Intravenous immunoglobulins for the treatment of childhood autoimmune diseases


Over the last years it has become evident that intravenous immunoglobulins (IVIG) administered at high doses (HDIVIG) can have beneficial effects in autoimmune diseases. Most of the clinical information was obtained in patients with variants of immune thrombocytopenia (ITP). Further, most of the attempts to clarify the mode of action of HDIVIG have been made in ITP patients. Other inflammatory disorders pathogenetically unrelated to ITP also seem to respond to HDIVIG, and several authors have studied possible explanations for these effects. Table 1 summarizes biological effects supported by results from appropriate experiments. Further details can be found in comprehensive reviews (Ballow 1997, Kazatchkine and Kaveri 2001). This review focusses on mechanisms of HDIVIG in both ITP and other disorders.


Major Histocompatibility Complex Lupus Nephritis Intravenous Immunoglobulin Idiopathic Thrombocytopenic Purpura Kawasaki Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe Y, Horiuchi A, Masazumi M, Kimura S (1994) Anti-cytokine nature of natural human immunoglobulin: one possible mechanism of the clinical effect of intravenous immunoglobulin therapy. Immunol Rev 139: 5–19PubMedCrossRefGoogle Scholar
  2. Andersson JP, Andersson UG (1990) Human intravenous immunoglobulin modulates monokine production in vitro. Immunology 71: 372–376PubMedGoogle Scholar
  3. Arend WP, Leung DYM (1994) IgG induction of IL-1 receptor antagonist production by human monocytes.Immunol Rev 139: 71–78PubMedCrossRefGoogle Scholar
  4. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281: 1305–1308PubMedCrossRefGoogle Scholar
  5. Aukrust P, Froland SS, Liabakk NB, Muller F, Nordoy I, Haug C, Espevik T (1994) Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood 84: 2136–2143PubMedGoogle Scholar
  6. Aukrust P, Muller F, Svensson M, Nordoy I, Bendtzen K, Froland SS (1999) Administration of intravenous immunoglobulin (IVIG) in vivo: down-regulatory effects on the IL-1 system. Clin Exp Immunol 115: 136–143PubMedCrossRefGoogle Scholar
  7. Ballow M (1997) Mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory diseases. J Allergy Clin Immunol 100: 151–157PubMedCrossRefGoogle Scholar
  8. Basta M, Langlois PF, Marques M, Frank MM, Fries LF (1989) High-dose intravenous immunoglobulin modifies complement-mediated clearance in vivo. Blood 74: 326–333PubMedGoogle Scholar
  9. Blaszyk R, Westhoff U, Grosse-Wilde H (1993) Soluble CD4, CD8, and HLA molecules in commercial immunoglobulin preparations. Lancet 341: 789–790CrossRefGoogle Scholar
  10. Clarkson SB, Bussel JB, Kimberly RP, Valinsky JE, Nachman RL, Unkeless JC (1986) Treatment of refractory immune thrombocytopenic purpura with an anti-Fcy-receptor antibody. N Engl J Med 314: 1236–1239PubMedCrossRefGoogle Scholar
  11. Debre M, Bonnet MC, Fridman WH, Carosella E, Philippe N, Reinert P, Vilmer E (1993) Infusion of Fey fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet 342: 945–949PubMedCrossRefGoogle Scholar
  12. Fehr J, Hofmann VKappeler U (1982) Transient reversal of thrombocytopenia by high-dose intravenous gammaglobulin. N Engl J Med 306: 1254–1258PubMedCrossRefGoogle Scholar
  13. Imbach P, Jungi TW (1983) Possible mechanisms of intravenous immunoglobulin treatment in childhood idiopathic thrombocytopenic purpura (ITP). Blut 46: 117–124PubMedCrossRefGoogle Scholar
  14. Kaveri S, Dietrich G, Hurez VKazatchkine MD (1991) Intravenous immunoglobulins (IVIG) in the treatment of autoimmune diseases. Clin Exp Immunol 86: 192–198PubMedCrossRefGoogle Scholar
  15. Kaveri S, Vassilev T, Hurez V, Lengagne R, Lefranc C, Cot S, Pouletty P, Glotz D, Kazatchkine MD (1996) Antibodies to a conserved region of HLA class I molecules, capable of modulating CD8 T-cell-mediated function, are present in pooled normal immunoglobulin for therapeutic use. J Clin Invest 97: 865–869PubMedCrossRefGoogle Scholar
  16. Kazatchkine MD, Kaveri SV (2001) Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 345: 747–755PubMedCrossRefGoogle Scholar
  17. Lin RY, Racis SP (1986) In vivo reduction of circulating Clq binding immune complexes by intravenous gammaglobulin administration. Int Arch Allergy Appl Immunol 79: 286–290PubMedCrossRefGoogle Scholar
  18. Lutz HU, Stammler P, Jelezarova E, Nater M, Spath PJ (1996) High doses of immunoglobulin G attenuate immune aggregate-mediated complement activation by enhancing physiologic cleavage of C3b in C3b(n)-IgG complexes. Blood 88: 184–193PubMedGoogle Scholar
  19. Marchalonis JJ, Kaymaz H, Dedeoglu F, Schluter SF, Yocum DE, Edmundson AB (1992). Human autoantibodies reactive with synthetic autoantigens from T-cell receptor beta chain. Proc Natl Acad Sci USA 89: 3325–3329PubMedCrossRefGoogle Scholar
  20. Moynier M, Cosso B, Brochier J, Clot J (1987) Identification of class II HLA alloantibodies in placenta-eluted gamma-globulin used for treating rheumatoid arthritis. Arthritis Rheum 30: 375–381PubMedCrossRefGoogle Scholar
  21. Mouthon L, Kaveri SV, Spalter SH, Lacroix-Desmazes S, Lefranc C, Desai R, Kazatchkine MD (1996) Mechanism of action of intravenous immune globulin in immune-mediated diseases. Clin Exp Immunol 104 Suppl 1: 3–9Google Scholar
  22. Nydegger UE, Blaser K, Hassig A (1984) Antiidiotype immunosuppression and its treatment with human immunoglobulin preparations. Vox Sang 47: 92–95PubMedCrossRefGoogle Scholar
  23. Prasad NKA, Papoff G, Zeuner A, Bonnin E, Kazatchkine MD, Ruberti G, Kaveri SV (1998) Therapeutic preparations of normal polyspecific IgG (IVIG) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIG involving the Fas apoptotic pathway. J Immunol 161: 3781–3790PubMedGoogle Scholar
  24. Puddu P, de Pita ORuffelli M, Bellucci AM, Girardelli CR, Galeazzi M, Marcolongo R (1996) Intravenous immunoglobulin therapy: modification of the immunofluorescence pattern in the skin of six patients with systemic lupus erythematosus. Arthritis Rheum 39: 704–705PubMedCrossRefGoogle Scholar
  25. Salama A, Müller-Eckhardt C, Kiefel V (1983) Effect of intravenous immunoglobulin in immune thrombocytopenia. Lancet II: 193–195CrossRefGoogle Scholar
  26. Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291: 484–486PubMedCrossRefGoogle Scholar
  27. Schiff RI (1994) Intravenous gammaglobulin 2: pharmacology, clinical uses and mechanisms of action.Pediatr Allergy Immunol 5: 127–156PubMedCrossRefGoogle Scholar
  28. Schmidt KG, Rasmussen JW, Diederichsen H, Ulrich M (1984) Release of platelets into the circulation induced by gamma globulin treatment in a case of idiopathic thrombocytopenic purpura. Blut 48: 27–31PubMedCrossRefGoogle Scholar
  29. Shimozato T, Iwata M, Kawada H, Tamura N (1991) Human immunoglobulin preparation for intravenous use induces elevation of cellular cyclic adenosine B’rS’-monophosphate levels, resulting in suppression of tumor necrosis factor alpha and interleukin-1 production. Immunology 72: 497–501PubMedGoogle Scholar
  30. Silvestris F, D’Amore 0Cafforio P, S a vino L, Dammacco F (1996) Intravenous immune globulin therapy of lupus nephritis: use of pathogenic anti-DNA-reactive IgG. Clin Exp Immunol 104 Suppl 1: 91–97Google Scholar
  31. Takei S, Arora YK, Walker SM (1993) Intravenous immunoglobulin contains specific antibodies inhibitory to activation of T cells by staphylococcal toxin superantigens. J Clin Invest 91: 602–607PubMedCrossRefGoogle Scholar
  32. Tankersley DL, Preston MS, Finlayson JS (1988) Immunoglobulin G dimer: an idiotype-anti-idiotype complex. Mol Immunol 25: 41–48PubMedCrossRefGoogle Scholar
  33. Templeton JG, Cocker JE, Crawford RJ, Forwell MA, Sandilands GP (1985) Fc gamma-receptor blocking antibodies in hyperimmune and normal pooled gammaglobulin. Lancet I: 1337CrossRefGoogle Scholar
  34. Tsubakio T, Kurata Y, Katagiri S, Kanakura Y, Tamaki T, Kuyama J, Kanayama Y, Yonezawa T, Tarui S (1983) Alteration of T cell subsets and immunoglobulin synthesis in vitro during high-doseγ-globulin therapy in patients with idiopathic thrombocytopenic purpura. Clin Exp Immunol 53: 697–702PubMedGoogle Scholar
  35. Vassilev T, Gelin C, Kaveri SV, Zilber MT, Boumsell L, Kazatchkine MD (1993) Antibodies to the CD5 molecule in normal human immunoglobulins for therapeutic use. Clin Exp Immunol 92: 369–372PubMedCrossRefGoogle Scholar
  36. Vassilev TL, Kazatchkine MD, van Huyen JPD, Mekrache M, Bonnin E, Mani JC, Lecroubier C, Korinth D, Baruch D, Schriever F, Kaveri SV (1999) Inhibition of cell adhesion by antibodies to Arg-Gly-Asp (RGD) in normal immunoglobulin for therapeutic use (intravenous immunoglobulin, IVIG). Blood 93: 3624–3631PubMedGoogle Scholar
  37. Viard I, Wehrli P, Bullani R, Schneider P, Holler N, Salomon D, Hunziker T, Saurat JH, Tschopp J, French LE (1998) Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 282: 490–493PubMedCrossRefGoogle Scholar
  38. Winiarski J, Kreuger A, Ejderhamn J, Holm G (1983) High dose intravenous IgG reduces platelet associated immunoglobulins and complement in idiopathic thrombocytopenic purpura. Scand J Hematol 31: 342–348CrossRefGoogle Scholar
  39. Yu Z, Lennon VA (1999) Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med 340: 227–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • V. Wahn
    • 1
  1. 1.Klinikum UckermarkSchwedt an der OderFederal Republic of Germany

Personalised recommendations