Skip to main content

The Fish Lateral Line: How to Detect Hydrodynamic Stimuli

  • Chapter
Sensors and Sensing in Biology and Engineering

Abstract

The lateral line is a hydrodynamic receptor system that enables fishes to detect minute water motions generated by conspecifics, predators or prey. The sensory units of the lateral line are the neuromasts which are dispersed over large portions of the body surface. Whereas superficial neuromasts are freestanding on the surface of the skin and sensitive to water velocity, canal neuromasts are embedded in lateral line canals and sensitive to pressure gradients between canal pores. Superficial and canal neuromasts are innervated by distinct populations of nerve fibers. When goldfish are exposed to a constant back ground water flow, responses of fibers innervating superficial neuromasts to superimposed hydrodynamic stimuli are masked due to the continuous stimulation of the neuromasts by the running water. In contrast, responses of fibers innervating trunk canal neuromasts are hardly affected by background water flow due to the filter properties of lateral line canals. These findings are evidence for a strong form-function relationship in the sensory periphery of the fish lateral line system. A functional subdivision similar to that in the periphery can be found in the brainstem suggesting that to a large degree information from superficial and canal neuromasts, respectively, is processed separately at least at the first stage of central nervous integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker CF, Montgomery JC (1999) The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J Comp Physiol A 184: 519–527

    Article  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals In: Rathmayer W (ed) Progress in Zoology. Vol. 41 Gustav Fischer, Stuttgart, Jena, New York, pp 1–115

    Google Scholar 

  • Bleckmann H, MĂĽnz H (1988) The anatomy and physiology of lateral line mechanoreceptors in teleosts with multiple lateral lines. In: Barth FG (ed) Verh Dtsch Zool Ges 81, Gustav Fischer, Stuttgart, p 288

    Google Scholar 

  • Bleckmann H, MĂĽnz H (1990) Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain Behav Evol 35: 240–250

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172: 115–128

    Article  Google Scholar 

  • Blickhan R, Krick C, Breithaupt T, Zehren D, Nachtigall W (1992) Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwissenschaften 79: 220–221

    Article  Google Scholar 

  • Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol A 127: 61–74

    Article  Google Scholar 

  • Coombs S, Conley RA (1997) Dipole source localization by mottled sculpin II. The role of lateral line excitation patterns. J Comp Physiol A 180: 401–416

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research. Springer, New York, pp 319–362

    Chapter  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. Springer, New York, pp 553–593

    Chapter  Google Scholar 

  • Coombs S, Fay RR, Janssen J (1989) Hot-film anemometry for measuring lateral line stimuli. J Acoust Soc Am 85: 2185–2193

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178: 359–371

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182: 609–626

    Article  Google Scholar 

  • Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204: 337–348

    PubMed  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. Springer, New York, pp 595–617

    Chapter  Google Scholar 

  • Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, MĂĽnz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 229–246

    Chapter  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38: 51–106

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408: 51–52

    Article  PubMed  CAS  Google Scholar 

  • Flock Ă… (1965) Electronmicroscopic and electro-physiological studies on the lateral line canal organ. Acta Otolaryngol 199: 1–90

    Google Scholar 

  • Flock Ă…, Wersäll J (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J Cell Biol 15: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Görner P (1963) Untersuchungen zur Morphologie and Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). J Comp Physiol A 47: 316–338

    Google Scholar 

  • Hanke W, Bleckmann H (1999) Flow visualization and particle image velocimetry with a custom made inexpensive device. In: Zissler D (ed) Verh Dtsch Zool Ges, Gustav Fischer, Stuttgart, p 352

    Google Scholar 

  • Hanke W, BrĂĽcker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203: 1193–1200

    PubMed  CAS  Google Scholar 

  • Harris GG, van Bergeijk WA (1962) Evidence that the lateral line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34: 1831–1841

    Article  Google Scholar 

  • Hofer B (1908) Studien ĂĽber die Hautsinnesorgane der Fische I. Die Funktion der Seitenorgane bei den Fischen. Ber kgl Bayer biol Versuchsstation MĂĽnchen 1: 115–168

    Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74: 2407–2411

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, MĂĽnz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 187–216

    Chapter  Google Scholar 

  • Kroese ABA, Netten SMv (1989) Sensory transduction in lateral line hair cells. In: Coombs S, Görner P, MĂĽnz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 265–284

    Chapter  Google Scholar 

  • Kroese ABA, Schellart NAM (1992) Velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68: 2212–2221

    PubMed  CAS  Google Scholar 

  • Kröther A, Mogdans J, Bleckmann H (2002) Brainstem lateral line responses to sinusoidal wave stimuli in still and running water. J Exp Biol 205: 1471–1484

    PubMed  Google Scholar 

  • McCormick CA, Hernandez DV (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47: 113–138

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving objects. J Comp Physiol A 182: 659–676

