Depression and antisocial personality disorder: two contrasting disorders of 5HT function

  • J. F. W. Deakin
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 64)


Impaired 5HT functioning has been implicated in two very different psychiatric syndromes: antisocial personality disorder and depression. In both, reduced csf concentration of 5HIAA and blunted circulating hormone responses to 5HT drug challenge have been described. The paradox can be resolved by the theory that the two main ascending 5HT pathways mediate adaptive responses to future and current adversity. Projections of the anterior group of raphe 5HT cells (dorsal raphe nucleus) oppose the action of dopamine and mediate avoidance of threats. Impaired function sensitises the dopamine system resulting in impulsivity and drug addiction. Posterior 5HT cells (median raphe nucleus) innervate hippocampus and cingulate gyrus and suppress memory and awareness of current and past adversity. Impaired function results in low mood, low self-esteem, hopelessness and pessimism. Modern imaging methods are providing startling corroboration of these ideas.


Personality Disorder Raphe Nucleus Behavioural Inhibition Antisocial Personality Disorder Dorsal Raphe Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Linnoila VM, Virkkunen M (1992) Aggression, suicidality and serotonin, low 5HT syndrome. J Clin Psychiatry 53 [Suppl 1]: 46–51PubMedGoogle Scholar
  2. 2.
    Delgado PL (2000) Depression: the case for a monoamine deficiency. J Clin Psychiatry 61 [Suppl 6]: 7–11PubMedGoogle Scholar
  3. 3.
    Newman ME, Shapira B, Lerer B (1998) Evaluation of central serotonergic function in affective and related disorders by the fenfluramine challenge test: a critical review. Int J Neuropsychopharmacol 1(1): 49–69PubMedCrossRefGoogle Scholar
  4. 4.
    Deakin JFW, Pennell I, Upadhyaya AK, Lofthouse R (1990) A neuroendocrine study of 5HT function in depression: evidence for biological mechanisms of endogenous and psychosocial causation. Psychopharmacol 101: 85–92CrossRefGoogle Scholar
  5. 5.
    Kapfhammer HP, Hippius H (1998) Special feature: pharmacotherapy in personality disorders. J Personal Disord 12(3): 277–288CrossRefGoogle Scholar
  6. 6.
    Whitaker-Azmitia PM (1999) The discovery of serotonin and its role in neuroscience. Neuropsychopharmacol 21 [Suppl 2]: 2S–8SCrossRefGoogle Scholar
  7. 7.
    Amin AH, Crawford TBB, Gaddum JH (1954) The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J Physiol 126: 596–618PubMedGoogle Scholar
  8. 8.
    Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol Scand 62: 5–55CrossRefGoogle Scholar
  9. 9.
    Baker KG, Halliday GM, Tork I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301: 147–161PubMedCrossRefGoogle Scholar
  10. 10.
    Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ (1999) Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuro Image 10: 163–172PubMedGoogle Scholar
  11. 11.
    Deakin JFW (1996) 5HT, antidepressant drugs and the psychosocial origins of depression. J Psychopharmacol 10(1): 31–38PubMedCrossRefGoogle Scholar
  12. 12.
    Imai H, Steindler DA, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243: 363–380PubMedCrossRefGoogle Scholar
  13. 13.
    Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313: 643–668PubMedCrossRefGoogle Scholar
  14. 14.
    Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407: 555–582PubMedCrossRefGoogle Scholar
  15. 15.
    Deakin JFW (1983) Roles of serotonergic systems in escape, avoidance and other behaviours. In: Cooper JS (ed) Theory in psychopharmacology. Academic Press, New York, pp 149–193Google Scholar
  16. 16.
    Deakin JFW, Graeff FG (1991) 5-HT and mechanisms of defence. J Psycho-pharmacol 5: 305–315CrossRefGoogle Scholar
  17. 17.
    Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of the septal area and other regions of the rat brain. J Comp Physiol Psychiatry 47: 419–427CrossRefGoogle Scholar
  18. 18.
    GarrÍs PA, Kilpatrick M, Bunin MA, Michael D, Walker QD, Wightman RM (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398(6722): 67–69PubMedCrossRefGoogle Scholar
  19. 19.
    Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nature Rev Neurosci 2: 695–703CrossRefGoogle Scholar
  20. 20.
    Elliott R, Friston KJ, Dolan RJ (2000) Dissociable neural responses in human reward systems. J Neurosci 20(16): 6159–6165PubMedGoogle Scholar
  21. 21.
    Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CH, Grasby PM (1998) Evidence for striatal dopamine release during a video game. Nature 393(6682): 266–268PubMedCrossRefGoogle Scholar
  22. 22.
