Treatment of autoimmune diseases by targeted DNA vaccines encoding proinflammatory mediators

  • Nathan Karin


Conceptually, gene therapy has been used as an efficient methodology to circum-vent genetic deficiency by transfection of cDNA encoding the appropriate functional gene product. It is therefore conceivable that best candidates for this way of therapy would be genetic diseases associated with a single-gene mutation, such as X-linked agammaglobulinemia or cystic fibrosis. Paradoxically, it appears that gene therapy needs to confront similar levels of technological challenges when encountering genetic disorders, such as X-linked agammaglobulinemia or cystic fibrosis, to those required for a successful intervention in multifactorial diseases. Yet, while genetic disorders that evolve a mutation in a single gene are rare, multifactorial diseases are a major cause of illness and death in the developed countries. This has motivated scientists to explore gene therapy strategies in multifactorial disorders. The current review discusses the use of a modification of gene therapy named DNA vaccination to suggest novel ways for interfering in the regulation of the inflammatory process in T-cell-mediated auto-immune diseases, such as multiple sclerosis (MS), rheumatoid arthritis (RA), and others.


Experimental Autoimmune Encephalomyelitis Myelin Basic Protein Proinflammatory Mediator Immunol Today Experimental Autoimmune Enceph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383: 787–793.PubMedCrossRefGoogle Scholar
  2. Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124: 132–143PubMedCrossRefGoogle Scholar
  3. Barnes DA, Tse J, Kaufhold M, Owen M, Hesselgesser J, Strieter R, et al (1998) Polyclonal antibody directed against human RANTES ameliorates disease in the Lewis rat adjuvant-induced arthritis model. J Clin Invest 101: 2910–2919PubMedCrossRefGoogle Scholar
  4. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385: 640–644 Ben-Nun A, Wekerle H, Cohen IR (1981a) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11: 195–199Google Scholar
  5. Ben-Nun A, Wekerle H, Cohen IR (1981b) Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature 292: 60–61CrossRefGoogle Scholar
  6. Beraud E, Lider O, Baharav E, Reshef T, Cohen IR (1989) Vaccination against experimental autoimmune encephalomyelitis using a subencephalitogenic dose of autoimmune effector cells 1: characteristics of vaccination. J Autoimmun 2: 75–86PubMedCrossRefGoogle Scholar
  7. Boyer JD, Ugen KE, Wang B, Agadjanyan M, Gilbert L, Bagarazzi ML, et al (1997) Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med 3: 526–532PubMedCrossRefGoogle Scholar
  8. Brocke S, Gijbels K, Allegretta M, Ferber I, Piercy C, Blankenstein T, et al (1996) Treatment of experi-mental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379: 343–346PubMedCrossRefGoogle Scholar
  9. Cash E, Minty A, Ferrara P, Caput D, Fradelizi D, Rott O (1994) Macrophage-inactivating IL-13 sup-presses experimental autoimmune encephalomyelitis in rats. J Immunol 153: 4258–4267PubMedGoogle Scholar
  10. Chen Y, Kuchroo VK, Inobe J, Hafler D, Weiner HL (1994) Regulatory T-cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265: 1237–1240PubMedCrossRefGoogle Scholar
  11. Chu W, Gong X, Li Z, Takabayash K, Ouyang H, Chen Y, et al (2000) DNA-PKcs is required for activa-tion of innate immunity by immunostimulatory DNA. Cell 103: 909–918PubMedCrossRefGoogle Scholar
  12. Critchfield JM, Lenardo MJ (1995) Antigen-induced programmed T cell death as a new approach to immune therapy. Clin Immunol Immunopathol 75: 13–19PubMedCrossRefGoogle Scholar
  13. Critchfield JM, Racke MK, Zuniga PJ, Cannella B, Raine CS, Goverman J, et al (1994) T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 263: 1139–1143PubMedCrossRefGoogle Scholar
  14. Cyster JG, Hartley SB, Goodnow CC (1994) Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 371: 389–395PubMedCrossRefGoogle Scholar
  15. Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, et al (1991) IL-10 acts on the antigen presenting cell to inhibit cytokine production by Thl cells. J Immunol 146: 3444–3451PubMedGoogle Scholar
  16. Friedman A, Weiner HL (1994) Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 91: 6688–6692PubMedCrossRefGoogle Scholar
  17. Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA (1996) Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta 1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 98: 70–77PubMedCrossRefGoogle Scholar
  18. Gong JH, Ratkay LG, Waterfield JD, Clark-Lewis I (1997) An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J Exp Med 186: 131–137PubMedCrossRefGoogle Scholar
  19. Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ, et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7: 13–21PubMedCrossRefGoogle Scholar
  20. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, et al (1997) A CD4+ T-cell subsetinhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742PubMedCrossRefGoogle Scholar
  21. Healey D, Ozegbe P, Arden S, Chandler P, Hutton J, Cooke A (1995) In vivo activity and in vitro specificity of CD4+ Thl and Th2 cells derived from the spleens of diabetic NOD mice. J Clin Invest 95: 2979–2985PubMedCrossRefGoogle Scholar
  22. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740–745PubMedCrossRefGoogle Scholar
  23. Huang H, Hu-Li J, Chen H, Ben-Sasson SZ, Paul WE (1997) IL-4 and IL-13 production in differentiated T helper type 2 cells is not IL-4 dependent. J Immunol 159: 3731–3738PubMedGoogle Scholar
  24. Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectiousself. Immunol Today 13: 11–16PubMedCrossRefGoogle Scholar
  25. Kappler J, Roehm N, Marrack P (1987) T cell tolerance by clonal elemination in the thymus. Cell 49: 273–280PubMedCrossRefGoogle Scholar
  26. Karin N, Szafer F, Mitchell D, Gold DP, Steinman L (1993) Selective and nonselective stages in homing of T lymphocytes to the central nervous system during experimental allergic encephalomyelitis. J Immunol 150:4116–4124PubMedGoogle Scholar
  27. Karin N, Mitchell JD, Brocke S, Ling N, Steinman L (1994) Reversal of experimental autoimmune enceph-alomyelitis by as soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of IFN-g and TNF-a production. J Exp Med 180: 2227–2237PubMedCrossRefGoogle Scholar
  28. Karin N, Binah O, Grabie N, Mitchel DJ, Felzen B, Solomon MD, et al (1998) Short peptide based tolerogens without antigenic activity reverse autoimmunity. J Immunol 160: 5188–5149PubMedGoogle Scholar
  29. Karpus WJ, Lukacs NW, McRae BL, Strieter RM, Kunkel SL, Miller SD (1995) An important role for the chemokine macrophage inflammatory protein-1 alpha in the pathogenesis of the T cell-mediated auto-immune disease, experimental autoimmune encephalomyelitis. J Immunol 155: 5003–5010PubMedGoogle Scholar
  30. Katz JD, Benoist C, Mathis D (1995) T helper subsets in insulin dependent diabetes. Science 268: 1185–1188 Khoruts A, Miller SD, Jenkins MK (1995) Neuroantigen-specific Th2 cells are inefficient suppressors of experimental autoimmune encephalomyelitis induced by effector Thl cells. J Immunol 155: 5011–5017Google Scholar
  31. Khoury SJ, Hancock WW, Weiner HL (1992) Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglan-din E expression in the brain. J Exp Med 176: 1355–1364Google Scholar
  32. Kim JJ, Ayyavoo V, Bagarazzi ML, Chattergoon MA, Dang K, Wang B, et al (1997a) In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol 158: 816–826Google Scholar
  33. Kim JJ, Bagarazzi ML, Trivedi N, Hu Y, Kazahaya K, Wilson DM, et al (1997b) Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nat Biotechnol 15: 641–646CrossRefGoogle Scholar
  34. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, et al (1995) B7–1 and B7–2 costimulatory molecules activate differentially the Thl/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80: 707–718PubMedCrossRefGoogle Scholar
  35. Lederer JA, Perez VL, DesRoches L, Kim SM, Abbas AK, Lichtman AH (1996) Cytokine transcriptional events during helper T cell subset differentiation. J Exp Med 184: 397–106PubMedCrossRefGoogle Scholar
  36. Leonard JP, Waldburger KE, Goldman SJ (1995) Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 181: 381–386PubMedCrossRefGoogle Scholar
  37. Liblau RS, Singer SM, McDevitt HO (1995) Thl and Th2 CD4+ T-cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 16: 34–38PubMedCrossRefGoogle Scholar
  38. Lider O, Reshef T, Beraud E, Ben-Nun A, Cohen IR (1988) Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomylitis. Science 239: 181–183PubMedCrossRefGoogle Scholar
  39. Lider O, Beraud E, Reshef T, Friedman A, Cohen IR (1989) Vaccination against experimental autoimmune encephalomyelitis using a subencephalitogenic dose of autoimmune effector T cells 2: induction of a protective anti-idiotypic response. J Autoimmun 2: 87–99PubMedCrossRefGoogle Scholar
  40. Mathisen PM, Tuohy VK (1998) Gene therapy in treatment of autoimmune diseases. Immunol Today 19: 193–195CrossRefGoogle Scholar
  41. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045PubMedCrossRefGoogle Scholar
  42. Melamed D, Benschop RJ, Cambier JC, Nemazee D (1998) Developmental regulation of B lymphocyte immune tolerance compartmentalizes clonal selection from receptor selection. Cell 92: 173–182PubMedCrossRefGoogle Scholar
  43. Modlin RL (2000) A Toll for DNA vaccine. Nature 408: 659–660PubMedCrossRefGoogle Scholar
  44. Mosmann TR, Coffman RL (1989) Thl and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 9: 145–173CrossRefGoogle Scholar
  45. Mosmann T, Moore K (1991) The role of IL-10 in the crossregulation of Thl and Th2 responses. Immunol Today 12: A49–A53PubMedCrossRefGoogle Scholar
  46. O’Garra A, Murphy K (1994) Role of cytokines in determining T-lymphocyte function. Curr Opin Immunol 6: 458–66PubMedCrossRefGoogle Scholar
  47. Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, et al (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387: 611–617PubMedCrossRefGoogle Scholar
  48. Pearson CM (1956) Development of arthritis, periarthritis and periostitis in rats given adjuvants. Proc Soc Exp Biol Med 91: 95–101PubMedGoogle Scholar
  49. Racke MK, Bonomo A, Scott DE, Cannella B, Levine A, Raine CS, et al (1994) Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J Exp Med 180: 1961–1966PubMedCrossRefGoogle Scholar
  50. Ramsdell F, Fowlkes BJ (1990) Clonal deletion versus clonal anergy: the role of the thymus in inducingself tolerance. Science 248: 1342–1348PubMedCrossRefGoogle Scholar
  51. Rapoport MJ, Jaramillo A, Zipris D, Lazarus A, Serreze DV, Leiter EH, et al (1993) Interleukin-4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med 178: 87–99PubMedCrossRefGoogle Scholar
  52. Raz E, Watanabe A, Baird SM, Eisenberg RA, Parr TB, Lötz M, et al (1993) Systemic immunological effects of cytokine genes injected into skeletal muscle. Proc Natl Acad Sei USA 90: 4523–4527CrossRefGoogle Scholar
  53. Raz E, Tighe H, Sato Y, Corr M, Dudler JA, Roman M, et al (1996) Preferential induction of a Thl immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc Natl Acad Sei USA 93: 5141–5145CrossRefGoogle Scholar
  54. Riethmuller G, Rieber EP, Kiefersauer S, Prinz J, van der Lübbe P, Meiser B, et al (1992) From antilym-phocyte serum to therapeutic monoclonal antibodies: first experiences with a chimeric CD4 antibody in the treatment of autoimmune disease. Immunol Rev 129: 81–104PubMedCrossRefGoogle Scholar
  55. Rollins BJ (1997) Chemokines. Blood 90: 909–928PubMedGoogle Scholar
  56. Rott O, Fleischer B, Cash E (1994) Interleukin-10 prevents experimental allergic encephalomyelitis in rats. Eur J Immunol 24: 1434–1440PubMedCrossRefGoogle Scholar
  57. Sallusto F, Lanzavecchia A, Mackay CR (1998) Chemokines and chemokine receptors in T-cell priming and Thl/Th2- mediated responses. Immunol Today 19: 568–574PubMedCrossRefGoogle Scholar
  58. Saoudi A, Kuhn J, Huygen K, de Kozak Y, Velu T, Goldman M, et al (1993) TH2 activated cells prevent experimental autoimmune uveoretinitis, a TH1-dependent autoimmune disease. Eur J Immunol 23: 3096–3103PubMedCrossRefGoogle Scholar
  59. Sato Y, Roman M, Tighe H, Lee D, Corr M, Nguyen M, et al (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273: 352–354PubMedCrossRefGoogle Scholar
  60. Seder RA, Paul WE, Davis MM, Fazekas de St. Groth B (1992) The presence of interleukin-4 during in vitro priming determines the cytokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med 176: 1091–1098CrossRefGoogle Scholar
  61. Seder RA, Gazzinelli R, Sher A, Paul WE (1993) IL-12 acts directly on CD4+ T cells to enhance priming for IFN-y production and diminishes IL-4 inhibition of such priming. Proc Natl Acad Sei USA 90: 10188–10192CrossRefGoogle Scholar
  62. Shaw MK, Lorens JB, Dhawan A, DalCanto R, Tse HY, Tran AB, et al (1997) Local delivery of interleukin 4 by retro virus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 185: 1711–1714PubMedCrossRefGoogle Scholar
  63. Steinman L (1995) Escape from “horror autotoxicus”: pathogenesis and treatment of autoimmune disease. Cell 80: 7–10PubMedCrossRefGoogle Scholar
  64. Sun D, Ben-Nun A, Wekerle H (1988a) Regulatory circuits in autoimmunity: recruitment of counterregulatory CD8+ T cells by encephalitogenic CD4+ T line cells. Eur J Immunol 18: 1993–1999CrossRefGoogle Scholar
  65. Sun D, Qin Y, Chluba J, Epplen JT, Wekerle H (1988b) Suppression of experimentally induced auto-immune encephalomyelitis by cytolytic T-T cell interactions. Nature 332: 843–845CrossRefGoogle Scholar
  66. Swain SL, Weinberg AD, English M, Huston G (1990) IL-4 directs the development of Th2-like helper effectors. J Immunol 145: 3796–3806PubMedGoogle Scholar
  67. Tascon RE, Colston MJ, Ragno S, Stavropoulos E, Gregory D, Lowrie DB (1996) Vaccination against tuberculosis by DNA injection. Nat Med 2: 888–892PubMedCrossRefGoogle Scholar
  68. Trinchieri G (1996) Interleukin-12 and its role in the generation of Thl cells. Immunol Today 14: 335–337CrossRefGoogle Scholar
  69. Ward SG, Bacon K, Westwick J (1998) Chemokines and T lymphocytes: more than an attraction. Immunity 9: 1–11PubMedCrossRefGoogle Scholar
  70. Waisman A, Ruiz PJ, Hirschberg DL, Gelman A, Oksenberg JR, Brocke S, et al (1996) Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat Med 2: 899–905PubMedCrossRefGoogle Scholar
  71. Wildbaum G, Karin N (1999) Augmentation of natural immunity to a pro-inflammatory cytokine (TNF- alpha) by targeted DNA vaccine confers long-lasting resistance to experimental autoimmune encephalomyelitis. Gene Ther 6: 1128–1138PubMedCrossRefGoogle Scholar
  72. Wildbaum G, Youssef S, Grabie N, Karin N (1998) Prevention of experimental autoimmune encephalomyelitis by antibodies to interferon gamma inducing factor. J Immunol 161: 6368–6374PubMedGoogle Scholar
  73. Wildbaum G, Westermann J, Maor G, Karin N (2000a) A targeted DNA vaccine encoding fas igand defines its dual role in the regulation of experimental autoimmune encephalomyelitis. J Clin Invest 106: 671–679CrossRefGoogle Scholar
  74. Wildbaum G, Youssef S, Karin N (2000b) A targeted DNA vaccine augments the natural immune response to self TNF-alpha and suppresses ongoing adjuvant arthritis. J Immunol 165: 5860–5866Google Scholar
  75. Yednock TA, Cannon C, Fritz LC, Sanchez MF, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356: 63–66PubMedCrossRefGoogle Scholar
  76. Youssef S, Wildbaum G, Maor G, Lanir N, Gour-Lavie A, Grabie N, et al (1998) Long lasting protective immunity to experimental autoimmune encephalomyelitis following vaccination with naked DNA encoding C-C chemokines. J Immunol 161: 3870–3879PubMedGoogle Scholar
  77. Youssef S, Wildbaum G, Karin N (1999) Prevention of experimental autoimmune encephalomyelitis by MIP-1 alpha and MCP-1 naked DNA vaccines. J Autoimmun 13: 21–29PubMedCrossRefGoogle Scholar
  78. Youssef S, Maor G, Wildbaum G, Grabie N, Gour-Lavie A, Karin N (2000) C-C chemokine-encoding DNA vaccines enhance breakdown of tolerance to their gene products and treat ongoing adjuvant arthritis. J Clin Invest 106: 361–371PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Nathan Karin
    • 1
  1. 1.Department of Immunology, Rappaport Faculty of Medicine and Rappaport Institute for Medical SciencesTechnion Israel Institute of TechnologyHaifaIsrael

Personalised recommendations