From Fly Vision to Robot Vision: Re-Construction as a Mode of Discovery

  • Nicolas Franceschini


This chapter addresses basic issues on how vision links up with action and guides locomotion in biological and artificial creatures. The thorough knowledge gained over the past five decades on insects’ sensory-motor abilities and the neuronal substrates involved has provided us with a rich source of inspiration for designing tomorrow’s self-guided vehicles and micro-vehicles, which will be able to cope with unforeseen events on the ground, under water, in the air, in space, on other planets, and inside the human body. Insects can teach us some shortcuts to designing agile autonomous robots. At the same time, constructing these ’biorobots’ based on specific biological principles gives us a unique opportunity of checking the soundness and robustness of these principles by bringing them face to face with the real physical world. Here we describe the visually guided terrestrial and aerial robots we have developed on the basis of our biological findings. Their architecture is akin to that of biological systems in spirit, and so is their parallel and analog mode of signal processing. As we learn more about signal processing and sensory-motor integration in nervous systems, we may eventually be able to design even better machines and micromachines than those which Nature has to offer. The millions of insect species constitute a gigantic untapped reservoir of ideas for highly sophisticated sensors, actuators and control systems.


Mobile Robot Aerial Robot Optic Flow Field Lobula Plate Analog VLSI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aloimonos Y (1993) Active Perception. Lawrence Erlbaum, Hillsdale, USAGoogle Scholar
  2. Arkin R (1998) Behavior-based Robotics. MIT Press, Cambridge, USAGoogle Scholar
  3. Ayers J, Davis JL, Rudolph A (2002) Neurotechnolgy for Biomimetic Robots. MIT Press, Cambridge, USAGoogle Scholar
  4. Bajcsy R (1985) Active perception versus passive perception. In: Proc. 3rd IEEE Workshop on Computer Vision, pp 55–59Google Scholar
  5. Ballard D (1991) Animate vision. Artificial Intelligence 48: 57–86CrossRefGoogle Scholar
  6. Barlow HB, Frisby JP, Horridge AH, Jeaves M (eds) (1993) Natural and Artificial Low-level Seeing Systems. Clarendon Press, OxfordGoogle Scholar
  7. Blanes C (1986) Appareil visuel ¨¦l¨¦mentaire pour la navigation ¨¤ vue d’un robot mobile autonome. DEA thesis (Neurosciences). Univ. Aix-MarseilleGoogle Scholar
  8. Blanes C (1991) Guidage visuel d’un robot mobile autonome d’inspiration bionique. Dr Thesis, National Polytechnic Institute, GrenobleGoogle Scholar
  9. Braitenberg V (1984) Vehicles. MIT Press, Cambridge, USAGoogle Scholar
  10. Brooks RA (1999) Cambrian Intelligence. MIT Press, Cambridge, USAGoogle Scholar
  11. Buchner E (1984) Behavioral analysis of spatial vision in insects, In: Ali M (ed) Photoreception and Vision in Invertebrates. Plenum, New York, pp 561–621CrossRefGoogle Scholar
  12. Burrows M (1996) The Neurobiology of an Insect Brain. Oxford Univ Press, OxfordCrossRefGoogle Scholar
  13. Chang C, Gaudiano P (2000) Biomimetic Robotics (special issue on). Robotics and Autonomous Systems, 30Google Scholar
  14. Cliff D, Husbands P, Meyer JA, Wilson SW (1994) From animals to animats III. In: Proc Intern Conf on Simulation of Adaptive Behavior. MIT Press, Cambridge, USAGoogle Scholar
  15. Collett T, Land M (1975) Visual control of flight behaviour in the hoverfly Syritta Pipiens L. J Comp Physiol A 99: 1–66CrossRefGoogle Scholar
  16. Collett TS (1978) Peering: a locust behaviour pattern for obtaining motion parallax information. J Exp Biol 76: 237–241Google Scholar
  17. Coombs D, Roberts K (1992) Bee-Bot: Using the peripheral optic flow to avoid obstacles. In: Intelligent Robots and Computer Vision XI, SPIE 1835, Bellingham, USA pp 714–725Google Scholar
