Advertisement

Preparation of the Sample

  • Frank L. Schneider
Part of the Monographien aus dem Gebiete der Qualitativen Mikroanalyse book series (MIKROANANALYSE, volume 2)

Abstract

Unlike inorganic substances, carbon compounds cannot be identified by means of a sequence of “separation” reactions. Individual members of an homologous series, for example, could not be separated from each other for the purpose of identification by purely chemical reactions. Nevertheless, final identification of a substance is made, as pointed out before, by measurement of the physical constants of what is assumed to be a single, pure compound. It is obvious, therefore, that the first task of the analyst is to determine whether his test substance is (a) a pure substance, (b) a mixture with one major component and some minor impurities, or (c) a mixture of substances in other proportions. In the case of (b), subjecting the test substance to recrystallization, distillation, etc., usually suffices to free it of impurities. In the case of (c), however, all of the components are regarded as major and are to be separated, purified, and identified and both chemical and physical methods of separation can and should be employed.

Keywords

Test Substance Mother Liquor Steam Distillation Distillation Apparatus Fine Capillary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. (1).
    Alber, H. K., Ind. Eng. Chem., Analyt. Ed. 13, 656 (1941).CrossRefGoogle Scholar
  2. (2)(1).
    Alber, H. K., Z. analyt. Chem. 90, 100 (1932).CrossRefGoogle Scholar
  3. (3).
    Amelink, F., Pharm. Weekblad 68, 1086 (1931).Google Scholar
  4. (4).
    Babcock, M., Analyt. Chemistry 21, 632 (1949).CrossRefGoogle Scholar
  5. (5).
    Baer, E., Kolloid-Z. 46, 176 (1928).CrossRefGoogle Scholar
  6. (6).
    Bailey, A. J., Ind. Eng. Chem., Analyt. Ed. 9, 490 (1937).CrossRefGoogle Scholar
  7. (7).
    ibid. 14, 177 (1942).CrossRefGoogle Scholar
  8. (8).
    Barrenscheen, H. K., Mikrochim. Acta 1, 319 (1937).CrossRefGoogle Scholar
  9. (9).
    Becker, C., and C. Schöpf, Ann. Chem. 524, 124 (1936).Google Scholar
  10. (10).
    Benedetti-Pichler, A. A., Ind. Eng. Chem., Analyt. Ed. 2, 309 (1930).CrossRefGoogle Scholar
  11. (11).
    Mikrochem. Pregl-Festschrift 6 (1929).Google Scholar
  12. (12).
    Benedetti-Pichler, A. A., and J. R. Kachele, Mikrochem. 19, 1 (1935/36).CrossRefGoogle Scholar
  13. (13).
    Benedetti-Picbxer, A. A., and F. Schneider, Ind. Eng. Chem., Analyt. Ed. 5, 255 (1933).CrossRefGoogle Scholar
  14. (14).
    Benedetti-Picbxer, A. A., and F. Schneider, Z. analyt. Chem. 86, 69 (1931).CrossRefGoogle Scholar
  15. (15).
    Bering, P., Svensk Kern. Tid. 61, 10 (1949).Google Scholar
  16. (16).
    Bernhatjer, K., Einführung in die organisch-chemische Laboratoriumstechnik, Berlin: Julius Springer, 1934; p. 55.Google Scholar
  17. (17).
    ibid. 59.Google Scholar
  18. (18).
    ibid. 93.Google Scholar
  19. (19).
    Beroza, M. Chemist-Analyst 41, 18 (1952).Google Scholar
  20. (20).
    Blank, E. W., J. Chem. Education 12, 43 (1935).CrossRefGoogle Scholar
  21. (21).
    Block, R. J., E. L. Durrtjm, and G. Zweig, A Manual of Paper Chromatography and Paper Electrophoresis, 2nd ed. New York: Academic Press, 1955.Google Scholar
  22. (22).
    Blount, B., Mikrochem. 19, 162 (1936).CrossRefGoogle Scholar
  23. (23).
    Breger, I. A., Analyt. Chemistry 20, 980 (1948).CrossRefGoogle Scholar
  24. (24).
    Brimley, R. C., and F. C. Barrett, Practical Chromatography, New York: Rein-hold, 1953.Google Scholar
  25. (25).
    Browning, B. L., Mikrochem. 26, 54 (1939).CrossRefGoogle Scholar
  26. (26).
  27. (27).
    Chamot, E., Mikrochem. 4, 97 (1926).CrossRefGoogle Scholar
  28. (28).
    Clarke, B. L., and H. M. Hermance, Ind. Eng. Chem., Analyt. Ed. 11, 50 (1939).CrossRefGoogle Scholar
  29. (29).
    Clausen, S. W., J. Biol. Chem. 52, 263 (1922).Google Scholar
  30. (30).
    Colegrave, E. B., Analyst 60, 90 (1935).Google Scholar
  31. (31).
    Craig, L., Ind. Eng. Chem., Analyt. Ed. 8, 219 (1936).CrossRefGoogle Scholar
  32. (32).
    ibid. 12, 773 (1940)CrossRefGoogle Scholar
  33. (32)a.
    ibid. 16, 413 (1944).CrossRefGoogle Scholar
  34. (33).
    Craig, L., Analyt. Chemistry 22, 1346 (1950).CrossRefGoogle Scholar
  35. (34).
    Craig, L., and O. Post, Analyt. Chemistry 21, 500 (1949).CrossRefGoogle Scholar
  36. (35).
    Davies, E. S., and K H. Hartshorne, J. Chem. Soc. London 1830 (1934).Google Scholar
  37. (36).
    Denigès, G., Mikrochem. 3, 33 (1925).CrossRefGoogle Scholar
  38. (37).
    Donau, J., Monatsh. 32, 31 (1911)CrossRefGoogle Scholar
  39. (37)a.
    Donau, J., Monatsh. 36, 381 (1915). Also Mikrochem. 27, 189 (1939).CrossRefGoogle Scholar
  40. (38).
    Dufton, A. F., Journ. Soc. Chem. Ind. 38, 45T (1919).Google Scholar
  41. (39).
    Eder, R., Dissertation, Zürich 1931, p. 35.Google Scholar
  42. (40).
    Eigenberger, E., Mikrochem. 10, 57 (1931).Google Scholar
  43. (41).
    Elek, A., Mikrochem. 19, 129 (1936).CrossRefGoogle Scholar
  44. (42).
    Ellis, G. W., Chemistry and Industry 53, 77 (1934) and in Weygand, Organisch-chemische Experimentierkunst, Leipzig: Akademische Verlagsgesellschaft, 1938; p. 112.Google Scholar
  45. (43).
    Emich, F. and F. Schneider, Microchemical Laboratory Manual, New York : John Wiley, 1932; p. 34.Google Scholar
  46. (44).
    ibid. p. 38.Google Scholar
  47. (45).
    ibid. p. 30.Google Scholar
  48. (46).
    ibid. p. 62.Google Scholar
  49. (47).
    ibid. p. 64.Google Scholar
  50. (48).
    Erdös, J. and B. László, Mikrochem. 27, 211 (1939).CrossRefGoogle Scholar
  51. (49).
    Erdös, J. and B. László, Mikrochim. Acta 3, 304 (1938).CrossRefGoogle Scholar
  52. (50).
    Fabian, F., Mikrochim. Acta 2, 332 (1938).CrossRefGoogle Scholar
  53. (51).
    Fischer, R., Mikrochem. 15, 247 (1935).CrossRefGoogle Scholar
  54. (52).
    Fischer, R., and W. Iwanoff, Arch. Pharmaz. 1943, 361.Google Scholar
  55. (53).
    Fraenkel, E., F. Bielschowsky, and S. J. Thannhauser, Z. physiol. Chem. 218, 10 (1933).Google Scholar
  56. (54).
    Friedrich, A., Mikrochem., Pregl-Festschrift 103 (1939).Google Scholar
  57. (55).
    Fuhrmann, F., Mikrochem. 23, 167 (1937).Google Scholar
  58. (56).
    Fulton, R. A., Ind. Eng. Chem., Anal. Ed. 9, 437 (1937).CrossRefGoogle Scholar
  59. (57).
    Gabrielson, G.,and O, Samuelson, Acta Chem. Scand. 6, 729, 738 (1932)CrossRefGoogle Scholar
  60. (57)a.
    Gabrielson, G.,and O, Samuelson, Svensk Kern. Tid. 64, 150 (1952).Google Scholar
  61. (58).
    Garner, W., Ind. Chemist 4, 332 (1928).Google Scholar
  62. (59).
    ibid. 287.Google Scholar
  63. (60).
    Gawalowski, A., Z. analyt. Chem. 49, 744 (1910).CrossRefGoogle Scholar
  64. (61).
    Gettens, R., Tech. Studies Field Fine Arts 2, 107 (1933).Google Scholar
  65. (62).
    Goodman, C. H., Research 7, 168 (1954).Google Scholar
  66. (63).
    Gorbach, G., Mikrochemisches Praktikum, Berlin: Springer-Verlag, 1956; p. 42.Google Scholar
  67. (64).
    Gorbach, G., Mikrochem. 12, 161 (1932).Google Scholar
  68. (65).
    Gould, C. W., G. Holzman, and C. Niemann, Analyt. Chemistry 20, 361 (1948).CrossRefGoogle Scholar
  69. (66).
    Greenbaum, F. R., J. Amer. Pharm. Assoc. 18, 784 (1929).CrossRefGoogle Scholar
  70. (67).
    Gross, P. and A. H. Wright, Ind. Eng. Chem. 13, 701 (1921).CrossRefGoogle Scholar
  71. (68).
    Grubhofer, N., Chem. Ing. Techn. 22, 209 (1950).CrossRefGoogle Scholar
  72. (69).
    Handley, R. and E. F. Herington, Chem. and Ind. 16, 304 (1956).Google Scholar
  73. (70).
    Hartshorne, N. H., Chemistry and Industry, 1933, 367.Google Scholar
  74. (71).
    Häusler, H., Monatsh. 53/54, 312 (1929).CrossRefGoogle Scholar
  75. (72).
    Hecht, F., Mikrochimica Acta 3, 129 (1938).CrossRefGoogle Scholar
  76. (73).
    Hemmes, M. H., Rec. trav. chim. (II) 16, 369 (1898).CrossRefGoogle Scholar
  77. (74).
    Hesse, G.,Angew. Chem. 49, 315 (1936).CrossRefGoogle Scholar
  78. (75).
    Hetterich, H., Mikrochem. 10, 379 (1932).CrossRefGoogle Scholar
  79. (76).
    Hoffmann, H. and W. C. Johnson, J. Assoc. Off. Agr. Chemists 13, 367 (1930).Google Scholar
  80. (77).
    Hortvet, J., J. Assoc. Off. Agr. Chemists 6, 481 (1923)Google Scholar
  81. (77)a.
    Hortvet, J., J. Assoc. Off. Agr. Chemists 8, 559 (1925).Google Scholar
  82. (78).
    Houston, D. F. and C. P. Saylor, Ind. Eng. Chem., Analyt. Ed. 8, 302 (1936).CrossRefGoogle Scholar
  83. (79).
    Jennerich, Dissertation, Hamburg, (1924).Google Scholar
  84. (80).
    Jurany, H., Mikrochem. 27, 185 (1939).CrossRefGoogle Scholar
  85. (81).
    Johnstone, R. E., J. Soc. Chem. Ind. 50, 182T (1931).Google Scholar
  86. (82).
    Kato, T., J. Pharm. Soc. Japan 60, 228 (1940).Google Scholar
  87. (83).
    Kempf, R., Z. analyt. Chem. 62, 284, 520 (1923).Google Scholar
  88. (84).
    Keys, A., J. Biol. Chem. 114, 450 (1936).Google Scholar
  89. (85).
    Kirk, P. L., Quantitative Ultramicroanalysis, New York: John Wiley, 1950; p. 109.Google Scholar
  90. (86).
    Kirk, P. L. and R. Craig, Ind. Eng. Chem., Analyt. Ed. 3, 345 (1931).CrossRefGoogle Scholar
  91. (87).
    Kirk, P. L. and M. Danielson, Analyt. Chemistry 20, 1122 (1948).CrossRefGoogle Scholar
  92. (88).
    Klatt, W., Pharm. Ztg. 79, 1157 (1934).Google Scholar
  93. (89).
    Klement, R., Z. analyt. Chem. 136, 17 (1952).CrossRefGoogle Scholar
  94. (90).
    Klenk, E., Z. physiol. Chem. 242, 200 (1936).CrossRefGoogle Scholar
  95. (91).
    Kofler, W., Monatsh. 80, 694 (1949).CrossRefGoogle Scholar
  96. (92).
    Kofler, L. and W. Dernbach, Mikrochem. 9, 345 (1930).Google Scholar
  97. (93).
    König, O., W. R. Crowell, and A. A. Benedetti-Pichler, Mikrochem. 39, 281 (1949).Google Scholar
  98. (94).
    Kuerschner, K., Mikrochem. 3, 1 (1925).CrossRefGoogle Scholar
  99. (95).
    Lacourt, A. and H. Gtjrfinkel, Bull. soc. chim. Belg. 49, 159 (1940).Google Scholar
  100. (96).
    Langer, A., Mikrochim. Acta 3, 247 (1938).CrossRefGoogle Scholar
  101. (97).
    Lappin, G. R., J. Chem. Education 25, 657 (1948).CrossRefGoogle Scholar
  102. (98).
    Laquer, F., Z. physiol. Chem. 118, 215 (1922).Google Scholar
  103. (99).
    Lederer, E. and M. Lederer, Chromatography: A Review of Principles and Applications, New York: Elsevier, 1953.Google Scholar
  104. (100).
    Lieb, H. and W. Schöniger, Anleitung zur Darstellung organischer Präparate mit kleinen Substanzmengen, Wien: Springer-Verlag 1950; p. 82.Google Scholar
  105. (101).
    Lieb, H. and W. Schöniger, Mikrochem. 35, 94 (1950).CrossRefGoogle Scholar
  106. (102).
    Maljaroff, K. L., Mikrochem. 6, 103 (1928).CrossRefGoogle Scholar
  107. (103).
    Marberg, C. M., J. Amer. Chem. Soc. 60, 1509 (1938).CrossRefGoogle Scholar
  108. (104).
    Mayrhofer, A., Mikrochemie der Arzneimittel und Gifte, Berlin: Urban und Schwarzenberg, 1928.Google Scholar
  109. (105).
    Morton, A. A., Laboratory Technique in Organic Chemistry, New York: McGraw-Hill, 1938.Google Scholar
  110. (106).
    Morton, A. A. and J. F. Mahoney, Ind. Eng. Chem., Analyt. Ed. 13, 494 (1941).CrossRefGoogle Scholar
  111. (107).
    Muenster, W., Mikrochem. 14, 23 (1933).Google Scholar
  112. (108).
    Noller, C. R., Ind. Eng. Chem., Analyt. Ed. 14, 834 (1942).CrossRefGoogle Scholar
  113. (109).
    Paschke, R. F., J. R. Kerns, and D. H. Wheeler, J. Amer. Oil Chemists Soc. 31, 5 (1954).CrossRefGoogle Scholar
  114. (110).
    Peakes, L. V., Mikrochem. 18, 100 (1935).CrossRefGoogle Scholar
  115. (111).
    Pfann, W. G., Chem. Eng. News, 34, 1440 (1956).CrossRefGoogle Scholar
  116. (112).
    Pfeiffer, P., Organische Molekülverbindungen, Stuttgart: Enke, 1922.Google Scholar
  117. (113).
    Pozzi-Escot, M. E., Bull. Soc. chim. France (3) 31, 932 (1904).Google Scholar
  118. (114).
    Pratt, C. J., Chem. and Ind. 1941, 719.Google Scholar
  119. (115).
    Pregl, F., Die quantitative organische Mikroanalyse, Berling: Julius Springer, 1923; p. 206.Google Scholar
  120. (116).
    Pregl, F., Mikrochem. 2, 76 (1924).CrossRefGoogle Scholar
  121. (117).
    Pregl, F., E. Fyleman, Quantitative Organic Microanalysis, Philadelphia: Blakiston, 1930; p. 222.Google Scholar
  122. (118).
    ibid. 226.Google Scholar
  123. (119).
    ibid. 66.Google Scholar
  124. (120).
    Rauen, H. M., and W. Stamm, Chem. Ing. Techn. 21, 259 (1949).CrossRefGoogle Scholar
  125. (121).
    Raymond, S., Analyt. Chemistry 21, 1292 (1949).CrossRefGoogle Scholar
  126. (122).
    Roper, I. K, Analyt. Chemistry 21, 1575 (1949).CrossRefGoogle Scholar
  127. (123).
    Rose, A., Ind. Eng. Chem. 28, 1210 (1936).CrossRefGoogle Scholar
  128. (124).
    Rosenthaler, L., Apoth. Ztg. 47, 1358 (1932) also Ber. dtsch. ehem. Ges. 21, 388, 525 (1911),Google Scholar
  129. (124)a.
    Rosenthaler, L., Apoth. Ztg. 23, 577 (1913).Google Scholar
  130. (125).
    Rushman, O. F., and E.M. Simpson, Journ. Oil and Colour Chemists Assoc. 37, 319 (1954).Google Scholar
  131. (126).
    Schoeller, A., Z. angew. Chem. 35, 506 (1922).CrossRefGoogle Scholar
  132. (127).
    Schöpf, C. and E. Becker, Ann. Chem. 524, 49 (1936).Google Scholar
  133. (128).
    Schoorl, N., Mikrochem. 4, 103 (1925).Google Scholar
  134. (129).
    Schrader, S. A., and J. E. Ritzer, Ind. Eng. Chem., Analyt. Ed. 11, 54 (1939).CrossRefGoogle Scholar
  135. (130).
    Schwab, F. W., and E. Wichers, J. Res. Nat. Bur. Stand. 32, 253 (1944).Google Scholar
  136. (131).
    Soltys, A., Mikrochem. Molisch-Festschrift 393 (1936).Google Scholar
  137. (132).
    ibid. 397.Google Scholar
  138. (133).
    Stetten, de W. and G. F. Grail, Ind. Eng. Chem., Analyt. Ed. 15, 300 (1943).CrossRefGoogle Scholar
  139. (134).
    Sullivan, J. P., U. S. Bur. Mines, Tech. Paper 381 (1927).Google Scholar
  140. (135).
    Swindells, F. E., Chemist-Analyst 22, 18 (1933).Google Scholar
  141. (136).
    Taylor, A., A. Parpart, and R. Ballentine, Ind. Eng. Chem., Analyt. Ed. 11, 659 (1939).CrossRefGoogle Scholar
  142. (137).
    Thiessen, A., Biochem. Z. 140, 457 (1923).Google Scholar
  143. (138).
    Tiedcke, C., Ind. Eng. Chem., Analyt. Ed. 15, 81 (1943).CrossRefGoogle Scholar
  144. (139).
    Titus, L., and V. W. Meloche, Ind. Eng. Chem., Analyt. Ed. 5, 286 (1933).CrossRefGoogle Scholar
  145. (140).
    Tschesche, R., and H. B. König, Chem. Ing. Techn. 22, 214 (1950).CrossRefGoogle Scholar
  146. (141).
    Tschermak-Seysenegg, A., Mikrochem. 27, 96 (1939).CrossRefGoogle Scholar
  147. (142).
    Tunmann, O., Pflanzen-Mikrochemie, Berlin: Borntraeger, 1931; p. 25.Google Scholar
  148. (143).
    Vetter, F., Mikrochem. 14, 23 (1933).Google Scholar
  149. (144).
    Wagenaar, M., Pharm. Weekblad 66, 1121 (1929).Google Scholar
  150. (145).
    Wasitzky, A., Mikrochemie 11, 1 (1930).CrossRefGoogle Scholar
  151. (146).
    Werner, O., and G. Klein, Z. physiol. Chem. 143, 141 (1925).CrossRefGoogle Scholar
  152. (147).
    Weygand, F., Chem. Ing. Techn. 22, 213 (1950).CrossRefGoogle Scholar
  153. (148).
    Widmer, G., Helv. Chim. Acta 7, 59 (1934).CrossRefGoogle Scholar
  154. (149).
    Willstaedt, H., and T. K. With, Z. physiol. Chem. 253, 40 (1938).CrossRefGoogle Scholar
  155. (150).
    Wood, R. W., J. Phys. Chem. 27, 565 (1923).CrossRefGoogle Scholar
  156. (151).
    Wright, G. F., Can. J. Research 17B, 302 (1939).CrossRefGoogle Scholar
  157. (152).
    Yagoda, H., Mikrochem. 18, 299 (1935).CrossRefGoogle Scholar
  158. (153).
    Young, J. W., Mikrochem. 21, 133 (1936/37).Google Scholar
  159. (154).
    Zechmeister, L. and L. v. Cholnoky, Die chromatographische Adsorptions-analyse, 2d ed., Wien: J. Springer, 1938.Google Scholar

Copyright information

© Springer-Verlag/Wien 1964

Authors and Affiliations

  • Frank L. Schneider
    • 1
  1. 1.Queens College of the City University of New YorkUSA

Personalised recommendations