    Article  Google Scholar 

  • Mogdans J, Bleckmann H (1999) Peripheral lateral line responses to amplitude-modulated sinusoidal wave stimuli. J Comp Physiol A 185: 173–180

    Article  Google Scholar 

  • Mogdans J, Goenechea L (2000) Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology 102: 227–237

    Google Scholar 

  • Mogdans J, Bleckmann H (2001) The mechanosensory lateral line of jawed fishes. In: Kapoor BG (ed) Sensory Biology of Jawed Fishes - New Insights. Oxford and IBH Publishing Co Pvt Ltd, New Delhi, pp 181–213

    Google Scholar 

  • Mogdans J, Kröther S (2001) Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus. Zoology 104: 153–166

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Bleckmann H, Menger N (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol 50: 261–283

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Wojtenek W, Hanke W (1999) The puzzle of hydrodynamic information processing: how are complex water motions analyzed by the lateral line? Europ J Morphol 37: 195–199

    Article  CAS  Google Scholar 

  • Montgomery JC, Coombs S (1992) Physiological characterization of lateral line function in the Antarctic fish (Trematodus bernacchii). Brain Behav Evol 40: 209–216

    Article  PubMed  CAS  Google Scholar 

  • Montgomery JC, Coombs S, Janssen J (1994) Form-function relationships in lateral line systems: comparative data from six species of antarctic notothenioid fish. Brain Behav Evol 44: 299–306

    Article  PubMed  CAS  Google Scholar 

  • Montgomery J, Bodznick D, Halstead M (1996) Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scorpaena papillosus. J Exp Biol 199: 893–899

    PubMed  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389: 960–963

    Article  CAS  Google Scholar 

  • MĂĽller U (1984) Anatomische and physiologische Anpassungen des Seitenliniensystems von Pantodon buchholzi an den Lebensraum Wasseroberfläche. Dissertation, Universität GieĂźen 1–201

    Google Scholar 

  • MĂĽnz H (1979) Morphology and innervation of the lateral line system in Sarotherodon niloticus L. (Cichlidae, Teleostei). Zoomorphol 93: 73–86

    Article  Google Scholar 

  • MĂĽnz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568

    Article  Google Scholar 

  • MĂĽnz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, MĂĽnz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 285–298

    Chapter  Google Scholar 

  • Netten SMv, Kroese ABA (1987) Laser interferometric measurement on the dynamic behavior of the cupula in the fish lateral line. Hearing Res 29: 55–61

    Article  Google Scholar 

  • Netten SMv, Kroese ABA (1989) Dynamic behavior and micromechanical properties of the cupula. In: Coombs S, Görner P, MĂĽnz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 247–264

    Chapter  Google Scholar 

  • Netten SMv, Kelly JP, Khanna SM (1990) Dynamic responses of the cupula in the fish lateral line are spatially nonuniform. Association for Research in Otolaryngology 341–342

    Google Scholar 

  • New JG, Coombs S, McCormick CA, Oshel PE (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius aura-tus. J Comp Neurol 366: 534–546

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, MĂĽnz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 17–78

    Chapter  Google Scholar 

  • Parker GH (1904) The function of the lateral-line organs in fishes. Bull US Bur Fish 24: 185–207

    Google Scholar 

  • Paul DH, Roberts BL (1977) Studies on a primitive cerebellar cortex. III. The projections of the anterior lateral-line nerve to the lateral-line lobes of the dogfish brain. Proc R Soc Lond B 195: 479–496

    Article  PubMed  CAS  Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34: 110–131

    Article  PubMed  CAS  Google Scholar 

  • Roberts WM, Howard J, Hudspeth AJ (1988) Hair cells: Transduction, tuning, and transmission in the inner ear. Ann Rev Cell Biol 4: 63–92

    Article  PubMed  CAS  Google Scholar 

  • Song J, Northcutt RG (1991) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37: 10–37

    Article  PubMed  CAS  Google Scholar 

  • Vischer HA (1990) The morphology of the lateral line system in three species of Pacific cottoid fishes occupying disparate habitats. Experientia 46: 244–250

    Article  Google Scholar 

  • Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203: 2495–2502

    PubMed  CAS  Google Scholar 

  • Webb JF (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, MĂĽnz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York, pp 79–98

    Chapter  Google Scholar 

  • Wubbels RJ, Kroese ABA, Schellart, NAM (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). J Exp Biol 179: 77–92

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Mogdans, J., Engelmann, J., Hanke, W., Kröther, S. (2003). The Fish Lateral Line: How to Detect Hydrodynamic Stimuli. In: Barth, F.G., Humphrey, J.A.C., Secomb, T.W. (eds) Sensors and Sensing in Biology and Engineering. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6025-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6025-1_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7287-2

  • Online ISBN: 978-3-7091-6025-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics