Skip to main content

The Blood Vasculature as an Adaptive System: Role of Mechanical Sensing

  • Chapter
Sensors and Sensing in Biology and Engineering
  • 507 Accesses

Abstract

The vascular system consists of an extensive network of conduits that carry blood to all parts of the body. The metabolic requirements of tissues, including oxygen demand, vary spatially and temporally. In order to meet these varying requirements, the vascular system must have the ability to adjust and control blood flow in space and time. Centrally driven neural and hormonal signals modulate flow at the whole-organ or regional level. Local modulation of blood flow is achieved by responses of individual microvessels to stimuli that they experience. The responses include acute changes of diameter achieved by alterations in the contractile state of smooth muscle in vessel walls (flow regulation), and long-term changes of vascular dimensions achieved by structural alterations in the vessel walls and by addition or loss of vascular segments (structural adaptation). Here, current understanding of these processes is reviewed, with emphasis on the role of vascular responses to mechanical stresses, i.e., wall shear stress resulting from blood flow and circumferential wall stress resulting from intravascular pressure, and the importance of these responses in flow regulation and structural adaptation. It is concluded that the blood vasculature is a sensitive adaptive system, in which mechanical sensing plays an important role in coordinating vascular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakker EN, Der Meulen ET, Spaan JA, VanBavel E (2000) Organoid culture of cannulated rat resistance arteries: effect of serum factors on vasoactivity and remodeling. Am J Physiol Heart Circ Physiol 278: H1233–H1240

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte JB, King RB, Roger SA (1989) Fractal nature of regional myocardial blood flow heterogeneity. Circ Res 65: 578–590

    Article  PubMed  CAS  Google Scholar 

  • Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol (Lond) 28: 220–231

    CAS  Google Scholar 

  • Caro CG, Pedley TJ, Schroter RC, Seed WA (1978) The Mechanics of the Circulation. Oxford University Press, Oxford

    Google Scholar 

  • Cornelissen AJ, Dankelman J, VanBavel E, Stassen HG, Spaan JA (2000) Myogenic reactivity and resistance distribution in the coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol 278: H1490–H1499

    PubMed  CAS  Google Scholar 

  • Damiano ER (1998) The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Microvasc Res 55: 77–91

    Article  PubMed  CAS  Google Scholar 

  • Davies PF (1995) Flow-mediated endothelial me-chanotransduction. Physiol Rev 75: 519–560

    PubMed  CAS  Google Scholar 

  • Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79: 387–423

    PubMed  CAS  Google Scholar 

  • Desjardins C, Duling BR (1990) Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Physiol 258: H647–H654

    PubMed  CAS  Google Scholar 

  • Duling BR, Berne RM (1970) Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ Res 26: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Fann JI, Sokoloff MH, Sams GE, Yun KL, Kosek JC, Miller DC (1990) The reversibility of canine vein-graft arterialization. Circulation 82: IV9–18

    PubMed  CAS  Google Scholar 

  • Folkow B (1949) Intravascular pressure as a factor regulating the tone of the small vessels. Acta Physiol Scand 17: 289–310

    Article  PubMed  CAS  Google Scholar 

  • Folkow B (1987) Structure and function of the arteries in hypertension. Am Heart J 114: 938–948

    Article  PubMed  CAS  Google Scholar 

  • Hacking WJG, VanBavel E, Spaan JAE (1996) Shear stress is not sufficient to control growth of vascular networks: a model study. Am J Physiol 270: H364–H375

    PubMed  CAS  Google Scholar 

  • Haidekker MA, L’Heureux N, Frangos JA (2000) Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278: H1401–H1406

    PubMed  CAS  Google Scholar 

  • Jackson WF (1987) Arteriolar oxygen reactivity: where is the sensor? Am J Physiol 253: H1120–H1126

    PubMed  CAS  Google Scholar 

  • Jackson WF (2000) Hypoxia does not activate ATP-sensitive K + channels in arteriolar muscle cells. Microcirculation 7: 137–145

    PubMed  CAS  Google Scholar 

  • Johnson PC (1980) The myogenic response. In: Bohr DF, Somlyo AP, Sparks HV, Jr.: Handbook of Physiology, Section 2, The Cardiovascular System, Vol. II: Vascular Smooth Muscle. American Physiological Society, Bethesda, MD, 409–442

    Google Scholar 

  • Kamiya A, Bukhari R, Togawa T (1984) Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol 46: 127–137

    PubMed  CAS  Google Scholar 

  • Koller A, Kaley G (1990) Endothelium regulates skeletal muscle microcirculation by a blood flow velocity sensing mechanism. Am J Physiol 258: H916–H920

    PubMed  CAS  Google Scholar 

  • Kuo L, Davis MJ, Chilian WM (1990) Endothelium-dependent, flow-induced dilation of isolated coronary arterioles. Am J Physiol 259: H1063–H1070

    PubMed  CAS  Google Scholar 

  • Kuo L, Hein TW (2002) Mechanism of shear-stress induced coronary microvascular dilation. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and Sensing in Biology and Engineering. Springer, Wien New York

    Google Scholar 

  • LaBarbera M (1990) Principles of design of fluid transport systems in zoology. Science 249: 992–1000

    Article  PubMed  CAS  Google Scholar 

  • Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231: 405–407

    Article  PubMed  CAS  Google Scholar 

  • Mayrovitz HN, Roy J (1983) Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter. Am J Physiol 245: H1031–H1038

    PubMed  CAS  Google Scholar 

  • Murray CD (1926) The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Pries AR, Reglin B, Secomb TW (2001) Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol 281: H1015–H1025

    PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1995a) Design principles of vascular beds. Circ Res 77: 1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1995b) Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am J Physiol 269: H1713–H1722

    PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol 275: H349–H360

    PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1999) Structural autoregulation of terminal vascular beds: vascular adaptation and development of hypertension. Hypertension 33: 153–161

    Article  PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflügers Arch 440: 653–666

    Article  PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P, Gross JF (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67: 826–834

    Article  PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75: 904–915

    Article  PubMed  CAS  Google Scholar 

  • Rodbard S (1975) Vascular caliber. Cardiology 60: 4–49

    Article  PubMed  CAS  Google Scholar 

  • Schretzenmayr A (1933) Ãœber kreislaufregulatorische Vorgänge an den grossen Arterien bei der Muskelarbeit. Pflügers Arch Ges Physiol 232: 743–748

    Article  Google Scholar 

  • Secomb TW, Hsu R, Pries AR (2001) Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38: 143–150

    PubMed  CAS  Google Scholar 

  • Secomb TW, Pries AR (2002) Information transfer in microvascular networks. Microcirculation (in press) Segal SS, Jacobs TL (2001) Role of endothelial cell conduction in ascending vasodilation and exercise hyperemia in hamster skeletal muscle. J Physiol 536: 937–946

    Google Scholar 

  • Skalak TC, Price RJ (1996) The role of mechanical stresses in microvascular remodeling. Microcirculation 3: 143–165

    Article  PubMed  CAS  Google Scholar 

  • Tulis DA, Unthank JL, Prewitt RL (1998) Flow-induced arterial remodeling in rat mesenteric vasculature. Am J Physiol 274: H874–H882

    Google Scholar 

  • Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79: 581–589

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Secomb, T.W., Pries, A.R. (2003). The Blood Vasculature as an Adaptive System: Role of Mechanical Sensing. In: Barth, F.G., Humphrey, J.A.C., Secomb, T.W. (eds) Sensors and Sensing in Biology and Engineering. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6025-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6025-1_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7287-2

  • Online ISBN: 978-3-7091-6025-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics