# Structure Effects in Weak Interactions

• H. Pietschmann
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 7/1970)

## Abstract

The standard way to formulate the theory (or model?) of weak, interactions is to write down the “effective Lagrangian”
$${{\rm{L}}_{\rm{w}}}\,{\rm{ = }}\,{{\rm{G}} \over {\sqrt {\rm{2}} }}\,{\rm{J}}_{\rm{\lambda }}^{\rm{\dag }}{\rm{(x)}}\,{{\rm{J}}^{\rm{\lambda }}}{\rm{(x)}}$$
(1)
with
$${{\rm{J}}_{\rm{\lambda }}}{\rm{(x)}}\,{\rm{ = }}\,{\ell _{\rm{\lambda }}}{\rm{(x)}}\,{\rm{ + }}\,{\rm{cos\theta }}\,\,{\rm{j}}_{\rm{\lambda }}^{{\rm{(\pi )}}}\,{\rm{(x)}}\,{\rm{ + }}\,{\rm{sin\theta }}\,{\rm{j}}_{\rm{\lambda }}^{\left( {\rm{K}} \right)}\,{\rm{(x)}}$$
(2)
Here, θ is the Cabibbo angle and j λ (i) (x) are the hyper charge conserving and hypercharge changing hadron currents. The lepton current ℓλ(x) is given by [1]
$${\ell _{\rm{\lambda }}}{\rm{(x)}}\,{\rm{ = }}\,\sum\limits_\ell {\,\mathop {{\psi _\ell }}\limits^ - {\rm{(x)}}} \,\,{{\rm{\gamma }}_{\rm{\lambda }}}\,{\rm{(1 + }}{{\rm{\gamma }}_{\rm{5}}}{\rm{)}}\,\,{{\rm{\psi }}_{{{\rm{\nu }}_\ell }}}\,{\rm{(x)}}\,\,\,\,\,\,\ell {\rm{ = e,\mu }}$$
(3)

## Keywords

Structure Function Structure Tensor Lepton Mass Cabibbo Angle Muon Polarization
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References and Footnotes

1. 1.
The notation is that of J. Bjorken and S. Drell, Relativistic Quantum Fields, McGraw-Hill 1965, except for a change of sign in 5.Google Scholar
2. 2.
H. Pietschmann, Springer Tracts in Modern Phys. 52, 193 (1970). This paper will be referred to as I.
3. 3.
T. D. Lee and C. N. Yang, Phys. Rev. 108, 1611 (1957).
4. 4.
P. Kristenson and C. Moller, Dan.Mat.Fys.Medd.27/7 (1952) .Google Scholar
5. 5.
See for example C. Rubbia in “The growth points in physics”, Proceedings of the EPS Conference in Florence, April 1969.Google Scholar
6. 6.
H. Pietschmann and H. Stremnitzer, to be published.Google Scholar
7. 7.
H. Pietschmann and J. Nilsson, Phys. Rev. 142, 1173 (1966) .
8. 8.
This is why we call it a “radical point of view” be-cause repeating historical mistakes seems to be the defining quality of radicalism.Google Scholar