Skip to main content

Therapeutic implications of constitutive activity of receptors: the example of the histamine H3 receptor

  • Conference paper
Neuropsychopharmacology

Abstract

Some G-protein-coupled receptors display constitutive activity, that is spontaneous activity in the absence of agonist: a proportion of the receptor population adopts a conformation that can bind and activate G proteins. Whereas this was mainly shown to occur with recombinant or pathologically mutated receptors, the physiological relevance of the process has remained debated. We have adressed this question in the case of the histamine H3 receptor, a presynaptic inhibitory receptor regulating histamine release in brain. Having identified a neutral antagonist and inverse agonists with variable intrinsic activity, we show that the native H3 receptor in brain displays high constitutive activity in vitro and, in vivo, controls the release of endogenous histamine. This implies that inverse agonists with high intrinsic activity should be preferred for therapeutic application as “cognitive enhancers” in several psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alewijnse AE, Smit MJ, Hoffmann M, Verzijl D, Timmerman H, Leurs R (1998) Constitutive activity and structural instability of the wild-type human H2 receptor. J Neurochem 71: 799–807

    Article  CAS  PubMed  Google Scholar 

  • Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302: 832–837

    Article  CAS  PubMed  Google Scholar 

  • Arrang JM, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, Schunack W, Schwartz JC (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327: 117–123

    Article  CAS  PubMed  Google Scholar 

  • Audinot V, Newman-Tancredi A, Millan MJ (2001) Constitutive activity at serotonin 5-HT1D receptors: detection by homologous GTPgS versus [35S]-GTPgS binding isotherms. Neuropharmacol 40: 57–64

    Article  CAS  Google Scholar 

  • Bakker RA, Wieland K, Timmerman H, Leurs R (2000) Constitutive activity of the histamine Hx receptor reveals inverse agonism of histamine Ht receptor antagonists. Eur J Pharmacol 387: R5–R7

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Way J, Armour S, Watson C, Queen K, Jayawickreme CK, Chen WJ, Kenakin T (2000) Use of constitutive G protein-coupled receptor activity for drug discovery. Mol Pharmacol 57: 125–134

    CAS  PubMed  Google Scholar 

  • Chidiac P, Hebert TE, Valiquette M, Dennis M, Bouvier M (1994) Inverse agonism activity of ß-adrenergic antagonists. Mol Pharmacol 45: 490–499

    CAS  PubMed  Google Scholar 

  • Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A (1999) Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol 55: 910–920

    CAS  PubMed  Google Scholar 

  • Clapham J, Kilpatrick GJ (1994) Thioperamide, the selective histamine H3 receptor antagonist, attenuates stimulant-induced locomotor activity in the mouse. Eur J Pharmacol 259: 107–114

    Article  CAS  PubMed  Google Scholar 

  • Clark EA, Hill SJ (1995) Differential effect of sodium ions and guanine nucleotides on the binding of thioperamide and clobenpropit to histamine H3-receptors in rat cerebral cortical membranes. Br J Pharmacol 114: 357–362

    Article  CAS  PubMed  Google Scholar 

  • Clark EA, Hill SJ (1996) Sensitivity of histamine H3 receptor agonist-stimulated [35S]GTP gamma[S] binding to pertussis toxin. Eur J Pharmacol 296: 223–225

    Article  CAS  PubMed  Google Scholar 

  • Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86: 7321–7325

    Article  CAS  PubMed  Google Scholar 

  • Costa T, Ogino Y, Munson PJ, Onaran O, Rodbard D (1992) Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol Pharmacol 41: 549–560

    CAS  PubMed  Google Scholar 

  • de Ligt RAF, Kourounakis AP, Ijzerman AP (2000) Inverse agonism at G protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br J Pharmacol 130: 1–12

    Article  PubMed  Google Scholar 

  • Garbarg M, Trung Tuong MD, Gros C, Schwartz JC (1989) Effects of histamine H3-receptor ligands on various biochemical indices of histaminergic neuron activity in rat brain. Eur J Pharmacol 164: 1–11

    Article  CAS  PubMed  Google Scholar 

  • Griffon N, Pilon C, Sautel F, Schwartz JC, Sokoloff P (1996) Antipsychotics with inverse agonist activity at the dopamine D3 receptor. J Neural Transm 103: 1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Ito C, Onodera K, Sakurai E, Sato M, Watanabe T (1996) Effects of dopamine antagonists on neuronal histamine release in the striatum of rats subjected to acute and chronic treatments with methamphetamine. J Pharmacol Exp Ther 279: 271–276

    CAS  PubMed  Google Scholar 

  • Ito C, Morisset S, Krebs MO, Oli¨¦ JP, Lôo H, Poirier MF, Lannfelt L, Schwartz JC, Arrang JM (2000) Histamine H2 receptor gene variants: lack of association with schizophrenia. Mol Psychiat 5: 159–164

    Article  CAS  Google Scholar 

  • Kenakin TP (1997) Pharmacological analysis of drug receptor interaction. Lippincott-Raven, New York

    Google Scholar 

  • Khateb A, Fort P, Pegna A, Jones BE, Muhlethaler M (1995) Cholinergic nucleus basilis neurons are excited by histamine in vitro. Neuroscience 69: 495–506

    Article  CAS  PubMed  Google Scholar 

  • Laitinen JT, Jokinen M (1998) Guanosine 5/-(y-[35S]thio)triphosphate autoradiography allows selective detection of histamine H3 receptor-dependent G protein activation in rat brain tissue sections. J Neurochem 71: 808–816

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Cotecchia S, Samama P, Costa T (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 14: 303–307

    Article  CAS  PubMed  Google Scholar 

  • Leurs R, Smit MJ, Alewijnse AE, Timmerman H (1998) Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem Sci 23: 418–422

    Article  CAS  PubMed  Google Scholar 

  • Ligneau X, Garbarg M, Vizuete ML, Diaz J, Purand K, Stark H, Schunack W, Schwartz JC (1994) [125I]Iodoproxyfan, a new antagonist to label and visualize cerebral histamine H3 receptors. J Pharmacol Exp Ther 271: 452–459

    CAS  PubMed  Google Scholar 

  • Ligneau X, Lin JS, Vanni-Mercier G, Jouvet M, Muir JL, Ganellin CR, Stark H, Elz S, Schunack W, Schwartz JC (1998) Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J Pharmacol Exp Ther 287: 658–666

    CAS  PubMed  Google Scholar 

  • Lovenberg TW, Roland BL, Wilson SJ, Jiang X, Pyati J, Huvar A, Jackson MR, Erlander MG (1999) Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol 55: 1101–1107

    CAS  PubMed  Google Scholar 

  • Ma H, Green RD (1992) Modulation of cardiac cyclic AMP metabolism by adenosine receptor agonists and antagonists. Mol Pharmacol 42: 831–837

    CAS  PubMed  Google Scholar 

  • Milligan G, Bond R (1997) Inverse agonism and the regulation of receptor number. Trends Pharmacol Sci 18: 468–474

    Article  CAS  PubMed  Google Scholar 

  • Milligan G, Bond R, Lee M (1995) Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol Sci 16: 10–13

    Article  CAS  PubMed  Google Scholar 

  • Morisset S, Traiffort E, Schwartz JC (1996) Inhibition of histamine versus acetylcholine metabolism as a mechanism of tacrine activity. Eur J Pharmacol 315: R1–R2

    Article  CAS  PubMed  Google Scholar 

  • Morisset S, Sahm UG, Traiffort E, Tardivel-Lacombe J, Arrang JM, Schwartz JC (1999) Atypical neuroleptics enhance histamine turnover in brain via 5-hydroxytryptamine2A receptor blockade. J Pharmacol Exp Ther 288: 590–596

    CAS  PubMed  Google Scholar 

  • Morisset S, Rouleau A, Ligneau X, Gbahou F, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz JC, Arrang JM (2000) High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408: 860–864

    Article  CAS  PubMed  Google Scholar 

  • Newman-Tancredi A, Conte C, Chaput C, Verriele L, Millan MJ (1997) Agonist and inverse agonist efficacy at human recombinant serotonin 5-HT1A receptors as a function of receptor: G-protein stoichiometry. Neuropharmacol 36: 451–459

    Article  CAS  Google Scholar 

  • Newman-Tancredi A, Audinot V, Moreira C, Verriele L, Millan MJ (2000) Inverse agonism and constitutive activity as functional correlates of serotonin h5-HT1B recep-tor/G-protein stoichiometry. Mol Pharmacol 58: 1042–1049

    CAS  PubMed  Google Scholar 

  • Nilsson CL, Eriksson E (1993) Haloperidol increases prolactin release and cyclic AMP formation in vitro: inverse agonism at dopamine D2 receptors? J Neural Transm 92: 213–220

    Article  CAS  Google Scholar 

  • Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H, Relja M (1998) Neuronal histamine deficit in Alzheimer’s disease. Neuroscience 82: 993–997

    Article  CAS  PubMed  Google Scholar 

  • Pauwels PJ, Tardif S, Wurch T, Colpaert FC (1997) Stimulated [35S]-GTPS binding by 5-HT1A receptor agonists in recombinant cell lines: modulation of apparent efficacy by G-protein activation state. Naunyn Schmiedebergs Arch Pharmacol 356: 551–561

    Article  CAS  PubMed  Google Scholar 

  • Pauwels PJ, Tardif S, Wurch T, Colpaert FC (2000) Facilitation of constitutuve a2A-adrenoceptor activity by both single amino acid mutation (thr373lys) and Gao protein coexpression: evidence for inverse agonism. J Pharmacol Exp Ther 292: 654–663

    CAS  PubMed  Google Scholar 

  • Pozvek G, Hilton JM, Quiza M, Houssami S, Sexton PM (1997) Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system. Mol Pharmacol 51: 658–665

    CAS  PubMed  Google Scholar 

  • Prell GD, Green JP, Kaufmann CA, Khandelwal JK, Morrishow AM, Kirch DG, Linnoila M, Wyatt RJ (1995) Histamine metabolites in cerebrospinal fluid of patients with chronic schizophrenia: their relationship to levels of other aminergic transmitters and ratings of symptoms. Schizophr Res 14: 93–104

    Article  CAS  PubMed  Google Scholar 

  • Rouleau A, Ligneau X, Tardivel-Lacombe J, Morisset S, Gbahou F, Schwartz JC, Arrang JM (2002) Histamine H3-receptor-mediated [35S]GTPy[S] binding: evidence for constitutive activity of the recombinant and native rat and human H3 receptors. Br J Pharmacol 135: 383–392

    Article  CAS  PubMed  Google Scholar 

  • Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the ß2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268: 4625–4636

    CAS  PubMed  Google Scholar 

  • Sangalli BC (1997) Role of the central histaminergic neuronal system in the CNS toxicity of the first generation Hrantagonists. Prog Neurobiol 52: 145–157

    Article  CAS  PubMed  Google Scholar 

  • Shryock JC, Ozeck MJ, Belardinelli L (1998) Inverse agonists and neutral antagonists of recombinant human Ax adenosine receptors stably expressed in Chinese hamster ovary cells. Mol Pharmacol 53: 886–893

    CAS  PubMed  Google Scholar 

  • Strange P (2002) Mechanisms of inverse agonism at G-protein-coupled receptors. Trends Pharmacol Sci 23: 89–95

    Article  CAS  PubMed  Google Scholar 

  • Szekeres PG, Traynor JR (1997) Delta opioid modulation of the binding of guanosine-5’-O-(3-[35S]thio)triphosphate to NG108–15 cell membranes: characterization of agonist and inverse agonist effects. J Pharmacol Exp Ther 283: 1276–1284

    CAS  PubMed  Google Scholar 

  • Tardivel-Lacombe J, Rouleau A, H¨¦ron A, Morisset S, Pillot C, Cochois V, Schwartz JC, Arrang JM (2000) Cloning and cerebral expression of the guinea pig histamine H3 receptor: evidence for two isoforms. NeuroReport 11: 755–759

    Article  CAS  PubMed  Google Scholar 

  • Authors’ address: J.-C. Schwartz, Unit¨¦ de Neurobiologie et Pharmacologie Mol¨¦culaire (U.573) INSERM, Centre Paul Broca, 2ter rue d’Al¨¦sia, F-75014 Paris, France, e-mail: schwartz@broca.inserm.fr

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag/Wien

About this paper

Cite this paper

Schwartz, JC. et al. (2003). Therapeutic implications of constitutive activity of receptors: the example of the histamine H3 receptor. In: Neuropsychopharmacology. Journal of Neural Transmission. Supplementa, vol 64. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6020-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6020-6_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83903-4

  • Online ISBN: 978-3-7091-6020-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics