Persistence of maternal and fetal cells in autoimmune diseases

  • Anne M. Stevens
  • J. Lee Nelson
  • Nathalie Lambert


It has long been known that maternal proteins are transported to the fetus during pregnancy. Maternal antibodies provide immunity for the newborn infant during the first six months of life. Only recently with the advent of ultrasensitive DNA detection techniques has it been established that there is bidirectional traffic of not only antibodies but also cells. The term “chimerism” is used when one individual harbors cells from another individual; “microchimerism” refers to low levels of chimerism. When cells traffic between fetus and mother during pregnancy and persist, maternal and fetal microchimerism results. Chronic graft-versus-host disease (GVHD) is a condition of chimerism that shares clinical characteristics with some autoimmune diseases. Human leukocyte antigen (HLA) class II genes are known to be important both in autoimmune disease and in GVHD. When considered together, these observations led to the hypothesis that microchimerism and HLA genes of host and nonhost cells are involved in autoimmune disease. Sources of nonhost cells include cells transferred during pregnancy (maternal and fetal), a twin or unrecognized lost twin, or a blood transfusion. By this hypothesis, women who have been pregnant have an increased risk of autoimmune disease because they have two sources of microchimerism: maternal and fetal. Studies of systemic sclerosis, primary biliary cirrhosis, Sjögren’s syndrome, pruritic eruption of pregnancy, myositis, neonatal lupus, and thyroid disease have both lent support and raised doubts about the role of microchimerism in autoimmune disease.


Systemic Lupus Erythematosus Human Leukocyte Antigen Primary Biliary Cirrhosis Human Leukocyte Antigen Class Fetal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aractingi S, Berkane N, Bertheau P, et al (1998) Fetal DNA in skin of polymorphic eruptions of pregnancy. Lancet 352: 1898–1901PubMedCrossRefGoogle Scholar
  2. Arnett FC, Howard RF, Tan F, et al (1996) Increased prevalence of systemic sclerosis in a Native American tribe in Oklahoma: association with an Amerindian HLA haplotype. Arthritis Rheum 39: 1362–1370PubMedCrossRefGoogle Scholar
  3. Artlett CM, Welsh KI, Black CM, Jimenez SA (1997) Fetal-maternal HLA compatibility confers susceptibility to systemic sclerosis. Immunogenetics 47: 17–22PubMedCrossRefGoogle Scholar
  4. Artlett CM, Smith JB, Jimenez SA (1998) Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 338: 1186–1191PubMedCrossRefGoogle Scholar
  5. Artlett CM, Ramos R, Jiminez SA, Patterson K, Miller FW, Rider LG (2000a) Chimeric cells of maternal origin in juvenile idiopathic inflammatory myopathies. Lancet 356: 2155–2156CrossRefGoogle Scholar
  6. Artlett CM, Cox LA, Jimenez SA (2000b) Detection of cellular microchimerism of male or female origin in systemic sclerosis patients by polymerase chain reaction analysis of HLA-Cw antigens. Arthritis Rheum 43: 1062–1067CrossRefGoogle Scholar
  7. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 93: 705–708PubMedCrossRefGoogle Scholar
  8. Bianchi DW, Farina A, Weber W, et al (2001) Significant fetal-maternal hemorrhage after termination of pregnancy: implications for development of fetal cell microchimerism. Am J Obstet Gynecol 184: 703–706PubMedCrossRefGoogle Scholar
  9. Christner PJ, Artlett CM, Conway RF, Jimenez SA (2000) Increased numbers of microchimeric cells of fetal origin are associated with dermal fibrosis in mice following injection of vinyl chloride. Arthritis Rheum 43: 2598–2605PubMedCrossRefGoogle Scholar
  10. Corpechot C, Barbu V, Chazouilleres O, Poupon R (2000) Fetal microchimerism in primary biliary cirrhosis. J Hepatol 33: 696–700PubMedCrossRefGoogle Scholar
  11. De Moor G, De Bock G, Noens L, De Bie S (1988) A new case of human chimerism detected after pregnancy: 46, XY karyotype in the lymphocytes of a woman. Acta Clin Belg 43: 231–235PubMedGoogle Scholar
  12. Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL (1999) Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood 93: 2033–2037PubMedGoogle Scholar
  13. Fanning PA, Jonsson JR, Clouston AD, et al (2000) Detection of male DNA in the liver of female patients with primary biliary cirrhosis. J Hepatol 33: 690–695PubMedCrossRefGoogle Scholar
  14. Gelpi C, Martinez MA, Vidal S, TargoffIN, Rodriguez-Sanchez JL (1994) Autoantibodies to a transfer RNA- associated protein in a murine model of chronic graft versus host disease. J Immunol 152: 1989–1999PubMedGoogle Scholar
  15. Gleichmann E, Van Elven EH, Van der Veen JP (1982) A systemic lupus erythematosus (SLE)-like disease in mice induced by abnormal T-B cell cooperation: preferential formation of autoantibodies characteristic of SLE. Eur J Immunol 12: 152–159PubMedCrossRefGoogle Scholar
  16. Hall JM, Lingenfelter P, Adams SL, Lasser D, Hansen JA, Bean MA (1995) Detection of maternal cells in human umbilical cord blood using fluorescence in situ hybridization. Blood 86: 2829–2832PubMedGoogle Scholar
  17. Ichikawa N, Kotake S, Hakoda M, Kamatani N (2001) Microchimerism in Japanese patients with systemic sclerosis. Arthritis Rheum 44: 1226–1228PubMedCrossRefGoogle Scholar
  18. Invernizzi P, De Andreis C, Sirchia SM, et al (2000) Blood fetal microchimerism in primary biliary cirrhosis. Clin Exp Immunol 122: 418–422PubMedCrossRefGoogle Scholar
  19. Johnson KL, Nelson JL, Furst DE, et al (2001) Fetal cell microchimerism in tissue from multiple sites in women with systemic sclerosis. Arthritis Rheum 44: 1848–1854PubMedCrossRefGoogle Scholar
  20. Klintschar M, Schwaiger P, Mannweiler S, Regauer S, Kleiber M (2001) Evidence of fetal microchimerism in Hashimoto’s thyroiditis. J Clin Endocrinol Metab 86: 2494–2498PubMedCrossRefGoogle Scholar
  21. Lambe M, Hsieh C, Trichopoulos D, Ekbom A, Pavia M, Adami HO (1994) Transient increase in the risk of breast cancer after giving birth. N Engl J Med 331: 5–9PubMedCrossRefGoogle Scholar
  22. Lambert NC, Distler O, Muller-Ladner U,Tylee TS, Furst DE, Nelson JL (2000a) HLA-DQA1 *0501 is associated with diffuse systemic sclerosis in Caucasian men. Arthritis Rheum 43: 2005–2010CrossRefGoogle Scholar
  23. Lambert NC, Evans PC, Hashizumi TL, et al (2000b) Cutting edge: persistent fetal microchimerism in T lymphocytes is associated with HLA-DQ A1*0501: implications in autoimmunity. J Immunol 164: 5545–5548Google Scholar
  24. Lee TH, Paglieroni T, Ohto H, Holland PV, Busch MP (1999) Survival of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term microchimerism in severe trauma patients. Blood 93:3127–3139PubMedGoogle Scholar
  25. Lo YM, Lo ES, Watson N, et al (1996) Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood 88: 4390–4395PubMedGoogle Scholar
  26. Lo YM, Lau TK, Chan LY, Leung TN, Chang AM (2000) Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem 46: 1301–1309PubMedGoogle Scholar
  27. Maloney S, Smith A, Furst DE, et al (1999) Microchimerism of maternal origin persists into adult life. J Clin Invest 104: 41–47PubMedCrossRefGoogle Scholar
  28. McMilin KD, Johnson RL (1993) HLA homozygosity and the risk of related-donor transfusion-associated graft-versus-host disease. Transfus Med Rev 7: 37–41PubMedCrossRefGoogle Scholar
  29. Miyashita Y, Ono M, Ueki H, Kurasawa K (2000) Y chromosome microchimerism in rheumatic autoimmune disease. Ann Rheum Dis 59: 655–656PubMedCrossRefGoogle Scholar
  30. Morrow J, Nelson J, Watts R, Isenberg D (1999) Autoimmune rheumatic disease. Oxford University Press, OxfordGoogle Scholar
  31. Mullinax F (1993) Chimerism and autoimmunity. In: Proceedings of the Fourth ASEAN Congress of Rheumatology, Singapore, October 31 to November 4, 1993, pp 39–40Google Scholar
  32. Murata H, Nakauchi H, Sumida T (1999) Microchimerism in Japanese women patients with systemic sclerosis. Lancet 354: 220–00PubMedCrossRefGoogle Scholar
  33. Nelson JL, Hughes KA, Smith AG, Nisperos BB, Branchaud AM, Hansen JA (1993) Maternal-fetal disparity in HLA class II alloantigens and the pregnancy-induced amelioration of rheumatoid arthritis. N Engl J Med 329: 466–471CrossRefGoogle Scholar
