Skip to main content

Abstract

Sensors and sensing are essential for all forms of life. Correspondingly, there is a fascinating richness and diversity of sensory systems throughout the animal kingdom. This essay was mainly written for the non-biologist who is introduced to a few selected aspects of sensory biology. Foremost among these are some working principles common to biological sensors, whatever the form of energy is they respond to. The physiology of membrane channels and the outstanding sensitivity of many bio-sensors are highlighted. It is stressed that besides the cellular and molecular details the refinement of a sense organ’s “engineering” reflects the needs of an entire behaving animal. Accordingly, the relevant and often complex natural stimuli, which the sensors evolved to process, have to be found and applied, in order to fully understand any sensory system. This is a particular challenge in cases where animals show sensory capabilities alien to our human perceptions. The two main links between biology and engineering are “technical biology” and “bionics”. The application of computational skills and mathematical quantification are the most valuable in-puts from engineering to sensory biology. The biologist on the other hand will not provide ready made instructions of how to build a device but offer familiarity with a treasure house of inspiring solutions to a wealth of sensory problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum H (1984) Leistungsgrenzen von Sinnesorganen. Verh Ges Dtsch Naturforsch Ärzte 113: 87–112

    Google Scholar 

  • Barth FG (1998) The vibrational sense of spiders. In: Hoy RR, Popper AN, Fay RR (eds) Comparative Hearing: Insects. Springer Handbook of Auditory Research. Springer-Verlag, New York Berlin Heidelberg, pp 228–278

    Chapter  Google Scholar 

  • Barth FG (2000) How to catch the wind: spider hairs specialized for sensing the movement of air. Naturwissenschaften 87(2): 51–58

    Article  PubMed  CAS  Google Scholar 

  • Barth FG (2002) A Spider’s World: Senses and Behavior. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Barth FG, Schmid A (eds) (2001) Ecology of Sensing. Springer-Verlag, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei KEYS.). Phil Trans R Soc Lond B 340: 445–461

    Article  Google Scholar 

  • Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413: 445–461

    Article  Google Scholar 

  • Baylor DA, Lamb TD, You KW (1979) Responses of retinal rods to single photons. J Physiol 288: 613–634

    PubMed  CAS  Google Scholar 

  • Bullock TH, Diecke FPJ (1956) Properties of an infrared receptor. J Physiol 134: 47–87

    PubMed  CAS  Google Scholar 

  • Bullock TH, Heiligenberg W (1986) Electroreception. John Wiley and Sons. New York

    Google Scholar 

  • Cornell BA et al. (1997) A biosensor that uses ion-channel switches. Nature 387: 580–583

    Article  PubMed  CAS  Google Scholar 

  • Dusenbery DB (1992) Sensory Ecology. WH Free-man and Company, New York

    Google Scholar 

  • Erxleben C (1989) Stretch-activated current through single ion channels in the abdominal stretch receptor organ of the crayfish. J Gen Physiol 94: 1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Firestein S (2001) How the olfactory system makes sense of scents. Nature 413: 211–218

    Article  PubMed  CAS  Google Scholar 

  • Gitter AH, Klinke R (1989) Die Energieschwellen von Auge und Ohr in heutiger Sicht. Naturwissenschaften 76: 160–164

    Article  Google Scholar 

  • Hamill OP, Mc Bride DW Jr (1996) The pharmacology of mechano-gated membrane ion channels. Pharmacol Rev 48: 231–252

    PubMed  CAS  Google Scholar 

  • Hammer DX, Schmitz H, Schmitz A, Rylander HG, Welch AJ (2001) Sensitivity threshold and response characteristics of infrared detection in the beetle Melanophila acuminata (Coleoptera: Buprestidae). Comp Biochem Physiol A 128: 805–819

    Article  CAS  Google Scholar 

  • Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413: 186–193

    Article  PubMed  CAS  Google Scholar 

  • Holton T, Hudspeth AJ (1986) The transduction channel of hair cells from the bullfrog characterized by noise analysis. J Physiol 375: 195–227

    PubMed  CAS  Google Scholar 

  • Höger U, French AS (1999) Estimated single-channel conductance of mechanically-activated channels in a spider mechanoreceptor. Brain Res 826: 230–235

    Article  PubMed  Google Scholar 

  • Höger U, Torkkeli PH, Seyfarth E-A, French AS (1997) Ionic selectivity of mechanically activated channels in spider mechanoreceptor neurons. J Neurophysiol 78: 2079–2085

    PubMed  Google Scholar 

  • Humphrey JAC, Barth FG, Voss K (2001) The motion-sensing hairs of arthropods: using physics to understand sensory ecology and adaptive evolution. In: Barth FG, Schmid A (eds) The Ecology of Sensing. Springer-Verlag, Berlin Heidelberg New York, pp 105–125

    Google Scholar 

  • Humphrey JAC, Devarakonda R, Iglesias I, Barth FG (1993) Dynamics of arthropod filiform hairs. I. Mathematical modelling of the hair and air motions. Phil Trans R Soc Lond B 340: 423–444 (see also Erratum Phil Trans R Soc London B 352:1995 (1997)

    Article  Google Scholar 

  • Kaissling K-E, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwissenschaften 576: 25–28

    Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (eds) (1996) Neurowissenschaften. Eine Einführung. Spektrum Akad Verlag, Heidelberg

    Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal Eyes. Oxford University Press, Oxford

    Google Scholar 

  • Moller P (1995) Electric Fishes. History and Behavior. Chapman and Hall, London.

    Google Scholar 

  • Nachtigall W (1998) Bionik. Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Nachtigall W, Blüchel KG (2000) Das große Buch der Bionik. Neue Technologien nach dem Vorbild der Natur. DVA, Stuttgart München

    Google Scholar 

  • Neuweiler G (1989) Foraging ecology and audition in echolocating bats. Trends Ecol Evol 4: 1650–1666

    Article  Google Scholar 

  • Pickles JO, Corey DP (1992) Mechanotransduction by hair cells. Trends Neurosci 15: 254–259

    Article  PubMed  CAS  Google Scholar 

  • Römer H (1998) The sensory ecology of hearing in insects. In: Hoy RR, Popper AM, Fay RR (eds) Comparative Hearing: Insects. Springer, New York Berlin Heidelberg, pp 63–96

    Chapter  Google Scholar 

  • Sackin H (1995) Stretch-activated ion channels. Kidney Int 48: 1134–1147

    Article  PubMed  CAS  Google Scholar 

  • Schmitz H, Bleckmann H (1998) The photomechanic infrared receptor for the detection of forest fires of the beetle Melanophila acuminata (Coleoptera: Buprestidae). J Comp Physiol A 182: 647–657

    Article  Google Scholar 

  • Shimozawa T, Kanou M (1984) The aerodynamics and sensory physiology of range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol A 155: 495–505

    Article  Google Scholar 

  • Shimozawa T, Kumagai T, Baba Y (1998) Structural scaling and functional design of the cercal wind-receptor hairs of a cricket. J Comp Physiol A 183: 171–186

    Article  Google Scholar 

  • Shimozawa T, Murakami J, Kumagai T (1998) Cricket wind receptor cell detects mechanical energy of the level of kT of thermal fluctuation. Abstract 112, International Soc of Neuroethol Conf San Diego

    Google Scholar 

  • Thurm U (1982) Grundzüge der Transduktionsmechanismen in Sinneszellen. Mechanoelektrische Transduktion. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin pp 681–696

    Google Scholar 

  • Turner APF (1997) Biosensors: Realities and as-pirations. Annali di Chimica 87: 255–260

    CAS  Google Scholar 

  • Turner APF (2000) Biosensors — sense and sensi-tivity. Science 290: 1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Von der Emde G (2001) Electric fields and electroreception: How electrosensory fish perceive their environment. In: Barth FG, Schmid A (eds) Ecology of Sensing. Springer-Verlag, Berlin Heidelberg New York, pp 313–329

    Google Scholar 

  • Wehner R (1987) “Matched filters” — neural models of the external world. J Comp Physiol A 161: 511–531

    Article  Google Scholar 

  • Wehner R (2001) Polarization vision-a uniform sensory capacity? J Exp Biol 204: 2589–2596

    PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (2001) The geomagnetic field and its role in directional orientation. In: Barth FG, Schmid A (eds) Ecology of Sensing. Springer, Berlin Heidelberg New York, pp. 289–312

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Barth, F.G. (2003). Sensors and Sensing: A Biologist’s View. In: Barth, F.G., Humphrey, J.A.C., Secomb, T.W. (eds) Sensors and Sensing in Biology and Engineering. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6025-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6025-1_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7287-2

  • Online ISBN: 978-3-7091-6025-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics