (1989b) A simple animal can use a complex stimulus pattern to find a location: nematode thermotaxis in soil. Biol Cybernetics 60: 431–438CrossRefGoogle Scholar
  18. Dusenbery DB (1989c) The value of asymmetric signal processing in klinokinesis. Biol Cybernetics 61: 401–404CrossRefGoogle Scholar
  19. Dusenbery DB (1992) Sensory Ecology. W.H. Freeman and Company, New YorkGoogle Scholar
  20. Dusenbery DB (1997) Minimum size limit for useful locomotion by free-swimming microbes. Proc Natl Acad Sci USA 94: 10949–10954PubMedCrossRefGoogle Scholar
  21. Dusenbery DB (1998a) Fitness landscapes for effects of shape on chemotaxis and other behaviors of bacteria. J Bact 180: 5978–5983PubMedGoogle Scholar
  22. Dusenbery DB (1998b) Spatial sensing of stimulus gradients can be superior to temporal sensing for free-swimming bacteria. Biophys J 74: 2272–2277PubMedCrossRefGoogle Scholar
  23. Dusenbery DB (2001a) Performance of basic strategies for following gradients in two dimensions. J Theor Biol 208: 345–360PubMedCrossRefGoogle Scholar
  24. Dusenbery DB (2001b) Physical constraints in sensory ecology. In Barth F, Schmid A (eds) Ecology of Sensing. Springer, Berlin, pp 1–17Google Scholar
  25. Ferr¨¦e TC, Lockery SR (1999) Computational rules for chemotaxis in the nematode C. elegans. J Comp Neurosci 6: 263–277CrossRefGoogle Scholar
  26. Foster KW, Smyth RD (1980) Light antennas in phototactic algae. Microbiol Revs 44: 572–630Google Scholar
  27. Frankel RB, Blakemore RP, de Araujo FFT, Esquivel DMS, Danon J (1981) Magnetotactic bacteria at the geomagnetic equator. Science 212: 1269–1270PubMedCrossRefGoogle Scholar
  28. Goode M, Dusenbery DB (1985) Behavior of tethered Meloidogyne incognita. J Nematol 17: 460–464PubMedGoogle Scholar
  29. Jennings HS (1901) On the significance of the spiral swimming of organisms. Am Naturalist XXXV: 369–378Google Scholar
  30. Karp-Boss L, Boss E, Jumars PA (1996) Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanographic and Marine Biology: an Annual Review 34: 71–107Google Scholar
  31. Manson MD (1992) Bacterial motility and chemotaxis. Adv Microbial Physiol 33: 277–346CrossRefGoogle Scholar
  32. Morse TM, Ferr¨¦e TC, Lockery SR (1998) Robust spatial navigation in a robot inspired by chemotaxis in Caenorhabditis elegans. Adapt Behav 6: 393–410CrossRefGoogle Scholar
  33. Pline M, Diez JA, Dusenbery DB (1988) Extremely sensitive thermotaxis of the nematode Meloidogyne incognita. J Nematol 20: 605–608PubMedGoogle Scholar
  34. Pline M, Dusenbery DB (1987) Responses of the plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera-computer tracking. J Chem Ecol 13: 1617–1624CrossRefGoogle Scholar
  35. Prot JC (1978) Behaviour of juveniles of Meloidogyne javanica in salt gradients. Rev Nematol 1: 135–142Google Scholar
  36. Purcell EM (1976) Life at low Reynolds number. In: Huang K (ed) Physics in Our World: A Symposium in Honor of Victor F. Weisskopf. American Institute of Physics, New York, pp 49–64Google Scholar
  37. Robinson AF (1995) Optimal release rates for attracting Meloidogyne incognita, Rotylenchulus reniformis,and other nematodes to carbon dioxide in soil. J Nematol 27: 42–52PubMedGoogle Scholar
  38. Schöne H (1984) Spatial Orientation. Princeton University Press, Princeton, NJ Segall JE, Block SM, Berg HC (1986) Temporal comparisons in bacterial chemotaxis Proc Natl Acad Sci USA 83: 8987–8991Google Scholar
  39. Spormann AM, Wolfe RS (1984) Chemotactic, magnetotactic and tactile behavior in a magnetic spirillum. FEMS Microbiol Letts 22: 171–177CrossRefGoogle Scholar
  40. Tanford C (1963) Physical Chemistry of Macromolecules. Wiley, New YorkGoogle Scholar
  41. Tranquillo RT, Lauffenburger DA (1987) Stochastic model of leukocyte chemosensory movement. J math Biol 25: 229–262PubMedCrossRefGoogle Scholar
  42. Tranquillo RT (1990) Theories and models of gradient perception. In Armitage JP, Lackie JM (eds) Biology of the Chemotactic Response. Cambridge University Press, Cambridge, pp 35–75Google Scholar
  43. Tranquillo RT, Lauffenburger DA, Zigmond SH (1988) A stochastic model of leukocyte random motility and chemotaxis based on receptor binding fluctuations. J Cell Biol 106: 303–309PubMedCrossRefGoogle Scholar
  44. van Holde KE (1985) Physical Biochemistry. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  45. Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: Identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci USA 70: 817–821PubMedCrossRefGoogle Scholar
  46. Zigmond SH (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol 75: 606–616PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • David B. Dusenbery

There are no affiliations available

Personalised recommendations