The Role of Peptides in Treatment of Psychiatric Disorders

  • F. Holsboer
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 64)


About 25 years ago the observation that neuropeptides serve as signalling molecules in the nervous system generated great expectations for drug industry. In this article the progress made since then in exploiting neuropeptide systems pharmacologically in psychiatry is highlighted.


Force Swim Test Slow Wave Sleep Sensorimotor Gating Protein Transduction Domain Bioi Psychiatry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnauld E, Bibene V, Meynard J, Rodriguez F, Vincent JD (1989) Effects of chronic icv infusion of vasopressin on sleep-waking cycle of rats. Am J Physiol 256: R674–R684PubMedGoogle Scholar
  2. Aström C, Lindholm J (1990) Growth hormone-deficient young adults have decreased deep sleep. Neuroendocrinology 51: 82–84PubMedCrossRefGoogle Scholar
  3. Bardeleben von U, Holsboer F (1991) Effect of age upon the Cortisol response to human CRH in depressed patients pretreated with dexamethasone. Biol Psychiatry 29:1042–1050CrossRefGoogle Scholar
  4. Bardeleben von U, Holsboer F, Stalla GK, Müller OA (1985) Combined administration of human corticotropin-releasing factor and lysine vasopressin induces Cortisol escape from dexamethasone suppression in healthy subjects. Life Sci 37: 1613–1619CrossRefGoogle Scholar
  5. Binder EB, Kinkead B, Owens M J, Nemeroff CB (2001a) The role of neurotensin in the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs. Biol Psychiatry 50: 856–872PubMedCrossRefGoogle Scholar
  6. Binder EB, Kinkead B, Owens M J, Kilts CD, Nemeroff CB (2001b) Enhanced neurotensin neurotransmission is involved in the clinically relevant behavioral effects of antipsychotic drugs: evidence from animal models of sensorimotor gating. J Neurosci 21: 601–608PubMedGoogle Scholar
  7. Binder EB, Gross RE, Nemeroff CB, Kilts CD (2002) Effects of neurotensin receptor antagonism on latent inhibition in Sprague-Dawley rats. Psychopharmacology 161: 288–295PubMedCrossRefGoogle Scholar
  8. Born J, Kellner C, Uthgenannt D, Kern W, Fehm HL (1992) Vasopressin regulates human sleep by reducing rapid-eye-movement sleep. Am J Physiol 262: E295–E300PubMedGoogle Scholar
  9. Bremner J, Narayan M, Anderson ER, Staib LH, Miller H, Charney DS (2000) Smaller hippocampal volume in major depression. Am J Psychiatry 157: 115–117PubMedCrossRefGoogle Scholar
  10. Chang FC, Opp MR (1998) Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. Am J Physiol 275: R793–R802PubMedGoogle Scholar
  11. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410: 37–40PubMedCrossRefGoogle Scholar
  12. Chawla MK, Gutierrez GM, Young WS, McMullen NT, Ranee NE (1997) Localization of neurons expressing substance P and neurokinin B gene transcripts in the human hypothalamus and basal forebrain. J Comp Neurol 384:429–442PubMedCrossRefGoogle Scholar
  13. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50: 260–265PubMedCrossRefGoogle Scholar
  14. Conti AC, Cryan JF, Dalvi A, Lucki I, Blendy JA (2002) cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J Neurosci 22: 3262–3268PubMedGoogle Scholar
  15. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci 98: 12796–12801PubMedCrossRefGoogle Scholar
  16. De Wied D (1993) From stress hormones to neuropeptides. In: Burbach JPH, de Wied D (eds) Brain functions of neuropeptides. A current view. The Parthenon Publishing Group, New York, pp 65–84Google Scholar
  17. Dinan TG, Lavelle E, Scott L, Newell-Price J, Medbak S, Grossman AB (1999) Desmopressin normalizes the blunted adrenocorticotropin response to corticotropin-releasing hormone in melancholic depression: evidence of enhanced vasopressinergic responsitivity. J Clin Endocrinol Metab 84: 2238–2240PubMedCrossRefGoogle Scholar
  18. Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77: 916–928PubMedCrossRefGoogle Scholar
  19. Ehlers CL, Kupfer DJ (1987) Hypothalamic peptide modulation of EEG sleep in depression: a further application of the S-process hypothesis. Biol Psychiatry 22: 513— 517PubMedCrossRefGoogle Scholar
  20. Ehlers CL, Reed TK, Henriksen SJ (1986) Effects of corticotropin-releasing factor and growth hormone-releasing factor on sleep and activity in rats. Neuroendocrinology 42: 467–474PubMedCrossRefGoogle Scholar
  21. File SE (2000) NKP608, an NK1 receptor antagonist, has an anxiolytic action in the social interaction test in rats. Psychopharmacology 152: 105–109PubMedCrossRefGoogle Scholar
  22. Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H (2001) Elementary neuronal dysfunctions in schizophrenia. Schizophr Res 4: 233–243CrossRefGoogle Scholar
  23. Frieboes RM, Murck H, Schier T, Holsboer F, Steiger A (1997) Somatostatin impairs sleep in elderly human subjects. Neuropsychopharmacology 16: 339–345PubMedCrossRefGoogle Scholar
  24. Gonzales MM, Valatx JL (1998) Involvement of stress in the sleep rebound mechanism induced by sleep deprivation in the rat: use of alpha-helical CRH (9–41). Behav Pharmacol 9: 655–662CrossRefGoogle Scholar
  25. Gould E, McEwen BS, Tanapat P, Galea LAM, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMD A receptor activation. J Neurosci 17: 2492–2498PubMedGoogle Scholar
  26. Griebel G, Simiand J, Serradeil-LeGal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P (2002) Anxiolytic-and antidepressant-like effects of the non-peptide vasopressin Vlb receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci Early Edition: 1–6Google Scholar
  27. Gulyas J, Rivier C, Perrin M, Koerber SC, Sutton S, Corrigan A et al. (1995) Potent, structurally constrained agonists and competitive antagonists of corticotropin-releasing factor. Proc Natl Acad Sci 92: 10575–10579PubMedCrossRefGoogle Scholar
  28. Heuser I, Bissette G, Dettling M, Schweiger U, Gotthardt U, Schmider J, Lammers CH, Nemeroff CB, Holsboer F (1998) Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depression & Anxiety 8: 71–79PubMedCrossRefGoogle Scholar
  29. Hökfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7: 867–879PubMedCrossRefGoogle Scholar
  30. Holsboer F (1999) The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 33: 181–214PubMedCrossRefGoogle Scholar
  31. Holsboer F (2000) The Cortisol receptor hypothesis of depression. Neuropsychopharmacology 23: 477–501PubMedCrossRefGoogle Scholar
  32. Holsboer F (2001) Antidepressant drug discovery in the postgenomic era. World J Biol Psychiatry 2: 165–177PubMedCrossRefGoogle Scholar
  33. Holsboer F, Barden N (1996) Antidepressants and HPA regulation. Endcr Rev 17: 187–205CrossRefGoogle Scholar
  34. Holsboer F, von Bardeleben U, Steiger A (1988) Effects of intravenous corticotropin-releasing hormone upon sleep-related growth hormone surge and sleep EEG in man. Neuroendocrinology 48: 32–38PubMedCrossRefGoogle Scholar
  35. Horvath TL, Diano S, Sotonyi P, Heiman M, Tschöp M (2001) Ghrelin and the regulation of energy balance — a hypothalamic perspective. Endocrinology 142: 4163–4169PubMedGoogle Scholar
  36. Hsu SY, Hsueh AJW (2001) Human stresscopin and stresscopin-related peptide are selective ligangs for the type 2 corticotropin-releasing hormone receptor. Nat Med 7: 605–611PubMedCrossRefGoogle Scholar
  37. Keck ME, Holsboer F (2001) Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 22: 835–844PubMedCrossRefGoogle Scholar
  38. Keck ME, Welt T, Wigger A, Renner U, Engelmann M, Holsboer F, Landgraf R (2001a) The anxiolytic effect of the CRH1 receptor antagonist R121919 depends on innate emotionality in rats. Eur J Neurosci 13: 373–380PubMedCrossRefGoogle Scholar
  39. Keck ME, Wigger A, Welt T, Müller MB, Gesing A, Reul JMHM, Holsboer F, Landgraf R, Neumann ID (2001b) Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacology 26: 94–105CrossRefGoogle Scholar
  40. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92: 8.856–8.860CrossRefGoogle Scholar
  41. Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295: 1729–1734PubMedCrossRefGoogle Scholar
  42. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J et al. (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281: 1640–1645PubMedCrossRefGoogle Scholar
  43. Krieger DT (1983) Brain peptides: what, where and why? Science 222: 975–985PubMedCrossRefGoogle Scholar
  44. Lancel M, Müller-Preuss P, Wigger A, Landgraf R, Holsboer F (2002) The CRH1 receptor antagonist R121919 attenuates stress-elicited sleep disturbances in rats, particularly in those with high innate anxiety. J Psychiatr Res 36: 197–208PubMedCrossRefGoogle Scholar
  45. Landgraf R (2001) Neuropeptides and anxiety-related behavior. Endocr J 48: 517— 533Google Scholar
  46. Landgraf R, Gerstberger R, Montkowski A, Probst JC, Wotjak CT, Holsboer F, Engelmann M (1995) VI vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities, and anxiety-related behavior in rats. J Neurosci 15: 4250–4258PubMedGoogle Scholar
  47. Liebsch G, Montkowski A, Holsboer F, Landgraf R (1998) Behavioral profiles of two Wistar rat lines selectively bred for high or low anxiety-related behavior. Behav Brain Res 94: 301–310PubMedCrossRefGoogle Scholar
  48. Linthorst ACE, Flachskamm C, Müller-Preuss P, Holsboer F, Reul JMHM (1995) Effect of bacterial endotoxin and interleukin-lß on hippocampal serotonergic neurotransmission, behavioral activity, and free corticosterone levels: an in vivo microdialysis study. J Neurosci 15: 2920–2934PubMedGoogle Scholar
  49. Lucassen PJ, Müller MB, Holsboer F, Bauer J, Holtrop A, Wouda J, WJG Hoogendijk, De Kloet ER, Swaab DF (2001) Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 158: 453–468PubMedCrossRefGoogle Scholar
  50. Montkowski A, Holsboer F (1997) Intact spatial learning and memory in transgenic mice with reduced BDNE. Neuroreport 8: 779–782PubMedCrossRefGoogle Scholar
  51. Müller MB, Lucassen P, Yassouridis A, Hoogendijk WGJ, Holsboer F, Swaab DF (2001) Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. Eur J Neurosci 14: 1603–1612PubMedCrossRefGoogle Scholar
  52. Müller MB, Preil J, Renner U, Zimmermann S, Kresse AE, Stalla GK, Keck ME, Holsboer F, Wurst W (2001) Expression of CRHR1 and CRHR2 in mouse pituitary and adrenal gland: implications for HPA system regulation. Endocrinology 142: 4150–4153PubMedCrossRefGoogle Scholar
  53. Nibuya M, Takahashi M, Rüssel DS, Duman RS (1999) Chronic stress increases catalytic TrB mRNA in rat hippocampus. Neurosci Lett 267: 81–84PubMedCrossRefGoogle Scholar
  54. Penalva RG, Flachskamm C, Zimmermann S, Wurst W, Holsboer F, Reul JMHM, Linthorst ACE (2002) Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: an in vivo microdialysis study in mutant mice. Neuroscience 109: 253–266PubMedCrossRefGoogle Scholar
  55. Perras B, Pannenborg H, Marshall L, Pietrowsky R, Born J, Fehm HL (1997) Three months of intranasal vasopressin increased sleep time, slow wave sleep and REM sleep in healthy old humans. Exp Clin Endocrinol Diabetes [Suppl] 1: 23Google Scholar
  56. Preil J, Müller MB, Gesing A, Reul JMHM, Sillaber I, Gaalen M, Landgrebe J, Stenzel-Poore M, Holsboer F, Wurst W (2001) Regulation of the hypothalamic-pituitary-adrenocortical system in mice deficient for corticotropin-releasing hormone receptor 1 and 2. Endocrinology 142: 4946–4955PubMedCrossRefGoogle Scholar
  57. Purba JS, Hoogendijk WJG, Hofman MA, Swaab DF (1996) Increased number of vasopressin-and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 53: 137–143PubMedCrossRefGoogle Scholar
  58. Raadsheer FC, Hoogendijk WJG, Stam FC, Tilders FHJ, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60: 433–436CrossRefGoogle Scholar
  59. Reul JMHM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2: 23–33PubMedCrossRefGoogle Scholar
  60. Santarelli L, Gobbi G, Debs PC, Sibille EL, Blier P, Hen R, Heath MJS (2001) Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc Natl Acad Sci USA 98: 1912–1917PubMedCrossRefGoogle Scholar
  61. Schwarze SR, Hruska KA, Dowdy SF (2000) Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 10: 290–295PubMedCrossRefGoogle Scholar
  62. Sheline Y, Wany P, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93: 3908–3913PubMedCrossRefGoogle Scholar
  63. Sheline Y, Sanghavi M, Mintun MA, Gado MH (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 19: 5034–5043PubMedGoogle Scholar
  64. Shirayama Y, Chen ACH, Nakagawa S, Rüssel DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22: 3251–3261PubMedGoogle Scholar
  65. Sillaber I, Rammes G, Zimmermann S, Mahal B, Zieglgänsberger W, Wurst W, Holsboer F, Spanagel R (2002) Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors. Science 296: 931–933PubMedCrossRefGoogle Scholar
  66. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress alters the express of brain-derived neurotrophic factor and neurotrophin-3 mR-NAs in the hippocampus. J Neurosci 15: 1768–1777PubMedGoogle Scholar
  67. Spengler D, Rupprecht R, Phi Van L, Holsboer F (1992) Identification and characterization of a 3’,5’-cyclic adenosine monophosphate-responsive element in the human corticotropin-releasing hormone gene promoter. Mol Endocrinol 6: 1931–1941PubMedGoogle Scholar
  68. Steiger A, Holsboer F (1997) Neuropeptides and human sleep. Sleep 20: 1038–1052PubMedGoogle Scholar
  69. Steiger A, Herth T, Holsboer F (1987) Sleep-electroencephalography and the secretion of Cortisol and growth hormone in normal controls. Acta Endocrinol (Copenh) 116: 36–42Google Scholar
  70. Steiger A, Guldner J, Hemmeter U, Rothe B, Wiedemann K, Holsboer F (1992) Effects of growth hormone-releasing hormone and somatostatin on sleep EEG and nocturnal hormone secretion in male controls. Neuroendocrinology 56: 566–573PubMedCrossRefGoogle Scholar
  71. Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24: 285–301PubMedCrossRefGoogle Scholar
  72. Swerdlow NR, Braff DL, Geyer MA (1999) Cross-species studies of sensorimotor gating of the startle reflex. Ann NY Acad Sci 877: 202–216PubMedCrossRefGoogle Scholar
  73. Teixeira RM, Santos AR, Ribeiro SJ, Calixto JB, Rae GA, De Lima TC (1996) Effects of central administration of tachykinin receptor agonists and antagonists on plus-maze behavior in mice. Eur J Pharmacol 311: 7–14PubMedCrossRefGoogle Scholar
  74. Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S, Storm D, Duman RS (2000) Cyclic AMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 20: 4030–4036PubMedGoogle Scholar
  75. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JMHM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W (1998) Impaired stress response adn reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19: 162–166PubMedCrossRefGoogle Scholar
  76. Tsuchiyama Y, Uchimura N, Sakamoto T, Maeda H, Kotorii T (1995) Effects of hCRH on sleep and body temperature rhythms. Psychiatry Clin Neurosci 49: 299–304PubMedCrossRefGoogle Scholar
  77. Zobel AW, Nickel T, Künzel HE, Ackl N, Sonntag A, Ising M, Holsboer F (2000) Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 34: 171–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • F. Holsboer
    • 1
  1. 1.Max Planck Institute of PsychiatryMunichFederalRepublic of Germany

Personalised recommendations