Some Recent Work in Regge Theory: Regge Cuts, The Absorption Model and Glauber Theory

  • P. V. Landshoff
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 7/1970)


It is assumed that scattering amplitudes possess Regge poles, and an analysis is given of the Regge cuts that are then required by unitarity.This is done using perturbation theory. A derivation is given of the cut structure that arises from the absorption model and from the Glauber model of deuteron scattering. The validity of this derivation, and of these models, is then examined.


Regge Pole Mass Shell Absorption Model Feynman Graph Asymptotic Behav 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The Analytic S-Matrix, Cambridge Univ Press 1966.Google Scholar
  2. 2.
    H. Cheng and T. T. Wu, Phys. Rev. Letters 22, 666 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    V. N. Gribov, Soviet Phys. JETP 26, 414 (1968). A concise account of the Gribov technique is to be found in section 2 of reference 4 .ADSGoogle Scholar
  4. 4.
    P. V. Landshoff and J. C. Polkinghorne, Phys. Rev. 181, 1989 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    H. Rothe, Phys. Rev. 159, 1471 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    S. M. Negrine, Nuovo Cim. 43A, 1101 (1969);ADSCrossRefMathSciNetGoogle Scholar
  7. 6.
    C. I. Tan and J. M. Wang, Phys. Rev. Letters 22, 1152 (1969).ADSCrossRefGoogle Scholar
  8. 7.
    V. N. Gribov and A. A. Migdal, Soviet Journal of Nuclear Physics 8, 581 (1969).Google Scholar
  9. 8.
    A. B. Kaidalov and B. M. Karnakov, Phys. Lett. 29B, 372 and 376 (1969).ADSGoogle Scholar
  10. 9.
    P. V. Landshoff, Phys. Rev. 177, 2531 (1969)ADSCrossRefGoogle Scholar
  11. 9a.
    V. N. Gribov, Zh. Eksp. Teor. Fiz. 56, 892 (1969).Google Scholar
  12. 10.
    E. S. Abers, H. Burkhardt, V. L. Teplitz, and C. Wilkin, Nuovo Cim. 42A, 365 (1966).ADSCrossRefGoogle Scholar
  13. 10a.
    a. L. Bertocchi and A. Capella, Nuovo Cim. 51A, 369 (1967).ADSCrossRefGoogle Scholar
  14. 11.
    Related conclusions have been reached in potential theory by D. R. Harrington, Phys. Rev. 184, 1745 (1969).ADSCrossRefGoogle Scholar
  15. 12.
    J. Bronzan and C. Jones, Phys. Rev. 160, 1494 (1967).ADSCrossRefGoogle Scholar
  16. 13.
    J. C. Polkinghorne, Nuclear Physics B6, 441 (1969)ADSGoogle Scholar
  17. 13a.
    D. I. Olive and J. C. Polkinghorne, Phys. Rev. 171, 1475 (1968).ADSCrossRefGoogle Scholar
  18. 14.
    An expression of this form has been verified in a simple model by A. R. Swift, J. Math. Phys. 6 ,1472 (1965); see also V.N.Gribov, ref. 3 .ADSCrossRefGoogle Scholar
  19. 15.
    P. V. Landshoff, Nuclear Physics B15, 284 (1970).ADSGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • P. V. Landshoff
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeEngland

Personalised recommendations