Advertisement

The Construction of Physical States in Quantum Field Theory

  • L. Streit
Conference paper
Part of the Acta Physica Austriaca book series (FEWBODY, volume 7/1970)

Abstract

There were the years when quantum field theorists and the dynamical problem sat there and looked at each other in despair. Nonlinear theories would either give colorful nonsense answers (infrared, ultraviolet catastrophes) or else they would be butchered beyond resemblance to anything that the purists would call field theory. In those days it used to be a party game to guess at what the miracle cure might be,the “totally new idea” that was needed to lead out of this mess. Now, after a thousand days of rapid progress and of most fascinating results, it has become transparent that such “gifts from heaven” were not required. The ingredients of the success story were to a large extent “more of the same”: space and ultraviolet cutoffs, theories “in a box”, path integrals, perturbation expansions etc., etc.

Keywords

Canonical Commutation Relation Selfadjoint Extension Relativistic Quantum Field Theory Canonical Commutation Relation Quadratic Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (Ar 1).
    H. Araki: Hamiltonian Formalism and the CCR in Quantum Field Theory, Journ. Math. Phys. 1 ,492 (1960).ADSMATHCrossRefMathSciNetGoogle Scholar
  2. (CJ 1).
    J. Camon and A. Jaffe: Lorentz Covariance of the (4)2 Quantum Field Theory. To appear.Google Scholar
  3. (Ea 1).
    W. J. Eachus: A Solvable Model in Quantum Field Theory. Thesis, Syracuse, 1970.Google Scholar
  4. (Fa 1).
    J. D. Fabrey: Exponential Representations of the Canonical Commutation Relations, Thesis, MIT, 1969.Google Scholar
  5. (Fd 1).
    L. D. Faddeev: On the Friedrichs Model in the Theory of Perturbations of a Continuous Spectrum. Trudy Mat. Inst. Steklova 73, 292 (1964).MATHMathSciNetGoogle Scholar
  6. (Fr 1).
    K. O. Friedrichs: Perturbation of Spectra in Hubert Space. Providence, Amer. Math. Soc. 1965.Google Scholar
  7. (Gl 1).
    J. Glimm: Yukawa Coupling of Quantum Fields in Two Dimensions I, II. Comm. Math. Phys. 5 ,343 (1967), 6, 120 (1967).MathSciNetGoogle Scholar
  8. (Gl 2).
    J. Glimm: Boson Fields with Nonlinear Selfinteraction in Two Dimensions. Comm. Math. Phys. 8 ,12 (1968) .ADSMATHCrossRefGoogle Scholar
  9. (Gl 3).
    J. Glimm: Boson Fields with the :<>4: Interaction in Three Dimensions. Comm. Math. Phys. 10, 1 (1968).ADSMATHCrossRefMathSciNetGoogle Scholar
  10. (Gl 4).
    J. Glimm: The Foundations of Quantum Field Theory; preprint.Google Scholar
  11. (Gl 5).
    J. Glimm: Models for Quantum Field Theory (Varenna Lectures). Academic Press, New York, 1969.Google Scholar
  12. (GJ 1).
    J. Glimm and A. Jaffe: A;>4 Quantum Field Theory without Cutoffs I. Phys. Rev.176, 1945 (1968).ADSMATHCrossRefMathSciNetGoogle Scholar
  13. (GJ 2).
    J. Glimm and A. Jaffe: (<4)2 Quantum Field Theory Without Cutoffs II: The Field Operators and the Approximate Vacuum. Ann. of Math., to appear.Google Scholar
  14. (GJ 3).
    J. Glimm and A. Jaffe: The (4)2 Quantum Field Theory without Cutoffs III: The Physical Vacuum. To appear.Google Scholar
  15. (GJ 4).
    J. Glimm and A. Jaffe: A Model for Yukawa Quantum Field Theory. Phys. Rev. Letters 23, 1362 (1969).ADSCrossRefGoogle Scholar
  16. (GJ 5).
    J. Glimm and A. Jaffe: Self-Adjointness of the Yukawa Hamiltonian; preprint 1969.Google Scholar
  17. (He 1).
    K. Hepp: Theorie de la renormalization, Springer-Verlag, Berlin 1969.Google Scholar
  18. (Ho 1).
    L. van Hove: Les difficultés de divergences pour un modéle particular de champ quantifié. Physica 18, 145 (1952).ADSMATHCrossRefMathSciNetGoogle Scholar
  19. (Ja 1).
    A. Jaffe: Constructive Quantum Field Theory; Lecture notes,Zürich, 1968.Google Scholar
  20. (Ja 2).
    A. Jaffe: Princeton seminar talk, unpublished, 1969.Google Scholar
  21. (Jo 1).
    R. Jost: The General Theory of Quantized Fields. Providence, Amer. Math. Soc. 1965.MATHGoogle Scholar
  22. (Ka 1).
    T. Kato: Perturbation Theory for Linear Operators; Springer-Verlag, Berlin, 19 66.MATHGoogle Scholar
  23. (Ka 2).
    T. Kato: Wave Operators and Similarity for some Non-selfadjoint Operators; Math. Ann.162, 258 (1966) .MATHCrossRefMathSciNetGoogle Scholar
  24. (Kl 1).
    J. R. Klauder: Hamiltonian Approach to Quantum Field Theory; Acta Phys. Austriaca, Suppl. VI, 167 (1969) .Google Scholar
  25. (KMW 1).
    J. R. Klauder, J. McKenna, and E. J. Woods: Direct Product Representations of the CCR: Journ. Math. Phys. 7, 822 (1966).ADSMATHCrossRefMathSciNetGoogle Scholar
  26. (KMP 1).
    P. Kristensen, L. Mejlbo and E. Poulsen: Tempered Distributions in Infinitely Many Dimensions III; Comm. Math. Phys. 6, 29 (1967).ADSMATHCrossRefMathSciNetGoogle Scholar
  27. (Ma 1).
    G. W Mackey; Mathematical Foundations of Quantum Mechanics; Benjamin, New York, 1963.MATHGoogle Scholar
  28. (Os 1).
    K. Osterwalder: Thesis, Zürich (1969) .Google Scholar
  29. (Pa 1).
    S. Parrott: Uniqueness of the Hamiltonian in Quan-tum Field Theories; Comm. Math. Phys. 13, 68 (1969).ADSMATHCrossRefMathSciNetGoogle Scholar
  30. (Ro 1).
    L. Rosen: A 2n Field Theory without Cutoffs; Comm. Math. Phys. 16, 157 (1970).ADSMATHCrossRefMathSciNetGoogle Scholar
  31. (Sr 1).
    B. Schroer: Infrateilchen in der Quantenfeldtheorie; Fortschritte d. Phys. l1, 1 (1963) .ADSCrossRefMathSciNetGoogle Scholar
  32. (Sw 1).
    S. Schweber: Relativistic Quantum Field Theory; Row and Peterson, New York, 1961.Google Scholar
  33. (Sh 1).
    D. Shale: Linear Symmetries of Free Boson Fields; Trans. Am. Math. Soc.103, 149 (1962) .MATHCrossRefMathSciNetGoogle Scholar
  34. (SW 1).
    R. F. Streater and A. S. Wightman: PCT, Spin and Statistics, and All That; Benjamin, New York 1964MATHGoogle Scholar
  35. (St 1).
    L. Streit: Test Function Spaces for Direct Product Representations of the CCR; Comm. Math. Phys. 4, 22 (1967).ADSMATHCrossRefMathSciNetGoogle Scholar
  36. (St 2).
    L. Streit: A Generalization of Haag’s Theorem; Nuovo Cim. 62A, 673 (1969) .ADSCrossRefMathSciNetGoogle Scholar
  37. (Yo 1).
    K. Yosida: Functional Analysis; Springer-Verlag, Berlin, 1966.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • L. Streit
    • 1
  1. 1.Bell Telephone Laboratories, Inc.Murray HillUSA

Personalised recommendations