Some Exact Results on π π Scattering

  • A. Martin
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 7/1970)


In present day physics, at least in the field of strongly interacting particles the product of the mathematical rigor times the predictive power or the ability to produce measurable numbers, is approximately a constant. So the few people who want to obtain physical results, by purely deductive means, starting from postulates which are not obviously inconsistent with one another have a very hard time. One may be sometimes tempted to think that they are not really making physics progress. On the other hand, we see the flexibility of certain “physical” theories, when new unexpected experimental facts come in, which shows that these theories are not as predictive as they looked. So it might not be too bad if a minority of theoreticians tries to remain pure, with, in mind, the purpose of helping those who try phenomenological attempts, by producing some limitations which any good theory should fulfill.


Dispersion Relation Partial Wave Partial Wave Amplitude Absorptive Part Partial Wave Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. F. Chew and S. Mandelstarn, Phys. Rev. 119, 467 (1960).MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    H. Lehmann, Nuovo Cimento 10, 579 (1958).CrossRefMATHGoogle Scholar
  3. 3.
    V. Glaser, in Problems of Theoretical Physics, p.68 (Essays dedicated to N.N.Bogoliubov on his 60th birthday) , publ. Nauka, Moscow (1969); see also: Comptes Rendus de la RCP No. 25, Vol. 7, Department de Mathématiques de l’Université de Strasbourg (1969).Google Scholar
  4. 4.
    H. Epstein, V. Glaser, and A Martin, Communications in Mathematical Physics 13, 257 (1969).MathSciNetADSCrossRefMATHGoogle Scholar
  5. 4a.
    K. Hepp, Helv. Phys. Acta 32, 639 (1964)MathSciNetGoogle Scholar
  6. 5.
    A. Martin, Nuovo Cimento 42, 930 (1966); 44, 1219 (1966);ADSCrossRefMATHGoogle Scholar
  7. 5a.
    A. Martin, Proceedings of the 1967, Conference on Particles and Fields, Interscience Publ., New York (1967), p. 244.Google Scholar
  8. 6.
    M. Froissart, Phys. Rev. 123, 1053 (1961);ADSCrossRefGoogle Scholar
  9. 6a.
    O. W. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961);MathSciNetADSCrossRefGoogle Scholar
  10. 6b.
    A. Martin, Phys. Rev. 129, 1432 (1963).MathSciNetADSCrossRefMATHGoogle Scholar
  11. 7.
    F. Yndurain, CERN preprint TH. 1122 (1970).Google Scholar
  12. 8.
    A. Martin, High Energy Physics and Elementary Particles, IAEA, Vienna (1965), p. 155.Google Scholar
  13. 9.
    V. F. Müller, Nuovo Cimento 42, 158 (1966).CrossRefGoogle Scholar
  14. 10.
    B. Bonnier and R. Vinh Mau, Phys. Rev. 165, 1923 (1968);ADSCrossRefGoogle Scholar
  15. 10a.
    A. K. Common, Nuovo Cimento 63A, 451 (1969).MathSciNetADSGoogle Scholar
  16. 11.
    A. K. Common, unpublished.Google Scholar
  17. 12.
    A. Donnachie, Nuovo Cimento 53A, 933 (1967).ADSGoogle Scholar
  18. 13.
    A. P. Balachandran and J. Nuyts, Phys. Rev. 172, 1821 (1968).ADSCrossRefGoogle Scholar
  19. 14.
    R. Roskies, Phys. Letters 30B, 42 (1969) ; Nuovo Cim. 65A, 467 (1970);.ADSGoogle Scholar
  20. 15.
    J. L. Basdevant, G. Cohen-Tannoudji and A. Morel, Nuovo Cimento 64, 585 (1969).ADSCrossRefGoogle Scholar
  21. 16.
    R. Roskies, Yale University preprint (1969).Google Scholar
  22. 17.
    O. Piguet and G. Wanders, University of Lausanne preprint (1969).Google Scholar
  23. 18.
    A. Martin, Nuovo Cimento 63A, 167 (1969).ADSGoogle Scholar
  24. 19.
    A. Martin, Nuovo Cimento 58A, 303 (1968).ADSGoogle Scholar
  25. 20.
    G. Auberson, Service de Physique théorique Saclay preprint (1970).Google Scholar
  26. 21.
    A. K. Common, Nuovo Cimento 53A, 946 (1968).ADSGoogle Scholar
  27. 22.
    G. Auberson, O. Brander, G. Mahoux, and A. Martin, Nuovo Cimento 65A, 743 (1970).ADSGoogle Scholar
  28. 23.
    R. G. Levers and D. Schwela, University of Bonn preprint 2–73 (1970).Google Scholar
  29. 24.
    O. Piguet and G. Wanders, Nuovo Cimento 57A, 417 (1968);Google Scholar
  30. 24a.
    G. Auberson, O. Piguet and G. Wanders, Phys. Letters 28B, 41 (1968).ADSGoogle Scholar
  31. 25.
    B. Bonnier, Nuclear Phys. B10, 467 (1969); and thesis to be published.ADSGoogle Scholar
  32. 26.
    J. C. Le Guillou, A. Morel, and H. Navelet, in preparation.Google Scholar
  33. 27.
    G. Wanders, Helv. Phys. Acta 39, 228 (1966).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • A. Martin
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations