Advertisement

Therapeutic implications of constitutive activity of receptors: the example of the histamine H3 receptor

  • J-C. Schwartz
  • S. Morisset
  • A. Rouleau
  • X. Ligneau
  • F. Gbahou
  • J. Tardivel-Lacombe
  • H. Stark
  • W. Schunack
  • C. R. Ganellin
  • J. M. Arrang
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 64)

Abstract

Some G-protein-coupled receptors display constitutive activity, that is spontaneous activity in the absence of agonist: a proportion of the receptor population adopts a conformation that can bind and activate G proteins. Whereas this was mainly shown to occur with recombinant or pathologically mutated receptors, the physiological relevance of the process has remained debated. We have adressed this question in the case of the histamine H3 receptor, a presynaptic inhibitory receptor regulating histamine release in brain. Having identified a neutral antagonist and inverse agonists with variable intrinsic activity, we show that the native H3 receptor in brain displays high constitutive activity in vitro and, in vivo, controls the release of endogenous histamine. This implies that inverse agonists with high intrinsic activity should be preferred for therapeutic application as “cognitive enhancers” in several psychiatric disorders.

Keywords

Histamine Release Constitutive Activity Inverse Agonist Arachidonic Acid Release Neutral Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alewijnse AE, Smit MJ, Hoffmann M, Verzijl D, Timmerman H, Leurs R (1998) Constitutive activity and structural instability of the wild-type human H2 receptor. J Neurochem 71: 799–807PubMedCrossRefGoogle Scholar
  2. Arrang JM, Garbarg M, Schwartz JC (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302: 832–837PubMedCrossRefGoogle Scholar
  3. Arrang JM, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, Schunack W, Schwartz JC (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327: 117–123PubMedCrossRefGoogle Scholar
  4. Audinot V, Newman-Tancredi A, Millan MJ (2001) Constitutive activity at serotonin 5-HT1D receptors: detection by homologous GTPgS versus [35S]-GTPgS binding isotherms. Neuropharmacol 40: 57–64CrossRefGoogle Scholar
  5. Bakker RA, Wieland K, Timmerman H, Leurs R (2000) Constitutive activity of the histamine Hx receptor reveals inverse agonism of histamine Ht receptor antagonists. Eur J Pharmacol 387: R5–R7PubMedCrossRefGoogle Scholar
  6. Chen G, Way J, Armour S, Watson C, Queen K, Jayawickreme CK, Chen WJ, Kenakin T (2000) Use of constitutive G protein-coupled receptor activity for drug discovery. Mol Pharmacol 57: 125–134PubMedGoogle Scholar
  7. Chidiac P, Hebert TE, Valiquette M, Dennis M, Bouvier M (1994) Inverse agonism activity of ß-adrenergic antagonists. Mol Pharmacol 45: 490–499PubMedGoogle Scholar
  8. Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A (1999) Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol 55: 910–920PubMedGoogle Scholar
  9. Clapham J, Kilpatrick GJ (1994) Thioperamide, the selective histamine H3 receptor antagonist, attenuates stimulant-induced locomotor activity in the mouse. Eur J Pharmacol 259: 107–114PubMedCrossRefGoogle Scholar
  10. Clark EA, Hill SJ (1995) Differential effect of sodium ions and guanine nucleotides on the binding of thioperamide and clobenpropit to histamine H3-receptors in rat cerebral cortical membranes. Br J Pharmacol 114: 357–362PubMedCrossRefGoogle Scholar
  11. Clark EA, Hill SJ (1996) Sensitivity of histamine H3 receptor agonist-stimulated [35S]GTP gamma[S] binding to pertussis toxin. Eur J Pharmacol 296: 223–225PubMedCrossRefGoogle Scholar
  12. Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86: 7321–7325PubMedCrossRefGoogle Scholar
  13. Costa T, Ogino Y, Munson PJ, Onaran O, Rodbard D (1992) Drug efficacy at guanine nucleotide-binding regulatory protein-linked receptors: thermodynamic interpretation of negative antagonism and of receptor activity in the absence of ligand. Mol Pharmacol 41: 549–560PubMedGoogle Scholar
  14. de Ligt RAF, Kourounakis AP, Ijzerman AP (2000) Inverse agonism at G protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br J Pharmacol 130: 1–12PubMedCrossRefGoogle Scholar
  15. Garbarg M, Trung Tuong MD, Gros C, Schwartz JC (1989) Effects of histamine H3-receptor ligands on various biochemical indices of histaminergic neuron activity in rat brain. Eur J Pharmacol 164: 1–11PubMedCrossRefGoogle Scholar
  16. Griffon N, Pilon C, Sautel F, Schwartz JC, Sokoloff P (1996) Antipsychotics with inverse agonist activity at the dopamine D3 receptor. J Neural Transm 103: 1163–1175PubMedCrossRefGoogle Scholar
  17. Ito C, Onodera K, Sakurai E, Sato M, Watanabe T (1996) Effects of dopamine antagonists on neuronal histamine release in the striatum of rats subjected to acute and chronic treatments with methamphetamine. J Pharmacol Exp Ther 279: 271–276PubMedGoogle Scholar
  18. Ito C, Morisset S, Krebs MO, Oli¨¦ JP, Lôo H, Poirier MF, Lannfelt L, Schwartz JC, Arrang JM (2000) Histamine H2 receptor gene variants: lack of association with schizophrenia. Mol Psychiat 5: 159–164CrossRefGoogle Scholar
  19. Kenakin TP (1997) Pharmacological analysis of drug receptor interaction. Lippincott-Raven, New YorkGoogle Scholar
  20. Khateb A, Fort P, Pegna A, Jones BE, Muhlethaler M (1995) Cholinergic nucleus basilis neurons are excited by histamine in vitro. Neuroscience 69: 495–506PubMedCrossRefGoogle Scholar
  21. Laitinen JT, Jokinen M (1998) Guanosine 5/-(y-[35S]thio)triphosphate autoradiography allows selective detection of histamine H3 receptor-dependent G protein activation in rat brain tissue sections. J Neurochem 71: 808–816PubMedCrossRefGoogle Scholar
  22. Lefkowitz RJ, Cotecchia S, Samama P, Costa T (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 14: 303–307PubMedCrossRefGoogle Scholar
  23. Leurs R, Smit MJ, Alewijnse AE, Timmerman H (1998) Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem Sci 23: 418–422PubMedCrossRefGoogle Scholar
  24. Ligneau X, Garbarg M, Vizuete ML, Diaz J, Purand K, Stark H, Schunack W, Schwartz JC (1994) [125I]Iodoproxyfan, a new antagonist to label and visualize cerebral histamine H3 receptors. J Pharmacol Exp Ther 271: 452–459PubMedGoogle Scholar
  25. Ligneau X, Lin JS, Vanni-Mercier G, Jouvet M, Muir JL, Ganellin CR, Stark H, Elz S, Schunack W, Schwartz JC (1998) Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J Pharmacol Exp Ther 287: 658–666PubMedGoogle Scholar
  26. Lovenberg TW, Roland BL, Wilson SJ, Jiang X, Pyati J, Huvar A, Jackson MR, Erlander MG (1999) Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol 55: 1101–1107PubMedGoogle Scholar
  27. Ma H, Green RD (1992) Modulation of cardiac cyclic AMP metabolism by adenosine receptor agonists and antagonists. Mol Pharmacol 42: 831–837PubMedGoogle Scholar
  28. Milligan G, Bond R (1997) Inverse agonism and the regulation of receptor number. Trends Pharmacol Sci 18: 468–474PubMedCrossRefGoogle Scholar
  29. Milligan G, Bond R, Lee M (1995) Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol Sci 16: 10–13PubMedCrossRefGoogle Scholar
  30. Morisset S, Traiffort E, Schwartz JC (1996) Inhibition of histamine versus acetylcholine metabolism as a mechanism of tacrine activity. Eur J Pharmacol 315: R1–R2PubMedCrossRefGoogle Scholar
  31. Morisset S, Sahm UG, Traiffort E, Tardivel-Lacombe J, Arrang JM, Schwartz JC (1999) Atypical neuroleptics enhance histamine turnover in brain via 5-hydroxytryptamine2A receptor blockade. J Pharmacol Exp Ther 288: 590–596PubMedGoogle Scholar
  32. Morisset S, Rouleau A, Ligneau X, Gbahou F, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz JC, Arrang JM (2000) High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408: 860–864PubMedCrossRefGoogle Scholar
  33. Newman-Tancredi A, Conte C, Chaput C, Verriele L, Millan MJ (1997) Agonist and inverse agonist efficacy at human recombinant serotonin 5-HT1A receptors as a function of receptor: G-protein stoichiometry. Neuropharmacol 36: 451–459CrossRefGoogle Scholar
  34. Newman-Tancredi A, Audinot V, Moreira C, Verriele L, Millan MJ (2000) Inverse agonism and constitutive activity as functional correlates of serotonin h5-HT1B recep-tor/G-protein stoichiometry. Mol Pharmacol 58: 1042–1049PubMedGoogle Scholar
  35. Nilsson CL, Eriksson E (1993) Haloperidol increases prolactin release and cyclic AMP formation in vitro: inverse agonism at dopamine D2 receptors? J Neural Transm 92: 213–220CrossRefGoogle Scholar
  36. Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H, Relja M (1998) Neuronal histamine deficit in Alzheimer’s disease. Neuroscience 82: 993–997PubMedCrossRefGoogle Scholar
  37. Pauwels PJ, Tardif S, Wurch T, Colpaert FC (1997) Stimulated [35S]-GTPS binding by 5-HT1A receptor agonists in recombinant cell lines: modulation of apparent efficacy by G-protein activation state. Naunyn Schmiedebergs Arch Pharmacol 356: 551–561PubMedCrossRefGoogle Scholar
  38. Pauwels PJ, Tardif S, Wurch T, Colpaert FC (2000) Facilitation of constitutuve a2A-adrenoceptor activity by both single amino acid mutation (thr373lys) and Gao protein coexpression: evidence for inverse agonism. J Pharmacol Exp Ther 292: 654–663PubMedGoogle Scholar
  39. Pozvek G, Hilton JM, Quiza M, Houssami S, Sexton PM (1997) Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system. Mol Pharmacol 51: 658–665PubMedGoogle Scholar
  40. Prell GD, Green JP, Kaufmann CA, Khandelwal JK, Morrishow AM, Kirch DG, Linnoila M, Wyatt RJ (1995) Histamine metabolites in cerebrospinal fluid of patients with chronic schizophrenia: their relationship to levels of other aminergic transmitters and ratings of symptoms. Schizophr Res 14: 93–104PubMedCrossRefGoogle Scholar
  41. Rouleau A, Ligneau X, Tardivel-Lacombe J, Morisset S, Gbahou F, Schwartz JC, Arrang JM (2002) Histamine H3-receptor-mediated [35S]GTPy[S] binding: evidence for constitutive activity of the recombinant and native rat and human H3 receptors. Br J Pharmacol 135: 383–392PubMedCrossRefGoogle Scholar
  42. Samama P, Cotecchia S, Costa T, Lefkowitz RJ (1993) A mutation-induced activated state of the ß2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268: 4625–4636PubMedGoogle Scholar
  43. Sangalli BC (1997) Role of the central histaminergic neuronal system in the CNS toxicity of the first generation Hrantagonists. Prog Neurobiol 52: 145–157PubMedCrossRefGoogle Scholar
  44. Shryock JC, Ozeck MJ, Belardinelli L (1998) Inverse agonists and neutral antagonists of recombinant human Ax adenosine receptors stably expressed in Chinese hamster ovary cells. Mol Pharmacol 53: 886–893PubMedGoogle Scholar
  45. Strange P (2002) Mechanisms of inverse agonism at G-protein-coupled receptors. Trends Pharmacol Sci 23: 89–95PubMedCrossRefGoogle Scholar
  46. Szekeres PG, Traynor JR (1997) Delta opioid modulation of the binding of guanosine-5’-O-(3-[35S]thio)triphosphate to NG108–15 cell membranes: characterization of agonist and inverse agonist effects. J Pharmacol Exp Ther 283: 1276–1284PubMedGoogle Scholar
  47. Tardivel-Lacombe J, Rouleau A, H¨¦ron A, Morisset S, Pillot C, Cochois V, Schwartz JC, Arrang JM (2000) Cloning and cerebral expression of the guinea pig histamine H3 receptor: evidence for two isoforms. NeuroReport 11: 755–759PubMedCrossRefGoogle Scholar
  48. Authors’ address: J.-C. Schwartz, Unit¨¦ de Neurobiologie et Pharmacologie Mol¨¦culaire (U.573) INSERM, Centre Paul Broca, 2ter rue d’Al¨¦sia, F-75014 Paris, France, e-mail: schwartz@broca.inserm.frGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2003

Authors and Affiliations

  • J-C. Schwartz
    • 1
  • S. Morisset
    • 1
  • A. Rouleau
    • 1
  • X. Ligneau
    • 2
  • F. Gbahou
    • 1
  • J. Tardivel-Lacombe
    • 1
  • H. Stark
    • 3
  • W. Schunack
    • 3
  • C. R. Ganellin
    • 4
  • J. M. Arrang
    • 1
  1. 1.Unité de Neurobiologie et Pharmacologie Moléculaire (U. 573)INSERM, Centre Paul BrocaParisFrance
  2. 2.Laboratoire BioprojetParisFrance
  3. 3.Institut für PharmazieFreie Universität BerlinBerlinFederal Republic of Germany
  4. 4.University College LondonLondonUK

Personalised recommendations