The Fish Lateral Line: How to Detect Hydrodynamic Stimuli

  • Joachim Mogdans
  • Jacob Engelmann
  • Wolf Hanke
  • Sophia Kröther


The lateral line is a hydrodynamic receptor system that enables fishes to detect minute water motions generated by conspecifics, predators or prey. The sensory units of the lateral line are the neuromasts which are dispersed over large portions of the body surface. Whereas superficial neuromasts are freestanding on the surface of the skin and sensitive to water velocity, canal neuromasts are embedded in lateral line canals and sensitive to pressure gradients between canal pores. Superficial and canal neuromasts are innervated by distinct populations of nerve fibers. When goldfish are exposed to a constant back ground water flow, responses of fibers innervating superficial neuromasts to superimposed hydrodynamic stimuli are masked due to the continuous stimulation of the neuromasts by the running water. In contrast, responses of fibers innervating trunk canal neuromasts are hardly affected by background water flow due to the filter properties of lateral line canals. These findings are evidence for a strong form-function relationship in the sensory periphery of the fish lateral line system. A functional subdivision similar to that in the periphery can be found in the brainstem suggesting that to a large degree information from superficial and canal neuromasts, respectively, is processed separately at least at the first stage of central nervous integration.


Lateral Line Lateral Line System Lateral Line Canal Superficial Neuromast Canal Neuromast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker CF, Montgomery JC (1999) The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J Comp Physiol A 184: 519–527CrossRefGoogle Scholar
  2. Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals In: Rathmayer W (ed) Progress in Zoology. Vol. 41 Gustav Fischer, Stuttgart, Jena, New York, pp 1–115Google Scholar
  3. Bleckmann H, Münz H (1988) The anatomy and physiology of lateral line mechanoreceptors in teleosts with multiple lateral lines. In: Barth FG (ed) Verh Dtsch Zool Ges 81, Gustav Fischer, Stuttgart, p 288Google Scholar
  4. Bleckmann H, Münz H (1990) Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain Behav Evol 35: 240–250PubMedCrossRefGoogle Scholar
  5. Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172: 115–128CrossRefGoogle Scholar
  6. Blickhan R, Krick C, Breithaupt T, Zehren D, Nachtigall W (1992) Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwissenschaften 79: 220–221CrossRefGoogle Scholar
  7. Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol A 127: 61–74CrossRefGoogle Scholar
  8. Coombs S, Conley RA (1997) Dipole source localization by mottled sculpin II. The role of lateral line excitation patterns. J Comp Physiol A 180: 401–416PubMedCrossRefGoogle Scholar
  9. Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research. Springer, New York, pp 319–362CrossRefGoogle Scholar
  10. Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. Springer, New York, pp 553–593CrossRefGoogle Scholar
  11. Coombs S, Fay RR, Janssen J (1989) Hot-film anemometry for measuring lateral line stimuli. J Acoust Soc Am 85: 2185–2193PubMedCrossRefGoogle Scholar
  12. Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178: 359–371PubMedCrossRefGoogle Scholar
  13. Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182: 609–626CrossRefGoogle Scholar
  14. Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204: 337–348PubMedGoogle Scholar
  15. Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. Springer, New York, pp 595–617CrossRefGoogle Scholar
  16. Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 229–246CrossRefGoogle Scholar
  17. Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38: 51–106PubMedCrossRefGoogle Scholar
  18. Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408: 51–52PubMedCrossRefGoogle Scholar
  19. Flock Å (1965) Electronmicroscopic and electro-physiological studies on the lateral line canal organ. Acta Otolaryngol 199: 1–90Google Scholar
  20. Flock Å, Wersäll J (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J Cell Biol 15: 19–27PubMedCrossRefGoogle Scholar
  21. Görner P (1963) Untersuchungen zur Morphologie and Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). J Comp Physiol A 47: 316–338Google Scholar
  22. Hanke W, Bleckmann H (1999) Flow visualization and particle image velocimetry with a custom made inexpensive device. In: Zissler D (ed) Verh Dtsch Zool Ges, Gustav Fischer, Stuttgart, p 352Google Scholar
  23. Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203: 1193–1200PubMedGoogle Scholar
  24. Harris GG, van Bergeijk WA (1962) Evidence that the lateral line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34: 1831–1841CrossRefGoogle Scholar
  25. Hofer B (1908) Studien über die Hautsinnesorgane der Fische I. Die Funktion der Seitenorgane bei den Fischen. Ber kgl Bayer biol Versuchsstation München 1: 115–168Google Scholar
  26. Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74: 2407–2411PubMedCrossRefGoogle Scholar
  27. Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 187–216CrossRefGoogle Scholar
  28. Kroese ABA, Netten SMv (1989) Sensory transduction in lateral line hair cells. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 265–284CrossRefGoogle Scholar
  29. Kroese ABA, Schellart NAM (1992) Velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68: 2212–2221PubMedGoogle Scholar
  30. Kröther A, Mogdans J, Bleckmann H (2002) Brainstem lateral line responses to sinusoidal wave stimuli in still and running water. J Exp Biol 205: 1471–1484PubMedGoogle Scholar
  31. McCormick CA, Hernandez DV (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47: 113–138PubMedCrossRefGoogle Scholar
  32. Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving objects. J Comp Physiol A 182: 659–676CrossRefGoogle Scholar
  33. Mogdans J, Bleckmann H (1999) Peripheral lateral line responses to amplitude-modulated sinusoidal wave stimuli. J Comp Physiol A 185: 173–180CrossRefGoogle Scholar
  34. Mogdans J, Goenechea L (2000) Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology 102: 227–237Google Scholar
  35. Mogdans J, Bleckmann H (2001) The mechanosensory lateral line of jawed fishes. In: Kapoor BG (ed) Sensory Biology of Jawed Fishes - New Insights. Oxford and IBH Publishing Co Pvt Ltd, New Delhi, pp 181–213Google Scholar
  36. Mogdans J, Kröther S (2001) Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus. Zoology 104: 153–166PubMedCrossRefGoogle Scholar
  37. Mogdans J, Bleckmann H, Menger N (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol 50: 261–283PubMedCrossRefGoogle Scholar
  38. Mogdans J, Wojtenek W, Hanke W (1999) The puzzle of hydrodynamic information processing: how are complex water motions analyzed by the lateral line? Europ J Morphol 37: 195–199CrossRefGoogle Scholar
  39. Montgomery JC, Coombs S (1992) Physiological characterization of lateral line function in the Antarctic fish (Trematodus bernacchii). Brain Behav Evol 40: 209–216PubMedCrossRefGoogle Scholar
  40. Montgomery JC, Coombs S, Janssen J (1994) Form-function relationships in lateral line systems: comparative data from six species of antarctic notothenioid fish. Brain Behav Evol 44: 299–306PubMedCrossRefGoogle Scholar
  41. Montgomery J, Bodznick D, Halstead M (1996) Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scorpaena papillosus. J Exp Biol 199: 893–899PubMedGoogle Scholar
  42. Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389: 960–963CrossRefGoogle Scholar
  43. Müller U (1984) Anatomische and physiologische Anpassungen des Seitenliniensystems von Pantodon buchholzi an den Lebensraum Wasseroberfläche. Dissertation, Universität Gießen 1–201Google Scholar
  44. Münz H (1979) Morphology and innervation of the lateral line system in Sarotherodon niloticus L. (Cichlidae, Teleostei). Zoomorphol 93: 73–86CrossRefGoogle Scholar
  45. Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568CrossRefGoogle Scholar
  46. Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 285–298CrossRefGoogle Scholar
  47. Netten SMv, Kroese ABA (1987) Laser interferometric measurement on the dynamic behavior of the cupula in the fish lateral line. Hearing Res 29: 55–61CrossRefGoogle Scholar
  48. Netten SMv, Kroese ABA (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 247–264CrossRefGoogle Scholar
  49. Netten SMv, Kelly JP, Khanna SM (1990) Dynamic responses of the cupula in the fish lateral line are spatially nonuniform. Association for Research in Otolaryngology 341–342Google Scholar
  50. New JG, Coombs S, McCormick CA, Oshel PE (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius aura-tus. J Comp Neurol 366: 534–546PubMedCrossRefGoogle Scholar
  51. Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 17–78CrossRefGoogle Scholar
  52. Parker GH (1904) The function of the lateral-line organs in fishes. Bull US Bur Fish 24: 185–207Google Scholar
  53. Paul DH, Roberts BL (1977) Studies on a primitive cerebellar cortex. III. The projections of the anterior lateral-line nerve to the lateral-line lobes of the dogfish brain. Proc R Soc Lond B 195: 479–496PubMedCrossRefGoogle Scholar
  54. Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34: 110–131PubMedCrossRefGoogle Scholar
  55. Roberts WM, Howard J, Hudspeth AJ (1988) Hair cells: Transduction, tuning, and transmission in the inner ear. Ann Rev Cell Biol 4: 63–92PubMedCrossRefGoogle Scholar
  56. Song J, Northcutt RG (1991) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37: 10–37PubMedCrossRefGoogle Scholar
  57. Vischer HA (1990) The morphology of the lateral line system in three species of Pacific cottoid fishes occupying disparate habitats. Experientia 46: 244–250CrossRefGoogle Scholar
  58. Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203: 2495–2502PubMedGoogle Scholar
  59. Webb JF (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 79–98CrossRefGoogle Scholar
  60. Wubbels RJ, Kroese ABA, Schellart, NAM (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). J Exp Biol 179: 77–92Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Joachim Mogdans
  • Jacob Engelmann
  • Wolf Hanke
  • Sophia Kröther

There are no affiliations available

Personalised recommendations