Structure and Function in Cilia and Flagella

Facts and Problems
Part of the Protoplasmatologia Handbuch der Protoplasmaforschung book series (PROTOPLASMATOL., volume 3 / E,F)


Cilia and possibly flagella were first observed by Leeuwenhoek (1677, 1679) toward the end of the seventeenth century. The case for Leeuwenhoek’s priority of discovery of cilia has been elegantly presented by Dobell (1958). The accuracy of Leeuwenhoek’s observations has been noted by Hughes (1959) who has also remarked upon the general hiatus in important microscopical observation throughout the eighteenth century, partially based on the technical limitations of available instruments.


Basal Body Central Pair Recovery Stroke Ciliary Movement Sperm Tail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abram, D., and H. Koffler, 1964: In vitro formation of flagella-like filaments and other structures from flagellin. J. Mol. Biol. 9, 168–185.PubMedCrossRefGoogle Scholar
  2. Afzelius, B., 1959: Electron microscopy of the sperm tail; results obtained with a new fixative. J. Biophys. Biochem. Cytology 5, 269–278.CrossRefGoogle Scholar
  3. Afzelius, B., 1961a: The fine structure of cilia from ctenophore swimming-plates. J. Biophys. Biochem. Cytology 9, 383–394.CrossRefGoogle Scholar
  4. Afzelius, B., 1961b: Some problems of ciliary structure and function. In: Biological Structure and Function (T. W. Goodwin and O. Lindberg eds.). Acad. Press, N.Y., Vol. II, p. 557–567.Google Scholar
  5. Afzelius, B., 1962: The contractile apparatus of some invertebrate muscles and spermatozoa. In: Electron Microscopy, Vol. 2, (S. S. Breese Jr., ed). Acad. Press, N.Y., M-1.Google Scholar
  6. Afzelius, B., 1963: Cilia and flagella that do not conform to the 9 + 2 pattern. J. Ultrastmct. Res. 9, 381–392.CrossRefGoogle Scholar
  7. Alexandrov, V. Y., and N. I. Arronet, 1956: Motion caused by adenosine triphosphate in cilia of ciliated epithelia killed by glycerol extraction. Dokl. Acad. Nauk. SSSR 110, 457–460.Google Scholar
  8. Ånberg, A., 1957: The ultrastructure of the human spermatozoan. Acta obstet. gynec. Scand. 36, Suppl. 2, 1–133.Google Scholar
  9. André, J., 1961: Sur quelques détails nouvellement connus de l’ultrastructure des organites vibrátiles. J. Ultrastruct. Res. 5, 86–108.PubMedCrossRefGoogle Scholar
  10. André, J., and J. P. Thiery, 1963: Mise en évidence d’une sous-structure fibrillaire dans les filaments axonématiques des flagelles. J. Micro. 2, 71–80.Google Scholar
  11. Astbury, W. T., E. Beighton and C. Weibull, 1955: The structure of bacterial flagella. Symp. Soc. Exper. Biol. 9, 282–305.Google Scholar
  12. Auber, J., 1964: Mode de formation des myofibriles dans les muscles du vol de dipteres. In: Electron Microscopy 1964, Proc. 3rd Eur. Reg. Conf., Prague, Vol. B, p. 75–76.Google Scholar
  13. Barnes, B. G., 1961: Ciliated secretory cells in the pars distalis of the mouse hypophysis. J. Ultrastruct. Res. 5, 453–467.PubMedCrossRefGoogle Scholar
  14. Bennett, H. S., 1959: Structure of muscle cells. In: Biophysical Science—A Study Program (J. L. Oncley ed.). Wiley, N.Y., 394–401.Google Scholar
  15. Bishop, D. W., 1958: Motility of the sperm flagellum. Nature 182, 1638–1640.PubMedCrossRefGoogle Scholar
  16. Bishop, D. W., (ed) 1962a: Spermatozoan motility. Amer. Assoc. Adv. Science. Wash. D. C. 313pp.Google Scholar
  17. Bishop, D. W., 1962b: Sperm motility. Physiol. Rev. 42, 1–59.PubMedGoogle Scholar
  18. Bishop, D. W., and H. Hoffmann-Berling, 1959: Extracted mammalian sperm models. I. Preparation and reactivation with adenosine triphosphate. J. Cell. and Comp. Physiol. 53, 445–466.CrossRefGoogle Scholar
  19. Bradfield, J. R. G., 1955: Fibre patterns in animal flagella and cilia. Symp. Soc. Exper. Biol. 9, 306–334.Google Scholar
  20. Brokaw, C. J., 1961: Movement and nucleoside polyphosphatase activity of isolated flagella from Polytoma uvella. Exper. Cell Res. 22, 151–162.CrossRefGoogle Scholar
  21. Brokaw, C. J., 1962: Studies on isolated flagella. In: Spermatozoan Motility, (D. W. Bishop ed). Amer. Assoc. Adv. Science. Wash., D. C., 269–278.Google Scholar
  22. Brokaw, C. J., 1963a: Movement of flagella of Polytoma uvella. J. Exper. Biol. 40, 149–156.Google Scholar
  23. Brokaw, C. J., 1963 b: Bending waves of the posterior flagellum of Ceratium. Science 142, 1169–1170.Google Scholar
  24. Brown, H. P., 1945: On the structure and mechanics of the protozoan flagellum. Ohio J. Science 45, 247–301.Google Scholar
  25. Burnasheva, S. A., 1958: Characteristics of spermosin, a contractile protein in sperm cells. Biokhimiya 23, 558–563.Google Scholar
  26. Child, F. M., 1959: The characterization of the cilia of Tetrahymena ipyrijormis. Exper. Cell Res. 18, 258–267.CrossRefGoogle Scholar
  27. Child, F. M., 1961: Some aspects of the chemistrv of cilia and flagella. Exper. Cell Res. Suppl. 8, 47–53.CrossRefGoogle Scholar
  28. Child, F. M., and S. Tamm, 1963: Metachronal ciliary co-ordination in ATP-reactivated models of Modiolus gills. Biol. Bull. 125, 373–374.Google Scholar
  29. Cleland, K. W., and Lord Rothschild, 1959: The bandicoot spermatozoon: an electron microscope study of the tail. Proc. Roy. Soc. London 150 B, 24–42.Google Scholar
  30. Dahl, H., 1963: Rat cerebral cortex cilia. Z. Zellforsch. 60, 369–386.PubMedCrossRefGoogle Scholar
  31. De Robertis, E., and A. V. Fermera, 1957: Submicroscopic changes of the nerve endings in the adrenal medulla after stimulation of the splanchnic nerve. J. Biophys. Biochem. Cytology 3, 611–614.CrossRefGoogle Scholar
  32. Dobell, C., 1958: Antony van Leeuwenhoek and his “little animals”. Russell and Russell, N.Y., 435 pp. See especially p. 109ff.Google Scholar
  33. Dubnau, D. A., 1961: The regeneration of flagella by Ochromonas dánica. Thesis, Columbia Univ., N. Y.Google Scholar
  34. Duncan, D., V. Williams, and R. Morales, 1963: Centrioles and cilia-like structures in spinal gray matter. Texas Reports on Biol. and Med. 21, 185–187.Google Scholar
  35. Eakin, R. M., 1963: Lines of evolution of photoreceptors. In: General Physiology of Cell Specialization (D. Mazia and A. Tyler eds.). McGraw Hill, N.Y. Chap. 21, 393–425.Google Scholar
  36. Ebashi, S., and F. Lipmann, 1962: Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell Biol. 14, 389–400.PubMedCrossRefGoogle Scholar
  37. Engelhardt, V. A, 1946: Adenosinetriphosphatase properties of myosin. Adv. Enzymol. 6, 147–191.Google Scholar
  38. Engelmann, T. W., 1879: Physiologie der Protoplasma- und Flimmerbewegung, 2. Capitel. Die Flimmerbewegung. In: Handbuch der Physiologie (L. Hermann ed.). Leipzig, F. C. W. Vogel, Vol. 1, pt. 1, p. 380–408.Google Scholar
  39. Fauré-Fremiet, E., 1961: Cils vibrátiles et flagelles. Biol. Rev. 36, 464–536.PubMedCrossRefGoogle Scholar
  40. Fawcett, D. W., 1958: The structure of the mammalian spermatozoon. Internat. Rev. Cytology 7, 195–234.CrossRefGoogle Scholar
  41. Fauré-Fremiet, E., 1961: Cilia and flagella. In: The Cell, Vol. 2 (J. Brächet and A. E. Mirsky eds.). Acad. Press, N.Y., p. 217–298.Google Scholar
  42. Fawcett, D. W., and K. R. Porter, 1954: A study of the fine structure of ciliated epithelia. J. Morphol. 94, 221–281.CrossRefGoogle Scholar
  43. Filshie, B. K., and G. E. Rogers, 1961: The fine structure of α keratin. J. Mol. Biol. 3, 784–786.PubMedCrossRefGoogle Scholar
  44. Finck, H., and H. Holtzer, 1961: Attempts to detect myosin and actin in cilia and flagella. Exper. Cell Res. 23, 251–257.CrossRefGoogle Scholar
  45. Gelei, J. von, 1926–27: Eine neue Osmium-Toluidinmethode für Protistenforschung. Mikrokosmos 20, 97–103.Google Scholar
  46. Gibbons, I. R., 1960: Observations on the structure of cilia and flagella. Proc. Eur. Reg. Conf. on Electron Microscopy, Delft, Vol. 2, 929–933.Google Scholar
  47. Gibbons, I. R., 1961a: The relationship between fine structure and beat in the gill cilia of a lamellibranch mollusc. J. Biophys. Biochem. Cytology 11, 179–205.CrossRefGoogle Scholar
  48. Gibbons, I. R., 1961b: Structural asymmetry in cilia and flagella. Nature 190, 1128–1129.PubMedCrossRefGoogle Scholar
  49. Gibbons, I. R., 1963 a: A method for obtaining serial sections of known orientation from single spermatozoa. J. Cell Biol. 16, 626–629.Google Scholar
  50. Gibbons, I. R., 1963 b: Studies on the protein components of cilia from Tetrahymena pyriformis. Proc. Nat. Acad. Sciences 50, 1002–1010.Google Scholar
  51. Gibbons, I. R., and A. V. Grimstone, 1960: On flagellar structure in certain flagellates. J. Biophys. Biochem. Cytology 7, 697–716.CrossRefGoogle Scholar
  52. Gibbs, S. P., R. A. Lewin, and D. E. Philpott, 1958: The fine structure of the flagellar apparatus of Chlamydomonas moewusii. Exper. Cell Res. 15, 619–622.CrossRefGoogle Scholar
  53. Gray, E. G., 1960: The fine structure of the insect ear. Phil. Trans. Roy. Soc. London 243 B, 75–94.Google Scholar
  54. Gray, J., 1928: Ciliary movement. Cambridge University Press. 162 pp.Google Scholar
  55. Gray, J., 1930: The mechanism of ciliary movement. VI. Photographic and stroboscopic analysis of ciliary movement. Proc. Roy. Soc London 107 B, 313–332.Google Scholar
  56. Gray, J., 1955: The movement of sea-urchin spermatozoa. J. Exper. Biol. 32, 775–801.Google Scholar
  57. Gray, J., 1958: The movement of the spermatozoa of the bull. J. Exper. Biol. 35, 96–108.Google Scholar
  58. Grillo, M. A., and S. L. Palay, 1963: Ciliated Schwann cells in the autonomic nervous system of the adult rat. J. Cell Biol. 16, 430–436.PubMedCrossRefGoogle Scholar
  59. Grimstone, A. V., 1963: The fine structure of some polymastigote flagellates. Proc. Linn. Soc. London 174, 49–52.CrossRefGoogle Scholar
  60. Harris, J. E., 1961: The mechanics of ciliary movement. In: The Cell and the Organism (J. A. Ramsay and V. B. Wigglesworth eds.). Cambridge Univ. Press. p. 22–36.Google Scholar
  61. Henneguy, L. F., 1898: Sur les rapports des cils vibrátiles avec les centrosomes. Arch. anat. micr. 1, 482–496.Google Scholar
  62. Hill, D. K., 1964: The location of adenine nucleotides in the striated muscle of the toad. J. Cell Biol. 20, 435–445.PubMedCrossRefGoogle Scholar
  63. Hoffmann-Berling, H., 1955: Geißelmodelle und Adenosintriphosphat (ATP). Biochim. Biophys. Acta 16, 146–154.PubMedCrossRefGoogle Scholar
  64. Hoffmann-Berling, H., 1959: The role of cell structures in cell movements. Society for the Study of Develpment and Growth, Symp. No. 17. Ronald-Press, N.Y., p. 45–62.Google Scholar
  65. Hughes, A., 1959: A history of cytology. Abelard-Schuman, N.Y., 158 pp.Google Scholar
  66. Inoué, S., 1959: Motility of cilia and mechanism of mitosis. In: Biophysical Science — A Study Program (J. L. Oncley ed.). Wiley, N.Y., p. 402–408.Google Scholar
  67. Jahn, T. L., 1961: The mechanism of ciliary movement. I. Ciliary reversal and activation by electric current. The Ludloff phenomenon in terms of core and volume conductors. J. Protozool. 8, 369–380.Google Scholar
  68. Jahn, T. L., and J. R. Fonseca, 1963: Mechanism of locomotion of flagellates: V. Trypanosoma lewisi and T. cruzi. J. Protozool. 10, Suppl. Abstract No. 23, p. 11.Google Scholar
  69. Jahn, T. L., M. D. Landman, and J. R. Fonseca, 1964: The mechanism of locomotion of flagellates. II. Function of the mastigonemes of Ochromonas. J. Protozool. 11, 291–296.Google Scholar
  70. Jones, R. F., and R. A. Lewin, 1960: The chemical nature of the flagella of Chlamydomonas moewusii. Exper. Cell Res. 19, 408–410.CrossRefGoogle Scholar
  71. Kerridge, D., R. W. Horne, and A. Glatjert, 1962: Structural components of flagella from Salmonella typhimurium. J. Mol. Biol. 4, 227–238.PubMedCrossRefGoogle Scholar
  72. Kinosita, H., 1954: Electric potentials and ciliary response in Opalina. J. Fac. Sci. Imp. Univ. Tokyo 7, 1–14.Google Scholar
  73. Knight Jones, E. W., 1954: Relations between metachronism and the direction of ciliary beat in metazoa. Quart. J. Micro. Sci. 95, 503–521.Google Scholar
  74. Kokina, N. N., 1960: Ionic interrelations and the role of potassium in the rhythmic variations in the intracellular potential of Infusoria. Biophysics 5, 159–168.Google Scholar
  75. Lansing, A. I., and F. Lamy, 1961a: Fine structure of cilia of rotifers. J. Biophys. Biochem. Cytology 9, 799–812.CrossRefGoogle Scholar
  76. Lansing, A. I., and F. Lamy, 1961b: Localization of ATP-ase in rotifer cilia. J. Biophys. Biochem. Cytology 11, 498–501.CrossRefGoogle Scholar
  77. Ledbetter, M. C., and K. R. Porter, 1963: A “microtubule” in plant cell fine structure. J. Cell Biol. 19, 239–250.PubMedCrossRefGoogle Scholar
  78. Leeuwenhoek, A. van, 1677: Letter 18. Oct. 9, 1676 to H. Oldenberg (see also Dobell for full English translation). Phil. Trans. Roy. Soc. London 12, No. 133, 821–831.CrossRefGoogle Scholar
  79. Leeuwenhoek, A. van, 1679: Letter 22 to Viscount Brouncker, Nov. 1677. Phil. Trans. Roy. Soc. London 12, No. 142, 1040–1043.Google Scholar
  80. Lenhossek, M. von, 1898: Über Flimmerzellen. Verh. Anat. Ges., Kiel 12, 106–128.Google Scholar
  81. Lowndes, A. G., 1941: On flagellar movement in unicellular organisms. Proc. Zool. Soc. London, 111 A, 111–134.CrossRefGoogle Scholar
  82. Lowy, J., and M. W. McDonough, 1964: Structure of filaments produced by reaggregation of Salmonella flagellin. Nature 204, 125–126.PubMedCrossRefGoogle Scholar
  83. Machin, K. E., 1958: Wave propagation along flagella. J. Exper. Biol. 35, 796–806.Google Scholar
  84. Manton, I., 1952: The fine structure of plant cilia. Symp. Soc. Exper. Biol. 6, 306–319.Google Scholar
  85. Manton, I., 1957: Observations with the electron microscope on the cell structure of the antheridium and spermatozoid of Sphagnum. J. Exper. Bot. 8, 382–400.CrossRefGoogle Scholar
  86. Manton, I., 1959 a: Observations on the microanatomy of the spermatozoid of the bracken fern (Pteridium aquilinum). J. Biophys. Biochem. Cytology 6, 413–418.CrossRefGoogle Scholar
  87. Manton, I., 1959 b: Observations on the internal structure of the spermatozoid of Dictyota. J. Exper. Bot. 10, 448–461.CrossRefGoogle Scholar
  88. Manton, I., 1963: The possible significance of some details of flagellar bases in plants. J. Roy. Micro. Soc. 82, 279–285.CrossRefGoogle Scholar
  89. Manton, I., and B. Clarke, 1956: Observations with the electron microscope on the internal structure of the spermatozoid of Fucus.J. Exper. Bot. 7, 416–432.CrossRefGoogle Scholar
  90. Miller, W. H., 1958: Derivatives of cilia in the distal sense cells of the retina of Pectén. J. Biophys. Biochem. Cytology 4, 227–228.CrossRefGoogle Scholar
  91. Naitoh, Y., 1958: Direct current stimulation of Opalina with intracellular microelectrode. Annot. Zool. Japan 31, 59–73.Google Scholar
  92. Nelson, L., 1958: Cytochemical studies with the electron microscope. I. Adenosintriphosphatase in rat spermatozoa. Biochim. Biophys. Acta 27, 634–641.PubMedCrossRefGoogle Scholar
  93. Pákducz, B., 1953: Zur Mechanik der Zilienbewegung. Acta Biológica Acad. Scient. Hungaricae 4, 177–220.Google Scholar
  94. Pákducz, B., 1958: Reizphysiologische Untersuchungen an Ziliaten. VII. Das Problem der Vorbestimmten Leitungsbahnen. Acta Biológica Acad. Scient. Hungaricae 8, 219–251.Google Scholar
  95. Pautard, F. G. E., 1962: Biomolecular aspects of spermatozoan motility. In: Sperm Motility (D. W. Bishop ed.). Amer. Assoc. Adv. Science. Wash. D. C., 189–232.Google Scholar
  96. Pease, D., 1963: The ultrastructure of flagellar fibrils. J. Cell Biol. 18, 313–326.PubMedCrossRefGoogle Scholar
  97. Pitelka, D. R., 1956: An electron microscope study of cortical structures of Opalina obtrigonoidea. J. Biophys. Biochem. Cytology 2, 423–432.CrossRefGoogle Scholar
  98. Pitelka, D. R., 1962: Observations on normal and abnormal cilia in Paramecium. In: Electron Microscopy Vol. 2 (S. S. Breese Jr., ed.). Acad. Press, N.Y. M-7.Google Scholar
  99. Pitelka, D. R., 1963: Electron microscopic structure of protozoa. Macmillan, N.Y., 269 pp.Google Scholar
  100. Porter, K. R., 1957: The submicroscopic morphology of protoplasm. Harvey Lectures, Ser. 51, 175–228.Google Scholar
  101. Purkinje, J. E., and G. Valentin, 1835: De phaenomeno generali et fundamentan motus vibratorii continui in membranis cum externis turn internis animalium plurimorum et superiorum et inferiorum ordinum obvii. Commentatio physiologica. Wratislaviae, A. Schultz, 96 pp.Google Scholar
  102. Pütter, A., 1903: Die Flimmerbewegung. Ergbn. Physiol. 2, 1–102.CrossRefGoogle Scholar
  103. Randall, J. T., 1959: The nature and significance of kinetosomes. J. Protozool. 6, Suppl. Abstract No. 120, p. 30.Google Scholar
  104. Randall, J. T., and S. F. Jackson, 1958: Fine structure and function in Stentorpolymorphous. J. Biophys. Biochem. Cytology 4, 807–830.CrossRefGoogle Scholar
  105. Randall, J. T., J. R. Warr, J. M. Hopkins, and A. McVittie, 1964: A single-gene mutation of Chlamydomonas reinhardii affecting motility: A genetic and electron microscope study. Nature 203, 912–914.PubMedCrossRefGoogle Scholar
  106. Renaud, F., and H. Swift, 1964: The development of basal bodies and flagella in Allomyces arbusculus. J. Cell Biol. 23, 339–354.PubMedCrossRefGoogle Scholar
  107. Rhodin, J., and T. Dalhamn, 1956: Electron microscopy of the tracheal lining in the rat. Z. Zeilforsch. 44, 345–412.CrossRefGoogle Scholar
  108. Roth, L. E., and E. W. Daniels, 1962: Electron microscope studies of mitosis in amebae. II. The giant ameba Pelomyxa carolinensis. J. Cell Biol. 12, 57.PubMedCrossRefGoogle Scholar
  109. Roth, L. E., and Y. Shigenaka, 1964: The structure and formation of cilia and filaments in rumen protozoa. J. Cell Biol. 20, 249–270.PubMedCrossRefGoogle Scholar
  110. Rothschild, Lord, 1961: Sperm energetics. In: The Cell and the Organism (J. A. Ramsay and V. B. Wigglesworth ed.). Cambridge Univ. Press, p. 9–21.Google Scholar
  111. Rothschild, Lord, 1962: Sperm movement. Problems and observations. In: Spermatozoan Motility (D. W. Bishop ed.). Amer. Assoc. Adv. Science, Wash., D. C., p. 13–29.Google Scholar
  112. Rothschild, Lord, and K. W. Cleland, 1952: The physiology of sea urchin spermatozoa. The nature and location of the endogenous substrate. J. Exper. Biol. 29, 66–71.Google Scholar
  113. Rouiller, C. H., E. Fauré-Fremiet, and M. Gauchery, 1956: Origine ciliare des fibrilles scléroprotéiques pédonculaires chez les ciliés péritriches. Exper. Cell Res. 11, 527–541.CrossRefGoogle Scholar
  114. Ruby, A. D., 1962: Functional properties of the sperm flagellum. Abstracts, 2nd Ann. Meeting, Amer. Soc. Cell Biol., San Francisco, 160.Google Scholar
  115. Satir, P., 1961a: Cilia. Scientific Amer. 204, No. 2, 108–116.Google Scholar
  116. Satir, P., 1961b: The mechanism of ciliary motion: a correlated morphological and physiological study of the gill of the freshwater mussel, Elliptio complanatus (Solander). Thesis. Rockefeller Institute, N.Y.Google Scholar
  117. Satir, P., 1962a: A vesicular component of the ciliary stalks of Elliptio. Abstracts, 2nd Ann. Meeting, Amer. Soc. Cell Biol., San Francisco, 163.Google Scholar
  118. Satir, P., 1962b: On the evolutionary stability of the 9 + 2 pattern. J. Cell Biol. 12, 181–184.PubMedCrossRefGoogle Scholar
  119. Satir, P., 1963: Studies on cilia. The fixation of the metachronal wave. J. Cell Biol. 18, 345–365.PubMedCrossRefGoogle Scholar
  120. Satir, P., 1964: Filament-matrix interaction during ciliary movement: Inferences drawn from electron microscopy of the distal end of the ciliary shaft of lamellibranch gill cilia. J. Cell Biol. 23, 82A.Google Scholar
  121. Satir, P., and F. M. Child, 1963: The microscopy of ATP-reactivated ciliary models. Biol. Bull. 125, 390.Google Scholar
  122. Satir, P. G., and W. H. Miller, 1961: Electrical signs of ciliary activity. Abstracts, Internat. Biophysics Congress, Stockholm. No. 363, p. 260.Google Scholar
  123. Satir, P., and B. Satir, 1964: A model for nine-fold symmetry in a keratin and cilia. J. Theor. Biol. 7, 123–128.PubMedCrossRefGoogle Scholar
  124. Schuster, F., 1963: An electron microscope study of the amoeboflagellate Naegleriagruberi (Schardinger). I. The ameboid and flagellate stages. J. Protozool. 10, 297–312.PubMedGoogle Scholar
  125. Seaman, G. R., 1960: Large-scale isolation of kinetosomes from the ciliated protozoan Tetrahymena pyriformis. Exper. Cell Res. 21, 292–302.CrossRefGoogle Scholar
  126. Sedar, A. W., and K. R. Porter, 1955: The fine structure of the cortical components of Paramecium multimicronucleatum. J. Biophys. Biochem. Cytology 1, 583–604.CrossRefGoogle Scholar
  127. Shapiro, J. E., B. R. Hershenov, and G. S. Tulloch, 1961: The fine structure of Haematoloechus spermatozoan tail. J. Biophys. Biochem. Cytology 9, 211–217.CrossRefGoogle Scholar
  128. Sharpey, W., 1835–36: Cilia. In: The Cyclopedia of Anatomy and Physiology (R. B. Todd ed.). Longman, Brown, Green, Longmans, and Roberts, London, Vol. 1, pp. 606–638.Google Scholar
  129. Sleigh, M. A., 1960: The form of beat in cilia of Stentor and Opalina. J. Exper. Biol. 37, 1–10.Google Scholar
  130. Sleigh, M. A., 1962: The biology of cilia and flagella. Pergamon, Oxford. 242 pp.Google Scholar
  131. Slifer, E. H., 1961: The fine structure of insect sense organs. Internat. Rev. Cytology 9, 125–159.CrossRefGoogle Scholar
  132. Sorokin, S., 1962: Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells J. Cell Biol. 15, 363–377.PubMedCrossRefGoogle Scholar
  133. Sotelo, J. R., and O. Trujillo-Cenoz, 1958: Electron microscope study of the development of ciliary components of the neural epithelium of the chick embryo. Z. Zeilforsch. 49, 1–12.CrossRefGoogle Scholar
  134. Szollosi, D., 1964: The structure and function of centrioles and their satellites in the jellyfish Phialidium gregarium. J. Cell Biol. 21, 465–479.PubMedCrossRefGoogle Scholar
  135. Tibbs, J., 1957: The nature of algal and related flagella. Biochim. Biophys. Acta. 23, 275–288.PubMedCrossRefGoogle Scholar
  136. Tibbs, J., 1962: Swelling of sperm tails accompanying ATP hydrolysis. Nature 193, 686–688.PubMedCrossRefGoogle Scholar
  137. Tokuyasu, K., and E. Yamada, 1959: The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of the outer segments of retinal rods. J. Biophys. Biochem. Cytology 6, 225–230.CrossRefGoogle Scholar
  138. Watson, M. R., and J. M. Hopkins, 1962: Isolated cilia from Tetrahymena pyriformis. Exper. Cell Res. 28, 280–295.CrossRefGoogle Scholar
  139. Watson, M. R., J. M. Hopkins, and J. T. Randall, 1961: Isolated cilia from Tetrahymena pyriformis. Exper. Cell Res. 23, 629–631.CrossRefGoogle Scholar
  140. Watson, M. R., J. B. Alexander, and N. R. Silvester, 1964: The cilia of Tetrahymena pyriformis. Fractionation of isolated cilia. Exper. Cell Res. 33, 112–129.CrossRefGoogle Scholar
  141. Weber, H. H., 1955: The link between metabolism and motility of cells and muscles. Symp. Soc. Exper. Biol. 9, 271–281.Google Scholar
  142. Whitear, M., 1962: The fine structure of crustacean proprioceptors. I. The chordotonal organs in the legs of the shore crab Carcinas maenas. Phil. Trans. Roy. Soc. London. 245 B, 291–325.CrossRefGoogle Scholar
  143. Willmer, E. N., 1961: Amoeba-flagellate transformation. Exper. Cell Res. Suppl. 8, 32–46.CrossRefGoogle Scholar

Copyright information

© Spinger-Verlag/Wien 1965

Authors and Affiliations

  1. 1.Whitman Laboratory, Dept. of ZoologyUniversity of ChicagoUSA

Personalised recommendations