Plasmid-mediated delivery of antigens or biological response modifiers as means to suppress autoimmunity

  • Matthias von Herrath
  • Adrian Bot


The discovery of immunostimulatory motifs on bacterial DNA energized many laboratories, since it became evident that the associated Th1-driving ability is a positive feature, optimizing the quality of plasmid vectors as antiviral or antiallergic vaccines. In fact, the Thl adjuvant activity of unmethylated CpG motifs can be even used to circumvent the inherently low and Th2-biased responsiveness of neonates. With all the advances during the last decade that promoted the initiation of clinical trials with DNA vaccines, a limiting factor was still the low magnitude of immunity.


Experimental Autoimmune Encephalomyelitis Glutamic Acid Decarboxylase Biological Response Modifier Genetic Immunization Rheumatoid Arthritis Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boccaccio GL, Mor F, Steinman L (1999) Non-coding plasmid DNA induces IFN-gamma in vivo andsupresses autoimmune encephalomyelitis. Int Immunol 11: 289–296PubMedCrossRefGoogle Scholar
  2. Bot A, Antohi S, Bot S, Garcia-Sastre A, Bona C (1997) Induction of humoral and cellular immunity against influenza virus by immunization of newborn mice with a plasmid bearing a hemagglutinin gene. Int Immunol 9: 1641–1650PubMedCrossRefGoogle Scholar
  3. Bot A, Shearer M, Bot S, Avriette M, Garcia-Sastre A, White G, Woods C, Kennedy R, Bona C (2001) Induction of immunological memory in baboons primed with DNA vaccine as neonates. Vaccine 19: 1960–1967PubMedCrossRefGoogle Scholar
  4. Bot A, Smith D, Bot S, Hughes A, Wolfe T, Wang L, Woods C, von Herrath MG (2001) Plasmid vaccination with insulin B chain prevents autoimmune diabetes in NOD mice. J Immunol 167: 2950–2955PubMedGoogle Scholar
  5. Bronte V, Appoloni E, Ronca R, Zamboni P, Overwijk WW, Surman L, Restifo NP, Zanovello P (2000) Genetic vaccination with self tyrosinase-related protein 2 caused melanoma eradication but not vitiligo. Cancer Res 15: 253–258Google Scholar
  6. Chambers CA, Kuhns MS, Egen JG, Allison JP (2001) CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19: 565–594PubMedCrossRefGoogle Scholar
  7. Cho HJ, Takabayashi K, Cheng PM, Nguyen MD, Corr M, Tuck S, Raz E (2000) Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 18: 509–514PubMedCrossRefGoogle Scholar
  8. Coon B, An LL, Whitton JL, von Herrath MG (1999) DNA immunization to prevent autoimmune diabetis. J Clin Invest 104: 189–194PubMedCrossRefGoogle Scholar
  9. Costagliola S, Rodien P, Many M-C, Ludgate M, Vassart G (1998) Genetic immunization against the human thyrotropin receptor causes thyroiditis and allows production of monoclonal antibodies recognizing the native receptor. J Immunol 160: 1458–1465PubMedGoogle Scholar
  10. Genain CP, Abel K, Bemar N, Villinger F, Rosenberg DP, Linington C, Raine CS, Hauser SL (1996) Late complications of immune deviation therapy in a non-human primate. Science 274: 2054–2057PubMedCrossRefGoogle Scholar
  11. Haiti A, Kiesslich J, Weiss R, Bernhaupt A, Mostbock S, Scheiblhofer M, Ebner C, Ferreira F, Thalhamer J (1999) Immune responses after immunization with plasmid DNA encoding Bet v 1, the major allergen of birch pollen. J Allergy Clin Immunol 103: 107–113CrossRefGoogle Scholar
  12. Hsu CH, Chua KY, Tao MH, Lai YL, Wu HD, Huang SK, Hsieh KH (1996) Immunoprophylaxis of allergen-induced immunoglobulin E synthesis and airway hyperresponsiveness in vivo by genetic immunization. Nat Med 2: 540–544PubMedCrossRefGoogle Scholar
  13. Kline JN, Waldschmidt TJ, Businga TR, Lemish JE, Weinstock JV, Thome PS, Krieg AM (1998) Modulation of airway inflamation by CpG oligodeoxynucleotides in a murine model of asthma. J Immunol 160: 2555–2559PubMedGoogle Scholar
  14. Krieg AM (1996) Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends Microbiol 4: 73–76PubMedCrossRefGoogle Scholar
  15. Krieg AM, Yi AK, Schorr J, Davis HL (1998) The role of CpG dinucleotides in DNA vaccines. Trends Microbiol 6: 23–27PubMedCrossRefGoogle Scholar
  16. Lobell A, Weissert R, Storch MK, Svanholm C, de Graaf KL, Lassmann H, Andersson R, Olsson T, Wigzell H (1998) Vaccination with DNA encoding an immunodominant myelin basic protein peptide targeted to Fc of immunoglobulin G suppresses experimental autoimmune encephalomyelitis. J Exp Med 187: 1543–1548PubMedCrossRefGoogle Scholar
  17. Lobell A, Weissert R, Eltayeb S, Svanholm C, Olsson T, Wigzell H (1999) Presence of CpG DNA and the local cytokine milieu determine the efficacy of supressive DNA vaccination in experimental autoimmune encephalomyelitis. J Immunol 163: 4754–4762PubMedGoogle Scholar
  18. Quintana FJ, Rotem A, Carmi P, Cohen IR (2000) Vaccination with empty plasmid DNA or CpG oligodeoxynucleotides against diabetes in nonobese diabetic mice: modulation of spontaneous heat shock protein autoimmunity. J Immunol 165: 6148–6155PubMedGoogle Scholar
  19. Ragno S, Colston MJ, Lowrie DB, Winrow VR, Blake DR, Tascon R (1997) Protection of rats from adjuvant arthritis by immunization with naked DNA encoding for mycobacterial heat shock protein 65. Arthritis Rheum 40: 277–283PubMedCrossRefGoogle Scholar
  20. Ramshaw IA, Fordham SA, Bernard CC, Maguire D, Cowden WB, Willenborg DO (1997) DNA vaccines for the treatment of autoimmune diseases. Immunol Cell Biol 75: 409–413PubMedCrossRefGoogle Scholar
  21. Raz E, Dudler J, Lotz M, Baird SM, Berry CC, Eisenberg RA, Carson DA (1995) Modulation of diseaseactivity in murine systemic lupus erythematosus by cytokine gene delivery. Lupus 4: 286–292PubMedCrossRefGoogle Scholar
  22. Raz E, Tighe H, Sato Y, Corr M, Dudler JA, Roman M, Swain SL, Spiegelberg HL, Carson DA (1996) Preferential induction of a Thl immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc Natl Acad Sci USA 93: 5141–5145PubMedCrossRefGoogle Scholar
  23. Ruiz PJ, Garren H, Ruiz IU, Hirschberg DL, Nguyen LV, Karpuj MV, Cooper MT, Mitchell DJ, Fathman CG, Steinman L (1999) Suppressive immunization with DNA encoding a self-peptide prevents autoimmune disease: modulation of T cell costimulation. J Immunol 162: 3336–3341PubMedGoogle Scholar
  24. Segal BM, Klinman DM, Shevach EM (1997) Microbial products induce autoimmune disease by an IL-12-dependent pathway. J Immunol 158: 5087–5090PubMedGoogle Scholar
  25. Selmaj K, Kowal C, Walczak A, Nowicka J, Raine CS (2000) Naked DNA vaccination differentially modulates autoimmune processes in experimental autoimmune encephalomyelitis. J Neuroimmunol 111: 34–44PubMedCrossRefGoogle Scholar
  26. Stephens LA, Mottet C, Mason D, Powrie F (2001) Human CD4(+)CD25(+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol 31: 1247–1254PubMedCrossRefGoogle Scholar
  27. Sutterwala FS, Noel GJ, Salgame P, Mosser DM (1998) Reversal of proinflammatory responses by ligating the macrophage Fey receptor type I. J Exp Med 188: 217–222PubMedCrossRefGoogle Scholar
  28. Tighe H, Corr M, Roman M, Raz E (1998) Gene vaccination: plasmid DNA is more than just a blueprint. Immunol Today 19: 89–97PubMedCrossRefGoogle Scholar
  29. Tisch R, Wang B, Weaver DJ, Liu B, Bui T, Arthos J, Serreze DV (2001) Antigen-specific mediated suppression of beta cell autoimmunity by plasmid DNA vaccination. J Immunol 166: 2122–2132PubMedGoogle Scholar
  30. Tolley ND, Tsunoda I, Fujinami RS (1999) DNA vaccination against Theiler’s murine encephalomyelitis virus leads to alterations in demyelinating disease. J Virol 73: 993–1000PubMedGoogle Scholar
  31. Tsunoda I, Kuang LQ, Tolley ND, Whitton JL, Fujinami RS (1998) Enhancement of experimental allergic encephalomyelitis (EAE) by immunization with myelin proteolipid protein (PLP) plasmid DNA. J Neuro-pathol Exp Neurol 57: 758–767Google Scholar
  32. Tsunoda I, Tolley ND, Theil DJ, Whitton JL, Kobayashi H, Fujinami K (1999) Exacerbation of viral and autoimmune animal models for multiple sclerosis by bacterial DNA. Brain Pathol 9: 481–493PubMedCrossRefGoogle Scholar
  33. Weissert R, Lobell A, de Graaf KL, Eltayeb SY, Andersson R, Olsson M, Wigzell H (2000) Protective DNA vaccination against organ-specific autoimmunity is highly specific and discriminates between single amino acid substitutions in the peptide autoantigen. Proc Natl Acad Sci USA 97: 1689–1694PubMedCrossRefGoogle Scholar
  34. Wiest-Landenburger U, Fortnagel A, Richter W, Reimann J, Boehm B (1998) DNA vaccination with glutamic acid decarboxylase (GAD) generates strong humoral immune response in BALB/c, C57BL/6 and in diabetes prone NOD mice. Horm Metab Res 30: 605–609CrossRefGoogle Scholar
  35. Wildbaum G, Karin N (1999) Augumentation of natural immunity to a pro-inflamatory cytokine (TNF-alpha) by targeted DNA vaccine confers long-lasting resistance to experimental autoimmune encephalomyelitis. Gene Ther 6: 1128–1138PubMedCrossRefGoogle Scholar
  36. Wildbaum G, Youssef S, Karin N (2000a) A targeted DNA vaccine augments the natural immune response against TNF-alpha and suppresses ongoing adjuvant arthritis. J Immunol 165: 5860–5866Google Scholar
  37. Wildbaum G, Westermann J, Maor G, Karin N (2000b) A targeted DNA vaccine encoding Fas ligand definesits dual role in the regulation of experimental autoimmune encephalitis. J Clin Invest 106: 671–679CrossRefGoogle Scholar
  38. Youssef S, Wildbaum G, Maor G, Lanir N, Gour-Lavie A, Grabie N, Karin N (1998) Long lasting protective immunity to experimental autoimmune encephalomyelitis following vaccination with naked DNA encoding C-C chemokines. J Immunol 161: 3870–3879CrossRefGoogle Scholar
  39. Youssef S, Maor G, Wildbaum G, Grabie N, Gour-Lavie A, Karin N (2000) C-C chemokine encoding DNA vaccines enhance breakdown of tolerance to their gene products and treat ongoing adjuvant arthritis. J Clin Invest 106: 361–371PubMedCrossRefGoogle Scholar
  40. Xiang ZQ, Erd HC (1995) Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 2: 129–135PubMedCrossRefGoogle Scholar
  41. Zaghouani H, Steinman R, Nonacs R, Shah H, Gerhard W, Bona C (1993) Presentation of a viral T cell epitope expressed in the CDR3 region of a self immunoglobulin molecule. Science 259: 224–227PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Matthias von Herrath
    • 1
  • Adrian Bot
    • 2
    • 3
  1. 1.Department of Neuropharmacology and ImmunologyScripps Research Institute, La JollaSan DiegoUSA
  2. 2.Department of ImmunologyAlliance Pharmaceutical Corp.San DiegoUSA
  3. 3.Department of ImmunologyAlliance Pharmaceutical Corp.San DiegoUSA

Personalised recommendations