    Fulford AJ, Marsden CA (1998) Conditioned release of 5-hydroxytryptamine in vivo in the nucleus accumbens following isolation-rearing in the rat. Neuroscience 83: 481–487PubMedCrossRefGoogle Scholar
  23. 23.
    Jacobs BL, Fornai CA (1991) Activity of brain serotonergic neurons in the behaving animal. Pharmacol Rev 43: 563–578PubMedGoogle Scholar
  24. 24.
    Schulz W, Dayan P, Montague PR (1998) A neural substrate of prediction and reward. Science 275: 1593–1599CrossRefGoogle Scholar
  25. 25.
    Tye NC, Iversen SD (1975) Some behavioural signs of morphine withdrawal blocked by condition stimuli. Nature 255(5507): 416–418PubMedCrossRefGoogle Scholar
  26. 26.
    Sommer W, MÖller C, Wiklund L, Thorsell A, Rimondini R, Nissbrandt H, Heilig M (2001) Local 5,7-dihydroxytryptamine lesions of rat amygdala: release of punished drinking, unaffected plus-maze behavior and ethanol consumption. Neuropsycho-pharmacol 24: 430–440CrossRefGoogle Scholar
  27. 27.
    Robbins TW (1997) Arousal systems and attentional processes. Biol Psychol 45: 57–71.PubMedCrossRefGoogle Scholar
  28. 28.
    Harrison AA, Everitt BJ, Robbins TW (1997) Doubly dissociable effects of median-and dorsal-raphe lesions on the performance of the five-choice serial reaction time test of attention in rats. Behav Brain Res 89(1–2): 135–149PubMedCrossRefGoogle Scholar
  29. 29.
    Fletcher PJ, Korth KM, Chambers JW (1999) Selective destruction of brain serotonin neurons by 5,7-dihydroxytryptamine increases responding for a conditioned reward. Psychopharmacol (Beri) 147(3): 291–299CrossRefGoogle Scholar
  30. 30.
    Rocha BA, Scearce-Levie K, Lucas JJ, Hiroi N, Castonon N, Crabbe JC, Nestlerk EJ, Hen R (1998) Increased vulnerability to cocaine in mice lacking the serotonin IB receptor. Nature 393: 175–178PubMedCrossRefGoogle Scholar
  31. Deakin JFW, Anderson IM, Connell J, Mortimore C (unpublished) Effects of ATD on anxiety and cognitive measures in normal volunteers (unpublished manuscript)Google Scholar
  32. Horn NR, Dolan M, Elliott R, Deakin JFW, Woodruff PWR (2003) Response inhibition and impulsivity: an fMRI study. Neuropsychologia (in press)Google Scholar
  33. 33.
    Blair RJ, Morris JS, Fritch CD, Perrett DI, Dolan RJ (1999) Dissociable neural responses to facial expression of sadness and anger. Brain 122(5): 883–893PubMedCrossRefGoogle Scholar
  34. 34.
    Elliott R, Dolan RJ, Frith CD (2000) Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10(3): 308–317PubMedCrossRefGoogle Scholar
  35. 35.
    Anderson IM, Clark L, Elliott R, Kulkarni B, Williams SR, Deakin JFW (2002) 5HT2C receptor activation by m-chlorophenylpiperazine detected in humans with fMRI. Neuro Report 13(12): 1547–1551Google Scholar
  36. 36.
    Mann JJ, Huang Y, Underwood MD, Kassir SA, Oppenheim S, Kelly TM, Dwork AJ, Arango V (2000) A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major depression and suicide. Arch Gen Psychiatry 57(8): 729–738PubMedCrossRefGoogle Scholar
  37. 37.
    Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behaviour. Life Sci 33: 2609–2614PubMedCrossRefGoogle Scholar
  38. 38.
    Virkkunen M, Nuutila A, Goodwin FK, Linnoila M (1987) CSF monoamine metabolites in male arsonists. Arch Gen Psychiatry 44: 241–247PubMedCrossRefGoogle Scholar
  39. 39.
    Virkkunen M, Rawlings R, Tokola R, Poland RE, Guidotti A, Nemeroff CB, Bissette G, Kalogeras K, Karonen S-L, Linnoila M (1994) CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Arch Gen Psychiatry 51: 20–27PubMedCrossRefGoogle Scholar
  40. 40.
    Brown GI, Goodwin FK, Ballenger JC, Goyer PF, Major LF (1979) Aggression in humans correlates with cerebrospinal fluid metabolites. Psychiatry Res 1: 131–139PubMedCrossRefGoogle Scholar
  41. 41.
    Lidberg L, Tuck JR, Asberg M, Scalia-Tomba GP, Bertilsson L (1985) Homicide, suicide and CSF 5-HIAA. Acta Psychiatr Scand 71(3): 230–236PubMedCrossRefGoogle Scholar
  42. 42.
    Coccaro EF, Kavoussi RJ, Berman ME, Hauger RL (1996) Relationship of prolactin response to d-fenfluramine to behavioural and questionnaire assessments of aggression in personality disordered males. Biol Psychiatry 40: 157–164PubMedCrossRefGoogle Scholar
  43. 43.
    O’Keane V, Moloney E, O’Neill H, O’Connor A, Smith C, Dinan TG (1992) Blunted prolactin responses to d-fenfluramine in sociopathy. Evidence for subsensitivity of central serotonergic function. Br J Psychiatry 160: 643–646PubMedCrossRefGoogle Scholar
  44. 44.
    Dolan M, Deakin JFW, Roberts N, Anderson IM (2002) Serotonergic and cognitive impairment in impulsive aggressive personality disordered offenders: are there implications for treatment? Psychol Med 32(1): 105–117PubMedGoogle Scholar
  45. 45.
    Handelsman L, Holloway K, Kahn RS, Sturiano C, Rinaldi PJ, Bernstein DP, Siever L, Gabriel S, Cooper TB (1996) Hostility is associated with a low prolactin response to meta-chlorophenylpiperazine in abstinent alcoholics. Alcohol Clin Exp Res 20(5): 824–829PubMedCrossRefGoogle Scholar
  46. 46.
    Handelsman L, Kahn RS, Sturiano C, Rinaldi PJ, Gabriel S, Schmeidler JP, Bernstein DP, Siever L, Cooper TB (1998) Hostility is associated with a heightened prolactin response to meta-chlorophenylpiperazine in abstinent cocaine addicts. Psychiatry Res 80(1): 1–12PubMedCrossRefGoogle Scholar
  47. 47.
    Wetzler S, Kahn RS, Asnis GM, Korn M, van Praag HM (1991) Serotonin receptor sensitivity and aggression. Psychiatry Res 37(3): 271–279PubMedCrossRefGoogle Scholar
  48. 48.
    Pétrie RXA, Balfour DJK, Stewart CA, Reid IC (1998) The influence of chronic stress on 5-HT and 5-HTIAA release from rat dorsal hippocampus. Stanley Foundation European Bipolar Symposium, LondonGoogle Scholar
  49. 49.
    Netto SM, Guimaraes FS (1996) Role of hippocampal 5-HT1A receptors on elevated plus maze exploration after a single restraint experience. Behav Brain Res 77(1–2): 215–218PubMedCrossRefGoogle Scholar
  50. 50.
    Lester D (1995) The concentration of neurotransmitter metabolites in the cerebrospinal fluid of suicidal individuals: a meta-analysis. Pharmacopsychiatry 28: 77–79CrossRefGoogle Scholar
  51. 51.
    Cowen PJ (1996) Advances in psychopharmacology: mood disorders and dementia. Br Med Bull 52(3): 539–555PubMedCrossRefGoogle Scholar
  52. 52.
    Mitchell P, Smythe G (1990) Hormonal responses to fenfluramine in depressed and control subjects. J Affect Disord 19: 43–51PubMedCrossRefGoogle Scholar
  53. 53.
    Coccaro EF, Siever LJ, Klar HM, Maurer G, Cochrane K, Cooper TB, Mohrs RC, Davis KL (1989) Serotonergic studies in patients with affective and personality disorders; correlates with suicidal and impulsive aggressive behaviour. Arch Gen Psychiatry 46: 587–599PubMedCrossRefGoogle Scholar
  54. 54.
    Park SB, Williamson DJ, Cowen PJ (1996) 5HT neuroendocrine function in major depression: prolactin and Cortisol responses to d-fenfluramine. Psychol Med 26:1191— 1196PubMedCrossRefGoogle Scholar
  55. 55.
    Strickland PL, Deakin JFW, Percival C, Dixon J, Gater RA, Goldberg PG (2002) Biosocial origins of depression in the community. Interactions between social adversity, Cortisol and serotonin neurotransmission. Br J Psychiatry 180(2): 168–173PubMedCrossRefGoogle Scholar
  56. 56.
    Padovan CM, Del Bel EA, Guimaraes FS (2000) Behavioral effects in the elevated plus maze of an NMD A antagonist injected into the dorsal hippocampus: influence on restraint stress. Pharmacol Biochem Behav 67(2): 325–330PubMedCrossRefGoogle Scholar
  57. 57.
    Watkins E, Teasdale JD (2001) Rumination and overgeneral memory in depression: effects of self-focus and analytic thinking. J Abnorm Psychol 110(2): 353–357PubMedCrossRefGoogle Scholar
  58. 58.
    Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48: 830–843PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • J. F. W. Deakin
    • 1
  1. 1.Neuroscience and Psychiatry UnitUniversity of ManchesterManchesterUK

Personalised recommendations