Sensors and Sensing: A Biologist’s View

  • Friedrich G. Barth


Sensors and sensing are essential for all forms of life. Correspondingly, there is a fascinating richness and diversity of sensory systems throughout the animal kingdom. This essay was mainly written for the non-biologist who is introduced to a few selected aspects of sensory biology. Foremost among these are some working principles common to biological sensors, whatever the form of energy is they respond to. The physiology of membrane channels and the outstanding sensitivity of many bio-sensors are highlighted. It is stressed that besides the cellular and molecular details the refinement of a sense organ’s “engineering” reflects the needs of an entire behaving animal. Accordingly, the relevant and often complex natural stimuli, which the sensors evolved to process, have to be found and applied, in order to fully understand any sensory system. This is a particular challenge in cases where animals show sensory capabilities alien to our human perceptions. The two main links between biology and engineering are “technical biology” and “bionics”. The application of computational skills and mathematical quantification are the most valuable in-puts from engineering to sensory biology. The biologist on the other hand will not provide ready made instructions of how to build a device but offer familiarity with a treasure house of inspiring solutions to a wealth of sensory problems.


Hair Cell Sensory Cell Electric Fish Transduction Channel Cuticular Hair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum H (1984) Leistungsgrenzen von Sinnesorganen. Verh Ges Dtsch Naturforsch Ärzte 113: 87–112Google Scholar
  2. Barth FG (1998) The vibrational sense of spiders. In: Hoy RR, Popper AN, Fay RR (eds) Comparative Hearing: Insects. Springer Handbook of Auditory Research. Springer-Verlag, New York Berlin Heidelberg, pp 228–278CrossRefGoogle Scholar
  3. Barth FG (2000) How to catch the wind: spider hairs specialized for sensing the movement of air. Naturwissenschaften 87(2): 51–58PubMedCrossRefGoogle Scholar
  4. Barth FG (2002) A Spider’s World: Senses and Behavior. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  5. Barth FG, Schmid A (eds) (2001) Ecology of Sensing. Springer-Verlag, Berlin Heidelberg New York TokyoGoogle Scholar
  6. Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei KEYS.). Phil Trans R Soc Lond B 340: 445–461CrossRefGoogle Scholar
  7. Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413: 445–461CrossRefGoogle Scholar
  8. Baylor DA, Lamb TD, You KW (1979) Responses of retinal rods to single photons. J Physiol 288: 613–634PubMedGoogle Scholar
  9. Bullock TH, Diecke FPJ (1956) Properties of an infrared receptor. J Physiol 134: 47–87PubMedGoogle Scholar
  10. Bullock TH, Heiligenberg W (1986) Electroreception. John Wiley and Sons. New YorkGoogle Scholar
  11. Cornell BA et al. (1997) A biosensor that uses ion-channel switches. Nature 387: 580–583PubMedCrossRefGoogle Scholar
  12. Dusenbery DB (1992) Sensory Ecology. WH Free-man and Company, New YorkGoogle Scholar
  13. Erxleben C (1989) Stretch-activated current through single ion channels in the abdominal stretch receptor organ of the crayfish. J Gen Physiol 94: 1071–1083PubMedCrossRefGoogle Scholar
  14. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413: 211–218PubMedCrossRefGoogle Scholar
  15. Gitter AH, Klinke R (1989) Die Energieschwellen von Auge und Ohr in heutiger Sicht. Naturwissenschaften 76: 160–164CrossRefGoogle Scholar
  16. Hamill OP, Mc Bride DW Jr (1996) The pharmacology of mechano-gated membrane ion channels. Pharmacol Rev 48: 231–252PubMedGoogle Scholar
  17. Hammer DX, Schmitz H, Schmitz A, Rylander HG, Welch AJ (2001) Sensitivity threshold and response characteristics of infrared detection in the beetle Melanophila acuminata (Coleoptera: Buprestidae). Comp Biochem Physiol A 128: 805–819CrossRefGoogle Scholar
  18. Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413: 186–193PubMedCrossRefGoogle Scholar
  19. Holton T, Hudspeth AJ (1986) The transduction channel of hair cells from the bullfrog characterized by noise analysis. J Physiol 375: 195–227PubMedGoogle Scholar
  20. Höger U, French AS (1999) Estimated single-channel conductance of mechanically-activated channels in a spider mechanoreceptor. Brain Res 826: 230–235PubMedCrossRefGoogle Scholar
  21. Höger U, Torkkeli PH, Seyfarth E-A, French AS (1997) Ionic selectivity of mechanically activated channels in spider mechanoreceptor neurons. J Neurophysiol 78: 2079–2085PubMedGoogle Scholar
  22. Humphrey JAC, Barth FG, Voss K (2001) The motion-sensing hairs of arthropods: using physics to understand sensory ecology and adaptive evolution. In: Barth FG, Schmid A (eds) The Ecology of Sensing. Springer-Verlag, Berlin Heidelberg New York, pp 105–125Google Scholar
  23. Humphrey JAC, Devarakonda R, Iglesias I, Barth FG (1993) Dynamics of arthropod filiform hairs. I. Mathematical modelling of the hair and air motions. Phil Trans R Soc Lond B 340: 423–444 (see also Erratum Phil Trans R Soc London B 352:1995 (1997)CrossRefGoogle Scholar
  24. Kaissling K-E, Priesner E (1970) Die Riechschwelle des Seidenspinners. Naturwissenschaften 576: 25–28Google Scholar
  25. Kandel ER, Schwartz JH, Jessell TM (eds) (1996) Neurowissenschaften. Eine Einführung. Spektrum Akad Verlag, HeidelbergGoogle Scholar
  26. Land MF, Nilsson D-E (2002) Animal Eyes. Oxford University Press, OxfordGoogle Scholar
  27. Moller P (1995) Electric Fishes. History and Behavior. Chapman and Hall, London.Google Scholar
  28. Nachtigall W (1998) Bionik. Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  29. Nachtigall W, Blüchel KG (2000) Das große Buch der Bionik. Neue Technologien nach dem Vorbild der Natur. DVA, Stuttgart MünchenGoogle Scholar
  30. Neuweiler G (1989) Foraging ecology and audition in echolocating bats. Trends Ecol Evol 4: 1650–1666CrossRefGoogle Scholar
  31. Pickles JO, Corey DP (1992) Mechanotransduction by hair cells. Trends Neurosci 15: 254–259PubMedCrossRefGoogle Scholar
  32. Römer H (1998) The sensory ecology of hearing in insects. In: Hoy RR, Popper AM, Fay RR (eds) Comparative Hearing: Insects. Springer, New York Berlin Heidelberg, pp 63–96CrossRefGoogle Scholar
  33. Sackin H (1995) Stretch-activated ion channels. Kidney Int 48: 1134–1147PubMedCrossRefGoogle Scholar
  34. Schmitz H, Bleckmann H (1998) The photomechanic infrared receptor for the detection of forest fires of the beetle Melanophila acuminata (Coleoptera: Buprestidae). J Comp Physiol A 182: 647–657CrossRefGoogle Scholar
  35. Shimozawa T, Kanou M (1984) The aerodynamics and sensory physiology of range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol A 155: 495–505CrossRefGoogle Scholar
  36. Shimozawa T, Kumagai T, Baba Y (1998) Structural scaling and functional design of the cercal wind-receptor hairs of a cricket. J Comp Physiol A 183: 171–186CrossRefGoogle Scholar
  37. Shimozawa T, Murakami J, Kumagai T (1998) Cricket wind receptor cell detects mechanical energy of the level of kT of thermal fluctuation. Abstract 112, International Soc of Neuroethol Conf San DiegoGoogle Scholar
  38. Thurm U (1982) Grundzüge der Transduktionsmechanismen in Sinneszellen. Mechanoelektrische Transduktion. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin pp 681–696Google Scholar
  39. Turner APF (1997) Biosensors: Realities and as-pirations. Annali di Chimica 87: 255–260Google Scholar
  40. Turner APF (2000) Biosensors — sense and sensi-tivity. Science 290: 1315–1317PubMedCrossRefGoogle Scholar
  41. Von der Emde G (2001) Electric fields and electroreception: How electrosensory fish perceive their environment. In: Barth FG, Schmid A (eds) Ecology of Sensing. Springer-Verlag, Berlin Heidelberg New York, pp 313–329Google Scholar
  42. Wehner R (1987) “Matched filters” — neural models of the external world. J Comp Physiol A 161: 511–531CrossRefGoogle Scholar
  43. Wehner R (2001) Polarization vision-a uniform sensory capacity? J Exp Biol 204: 2589–2596PubMedGoogle Scholar
  44. Wiltschko W, Wiltschko R (2001) The geomagnetic field and its role in directional orientation. In: Barth FG, Schmid A (eds) Ecology of Sensing. Springer, Berlin Heidelberg New York, pp. 289–312Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Friedrich G. Barth

There are no affiliations available

Personalised recommendations