Compounds of the Higher Orders

  • Frank L. Schneider
Part of the Monographien aus dem Gebiete der Qualitativen Mikroanalyse book series (MIKROANANALYSE, volume 2)


In addition to carbon, hydrogen, and possibly oxygen, the compounds of the higher orders contain elements other than nitrogen. The number of compounds in which these other elements constitute or are part of the functional group or groups is relatively small. The first step in the identification, after the elementary analysis shows the presence of such an element, should therefore be the performance of the generic tests of Order I and II. In the event that these prove to be negative, the compound should be sought in the groups described below.


Sulfonic Acid Test Substance Nitro Compound Alkyl Halide Potassium Iodide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Ballczo, H., and G. Mondl, Mikrochem. 36/37, 1002 (1951).Google Scholar
  2. (2).
    Bost, R., P. K. Starnes, and E. L. Wood, J. Amer. Chem. Soc. 73, 1968 (1951).CrossRefGoogle Scholar
  3. (3).
    Bost, R., J. Turner, and M. W. Conn, ibid. 55, 4956 (1933).CrossRefGoogle Scholar
  4. (4).
    Bost, R., J. Turner, and R. Norton, J. Amer. Chem. Soc. 54, 1985 (1932).CrossRefGoogle Scholar
  5. (5).
    Brown, E. L., and N. Campbell, J. Chem. Soc. London 1937, 1699 and 1939, 1442.Google Scholar
  6. (6).
    Castle, R. N., N. F. Witt, and C. F. Poe, J. Amer. Chem. Soc. 71, 228 (1949).CrossRefGoogle Scholar
  7. (7).
    Cutter, H. B., and A. Kreuchunas, Analyt. Chemistry 25 198 (1953).CrossRefGoogle Scholar
  8. (8).
    Denigès, G., Bull. trav. soc. pharm. Bordeaux 71, 5 (1933).Google Scholar
  9. (9).
    Drew, R. P., and J. M. Sturtevant, J. Amer. Chem. Soc. 61, 2666 (1939).CrossRefGoogle Scholar
  10. (10).
    Garner, W., J. Soc. Dyers and Colourists 43, 2 (1927) andGoogle Scholar
  11. (10a).
    Garner, W., J. Soc. Dyers and Colourists 52, 302 (1936).CrossRefGoogle Scholar
  12. (11).
    Huntress, E. H., and F. H. Carten, J. Amer. Chem. Soc. 62, 511 (1940).CrossRefGoogle Scholar
  13. (12).
    Juraček, and M. Večera, Chem. Listy 46, 149 (1951) and 46, 722 (1952).Google Scholar
  14. (12a).
    Juraček, and M. Večera, Chem. Listy and 46, 722 (1952).Google Scholar
  15. (13).
    Kuhn, R., L. Birkhofer, and F. W. Quackenbush, Ber. dtsch. ehem. Ges. 72, 407 (1939).CrossRefGoogle Scholar
  16. (14).
    Martin, A. J., and H. Deveraux, Analyt. Chemistry 31, 1932 (1959).CrossRefGoogle Scholar
  17. (15).
    Miex, O., and J. Pech, Chem. Listy 46, 382 (1952) andGoogle Scholar
  18. (15a).
    Miex, O., and J. Pech, Chem. Listy 47, 904 (1953).Google Scholar
  19. (16).
    Roth, H., Mikrochim. Acta 1958, 766.Google Scholar
  20. (17).
    Roth, H., and W. Beck, Mikrochim. Acta 1957, 844.Google Scholar
  21. (18).
    Schöniger, W., Mikrochim. Acta 1955, 123 and 1956, 869.Google Scholar
  22. (19).
    Siefken, W., Ann. Chem. 562, 100 (1949).Google Scholar
  23. (20).
    Siggia, S., and R. L. Edsberg, Analyt. Chemistry 20, 938 (1948).CrossRefGoogle Scholar
  24. (21).
    Whitmore, W., and A. I. Gebhart, Ind. Eng. Chem., Analyt. Ed. 10, 654 (1938).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1964

Authors and Affiliations

  • Frank L. Schneider
    • 1
  1. 1.Queens College of the City University of New YorkUSA

Personalised recommendations