  18. Douglas R, Mahowald M, Mead C (1995) Neuromorphic engineering. Ann Rev Neurosci 18: 255–281PubMedCrossRefGoogle Scholar
  19. Douglass JK, Strausfeld NJ (1996) Visual motion-detecting circuits in flies: parallel direction-and non-direction-selective pathways between the medulla and lobula plate. J Neurosci 16: 4551–4562PubMedGoogle Scholar
  20. Duchon AP, Warren WH (1994) Robot navigation from a Gibsonian viewpoint. IEEE Intern Conf On Syst, Man and Cybernetics, San Antonio, USA, IEEE Press, Los Alamitos, USA, pp 2272–2277Google Scholar
  21. Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Snyder A, Menzel R (eds) Photoreceptor Optics, Chap. 17, Springer, Berlin, pp 98–125CrossRefGoogle Scholar
  22. Franceschini N (1984) Chromatic organisation and sexual dimorphism of the fly retinal mosaic. In: Borsellino A, Cervetto L (eds) Photoreceptors, Plenum: New York, pp 319–350Google Scholar
  23. Franceschini N (1985) Early processing of colour and motion in a mosaic visual system. Neurosci Res, Suppl 2: 17–49Google Scholar
  24. Franceschini N (1996) Engineering applications of small brains. Future Electron Devices Journal, Suppl 7: 38–52Google Scholar
  25. Franceschini N, Chagneux R (1997) Repetitive scanning in the fly compound eye. In: Elsner N, Wässle H (eds) Göttingen Neurobiology Rep, Georg Thieme, Stuttgart, 279Google Scholar
  26. Franceschini N, Blanes C, Oufar L (1986) Passive noncontact velocity sensor (in French). Dossier Technique ANVAR/DVAR N¡ã 51, 549, ParisGoogle Scholar
  27. Franceschini N, Pichon JM, Blanes C (1992) From insect vision to robot vision. Phil Trans R Soc Lond B 337: 283–294CrossRefGoogle Scholar
  28. Franceschini N, Pichon JM, Blanes C (1997) Bionics of visuomotor control. In: Gomi T (ed) Evolutionary Robotics: From Intelligent Robots to Artificial Life. AAAI Books, Ottawa, Canada, pp 49–67Google Scholar
  29. Franceschini N, Riehle A, Le Nestour A (1989) Directionally Selective Motion Detection by Insect Neurons. In: Stavenga DG, Hardie RC (eds) Facets of Vision, Berlin, Springer, Chap. 17, pp 360–390Google Scholar
  30. Gibson JJ (1958) Visually controlled locomotion and visual orientation in animals. Brit J Psychol 49: 182–194PubMedCrossRefGoogle Scholar
  31. Götz KG (1969) Flight control in Drosophila by visual perception of motion. Kyb 4: 199–208CrossRefGoogle Scholar
  32. Goulet M, Campan R (1981) The visual perception of the relative distance in the wood cricket Nemobius sylvestris. Physiol Entomol 6: 357–387CrossRefGoogle Scholar
  33. Hardie RC (1985) Functional organization of the fly retina, In: Ottoson D (ed) Progress in Sensory Physiology 5, Springer, BerlinGoogle Scholar
  34. Harrison R, Koch C (2000) A silicon implementation of the fly’s optomotor control system. Neural Computation 12: 2291–2304PubMedCrossRefGoogle Scholar
  35. Hausen K (1984) The lobula complex of the fly: structure, function and significance in visual behaviour. In: Ali MA (ed), Photoreception and Vision in Invertebrates. Plenum, New York, pp. 523–559CrossRefGoogle Scholar
  36. Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of Vision, Springer, Berlin, Chap. 18 pp 391–424CrossRefGoogle Scholar
  37. Horridge GA (1987) The evolution of visual processing and the construction of seeing systems. Proc R Soc Lond B 230: 279–292PubMedCrossRefGoogle Scholar
  38. Hoyle G (1977) Identified Neurons and Behavior of Arthropods. Plenum, New YorkCrossRefGoogle Scholar
  39. Huber SA, Bülthoff HH (1997) Modeling obstacle avoidance behavior of flies using an adaptive autonomous agent. Proc 7th Int Conf Artif Neural Networks, ICANN 97, Springer, Berlin, pp 709–714Google Scholar
  40. Ichikawa M, Yamada H, Takeuchi J (2001) Flying robot with biologically inspired vision. J Robotics and Mechatronics 6: 621–624Google Scholar
  41. Iida F, Lambrinos D (2000) Navigation in an autonomous flying robot by using a biologically inspired visual odometer. In: McKee GT, Schenker PS (eds) SPIE, Vol. 4196, Sensor Fusion and Decentralized Control in Robotic Systems IIIGoogle Scholar
  42. Indiveri G, Kramer J, Koch C (1996) System implementations of analog VLSI velocity sensors. IEEE Micro 16: 40–49CrossRefGoogle Scholar
  43. Kirchner WH, Srinivasan MV (1989) Freely flying honeybees use image motion to estimate distance. Naturwissenschaffen 76: 281–282CrossRefGoogle Scholar
  44. Koenderink JJ (1986) Optic flow. Vis Res 26: 161–180PubMedCrossRefGoogle Scholar
  45. Krapp H, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organisation of optic flow processing inter-neurons in the fly. J Neurophysiol 79: 1902–1917PubMedGoogle Scholar
  46. Lambrinos D, Möller R, Labhart T, Pfeifer R, Wehner R (2000) A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems 30: 39–64CrossRefGoogle Scholar
  47. Lee DN (1970) The optical flow field: the foundation of vision. Phil Trans R Soc Lond B 290: 169–179CrossRefGoogle Scholar
  48. Lehrer M Srinivasan MV, Zhang SW, Horridge GA (1988) Motion cues provide the bee’s visual world with a third dimension. Nature 332: 356–357CrossRefGoogle Scholar
  49. Lewis MA, Arbib M (1999) Biomorphic Robots (Special issue on). Autonomous robots 77Google Scholar
  50. Maes P (1991) Designing Autonomous Agents: Theory and Practice from Biology to Engineering and Back. MIT Press, Cambridge, USAGoogle Scholar
  51. Martin N, Franceschini N (1994) Obstacle avoidance and speed control in a mobile vehicle equipped with a compound eye. In: Masaki I (ed) Intelligent Vehicles, MIT Press, Cambridge, USA, pp 318–386Google Scholar
  52. Mead CA (1989) Analog VLSI and Neural Systems. Addisson-Wesley, ReadingCrossRefGoogle Scholar
  53. Miles FA, Wallman J (1993) Visual Motion and its Role in the Stabilization of Gaze. Elsevier, AmsterdamGoogle Scholar
  54. Möller R (2000) Insect visual homing strategies in a robot with analog processing. Biol Cyb 83: 231–243CrossRefGoogle Scholar
  55. Mura F, Franceschini N (1994) Visual control of altitude and speed in a flying agent. In: Cliff D, Husbands P, Meyer JA, Wilson SW (eds) From Animals to Animats, MIT Press, Cambridge, USA, pp 91–99Google Scholar
  56. Mura F, Franceschini N (1996a) Obstacle avoidance in a terrestrial mobile robot provided with a scanning retina. In: Aoki M, Masaki I (eds) Intelligent Vehicles II, pp 47–52Google Scholar
  57. Mura F, Franceschini N (1996b) Biologically inspired ’retinal scanning’ enhances motion perception of a mobile robot. Proc 1st Europe-Asia Congress on Mechatronics, Vol. 3, Bourjault A, Hata S (eds) ENSM, Besançon, pp 934–940Google Scholar
  58. Mura F, Shimoyama I (1998) Visual guidance of a small mobile robot using active, biologically-inspired eye movements. In: Proc IEEE Intern Conf Rob Automation 3: 1859–1864Google Scholar
  59. Nachtigall W (2002) Bionik, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  60. Nakayama K, Loomis JM (1974) Optical velocity patterns, velocity sensitive neurons and space perception: a hypothesis. Perception 3: 63–80PubMedCrossRefGoogle Scholar
  61. Netter T, Franceschini N (1999) Neuromorphic optical flow sensing for nap-of the-earth flight. In: Mobile robots XIV, SPIE Vol. 3838, Bellingham, USA, pp 208–216Google Scholar
  62. Netter T, Franceschini N (2002) A robotic aircraft that follows terrain using a neuromorphic eye. In: Intelligent Robots and Systems, Proc IROS2002, EPFL, Lausanne, pp 129–134Google Scholar
  63. Neumann TR, Bülthoff HH (2001) Insect inspired visual control of translatory flight. Proc Europ Conference on Artificial Life, ECAL 2001, Springer, Berlin, pp 627–636Google Scholar
  64. Pfeiffer R, Scheier C (2001) Understanding Intelligence. MIT Press, Cambridge, USAGoogle Scholar
  65. Pichon JM, Blanes C, Franceschini N (1989) Visual guidance of a mobile robot equipped with a network of self-motion sensors. In: Wolfe WJ, Chun WH (eds) Mobile Robots IV. Proc SPIE I195, Bellingham, USA, pp 44–53Google Scholar
  66. Reichardt W (1987) Evaluation of optical motion information by movement detectors J Comp Physiol A 161: 533–547PubMedCrossRefGoogle Scholar
  67. Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly, Part I: A quantitative analysis. Q Rev Biophys 9: 311–375PubMedCrossRefGoogle Scholar
  68. Riehle A, Franceschini N (1984) Motion detection in flies: parametric control over ON-OFF pathways Exp Br Res 54: 390–394CrossRefGoogle Scholar
  69. Rind FC, Blanchard M, Verschure P (2000) Collision avoidance in a robot using looming detectors from a locust. In: McKee GT, Schenker PS (eds) SPIE Vol. 4196: Sensor Fusion and Decentralized Control in Robotic Systems. BellinghamGoogle Scholar
  70. Ruffier F, Viollet S, Amic S, Franceschini N (2003) Bio-inspired optical flow circuits for the visual guidance of micro-air vehicles. Proc Intern Symp on Circuits and Systems (ISCAS 2003), Bangkok, Thailand (in press)Google Scholar
  71. Santos-Victor J, Sandini G, Curotto F, Garibaldi S (1995) Divergent stereo for robot navigation: a step forward to a robot bee. Int J Comp Vision 14: 159CrossRefGoogle Scholar
  72. Sarpeshkar R, Kramer J, Koch C (1998) Pulse Domain Neuromorphic Circuit for Computing Motion. United States Patent Nb 5,78,648Google Scholar
  73. Srinivasan M, Venkatesh S (1997) From living eyes to seeing machines Oxford Univ Press, OxfordGoogle Scholar
  74. Srinivasan MV, Chahl JS, Weber K, Venkatesh S (1999) Robot navigation inspired by principle of insect vision. Robotics and Autonomous Systems 26: 203–216CrossRefGoogle Scholar
  75. Stavenga DG, Hardie RC (eds) (1989) Facets of Vision. Springer, BerlinCrossRefGoogle Scholar
  76. Strausfeld NJ (1976) Atlas of an Insect Brain. Springer, BerlinCrossRefGoogle Scholar
  77. Strausfeld NJ (1989) Beneath the compound eye: neuroanatomical analysis and physiological correlates in the study of insect vision. In: Stavenga DG, Hardie RC (eds) Facets of Vision. Springer, Berlin, Chap. 16: 317–359CrossRefGoogle Scholar
  78. Viollet S, Franceschini N (1999) Visual servo-system based on a biologically-inspired scanning sensor, In: Sensor Fusion and Decentralized Control II, SPIE Vol. 3839, Bellingham, USA, pp 144–155Google Scholar
  79. Viollet S, Franceschini N (2001) Superaccurate visual control of an aerial minirobot. In: Rückert U, Sitte J, Witkowski U (eds) Autonomous Minirobots for Research and Edutainment. Heinz Nixdorf Institut, Paderborn, Germany, pp 215–224Google Scholar
  80. Vittoz E (1994) Analog VLSI signal processing: why, where and how? J VLSI Signal Proc 8: 27–44CrossRefGoogle Scholar
  81. Wagner H (1982) Flow-field variables trigger landing in flies. Nature 297: 147–148CrossRefGoogle Scholar
  82. Wagner H (1986) Flight performance and visual control of flight of the free-flying housefly Musca domestica, I/II/III. Phil Trans R Soc Lond B 312: 527–600CrossRefGoogle Scholar
  83. Webb B (2001) Can robots make good models of biological behavior? Behav Brain Sci 24: 6Google Scholar
  84. Webb B (2002) Robots in invertebrate neuroscience. Nature 417: 359–363PubMedCrossRefGoogle Scholar
  85. Webb B, Consi T (2001) Biorobotics. MIT Press, Cambridge, USAGoogle Scholar
  86. Wehner R (1981) Spatial Vision in Arthropods. In: Autrum HJ (ed) Handbook Sens Physiol, Vol. VII/6C, Springer, Berlin, pp 288–616Google Scholar
  87. Whiteside TC, Samuel DG (1970) Blur zone. Nature 225: 94–95PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Nicolas Franceschini

There are no affiliations available

Personalised recommendations