  34. Nelson JL, Furst DE, Maloney S, et al (1998) Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351: 559–562CrossRefGoogle Scholar
  35. Nelson JL (1996) Maternal-fetal immunology and autoimmune disease: is some autoimmune disease auto-alloimmune or allo-autoimmune? Arthritis Rheum 39: 191–194PubMedCrossRefGoogle Scholar
  36. Petit T, Gluckman E, Carosella E, Brossard Y, Brison O,Socie G (1995) A highly sensitive polymerase chain reaction method reveals the ubiquitous presence of maternal cells in human umbilical cord blood. Exp Hematol 23: 1601–1605PubMedGoogle Scholar
  37. Petit T, Dommergues M, Socie G, Dumez Y, Gluckman E, Brison O (1997) Detection of maternal cells in human fetal blood during the third trimester of pregnancy using allele-specific PCR amplification. Br J Haematol 98: 767–771PubMedCrossRefGoogle Scholar
  38. Pollack MS, Kirkpatrick D, Kapoor N, Dupont B, O’Reilly RJ (1982) Identification by HLA typing of intrauterine-derived maternal T cells in four patients with severe combined immunodeficiency. N Engl J Med 307: 662–666PubMedCrossRefGoogle Scholar
  39. Portanova JP, Ebling FM, Hammond WS, Hahn BH, Kotzin BL (1988) Allogeneic MHC antigen requirements for lupus-like autoantibody production and nephritis in murine graft-vs-host disease. J Immunol 141: 3370–3376PubMedGoogle Scholar
  40. Reed A, Picnorell YJ, Harwood A, Kredich D (2000) Chimerism in children with juvenile dermatomyositis. Lancet 356: 2156–2157PubMedCrossRefGoogle Scholar
  41. Rouquette-Gally AM, Boyeldieu D, Gluckman E, Abuaf N, Combrisson A (1987) Autoimmunity in 28 patients after allogeneic bone marrow transplantation: comparison with Sjogren syndrome and scleroderma. Br J Haematol 66: 4547Google Scholar
  42. Rubbia-Brandt L, Philippeaux MM, Chavez S, Mentha G, Borisch B, Hadengue A (1999) FISH for Y chromosome in women with primary biliary cirrhosis: lack of evidence for leukocyte microchimerism. Hepatology 30: 821–822PubMedCrossRefGoogle Scholar
  43. Srivatsa B, Srivatsa S, Johnson KL, Samura O, Lee SL, Bianchi DW (2001) Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. Lancet 358: 2034–2038PubMedCrossRefGoogle Scholar
  44. Stevens AM, Hermes H, Nelson JL (2001a) Maternal microchimerism in neonatal lupus erythematosus(NLE) [abstract]. Arthritis Rheum 44: S160CrossRefGoogle Scholar
  45. Stevens AM, Hermes H, Tylee T, Nelson JL (2001b) Maternal microchimerism in the human thymus[abstract]. Arthritis Rheum 44: S340CrossRefGoogle Scholar
  46. Tanaka A, Lindor K, Ansari A, Gershwin ME (2000) Fetal microchimerisms in the mother: immunologic implications. Liver Transpl 6: 138–143PubMedGoogle Scholar
  47. Thomas MR, Williamson R, Craft I, Yazdani N, Rodeck CH (1994) Y chromosome sequence DNA amplified from peripheral blood of women in early pregnancy [letter]. Lancet 343: 413–414PubMedCrossRefGoogle Scholar
  48. Toda I,Kuwana M, Tsubota K, Kawakami Y (2001) Lack of evidence for an increased microchimerism in the circulation of patients with Sjogren’s syndrome. Ann Rheum Dis 60: 248–253PubMedCrossRefGoogle Scholar
  49. Vietor HE (1998) Immunomodulation induced by intrauterine transfusions. Eur J Obstet Gynecol Reprod Biol 78: 33–35PubMedCrossRefGoogle Scholar
  50. Vietor HE, Hamel BC, van Bree SP, et al (2000) Immunological tolerance in an HLA non-identical chimeric twin. Hum Immunol 61: 190–192PubMedCrossRefGoogle Scholar
  51. Wirt DP, Brooks EG, Vaidya S, Klimpel GR, Waldmann TA, Goldblum RM (1989) Novel T-lymphocyte population in combined immunodeficiency with features of graft-versus-host disease. N Engl J Med 321: 370–374PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Anne M. Stevens
    • 1
    • 2
    • 4
  • J. Lee Nelson
    • 1
    • 3
  • Nathalie Lambert
    • 1
  1. 1.Program in Human ImmunogeneticsFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Division of Rheumatology, Immunology, and Infectious Diseases, Department of PediatricsUniversity of Washington, Children’s Hospital and Regional Medical CenterSeattleUSA
  3. 3.Division of Rheumatology, Department of MedicineUniversity of WashingtonSeattleUSA
  4. 4.Immunogenetics D2-100Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations