Food Vacuoles

  • J. A. Hitching
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 3 / D / 1,2,3a,3b)


Food is digested within food vacuoles in many animal cells. Intracellular digestion of solid food within food vacuoles is the sole means of digestion of many Protozoa, as well as of Porifera. It also occurs in the Coelenterata, Ctenophora, Turbellaria, Rotifera, Brachiopoda, Lamellibranchia, and Gastropoda, and it is suspected or reported in a few Arthropoda (e. g. the mite Liponyssus, Reichenow 1922), in Cephalochorda, and in certain other minor groups. However, in all these cases except possibly in some Turbellaria, the food is subjected first to extracellular digestion in greater or lesser degree. (See the reviews by Krijgsman 1953 and Yonge 1954.) In some cases also it is claimed that discrete inclusions within epithelial cells result from precipitation of food substances absorbed in solution rather than ingested (Roesler 1934), but this is difficult to prove. In general intracellular digestion is found in the more primitive groups and members of groups. Even in Mammalia some fat is absorbed without complete hydrolysis (Frazer 1946; Reiser, Bryson, Carr, and Kuiken 1952), and minute lipoid spindle-shaped droplets have been demonstrated in transit through the free border of the intestinal epithelium (Baker 1951), lodged apparently in the fine canals which traverse this border (Baker 1942).


Digestive Gland Nile Blue Entamoeba Histolytica Food Vacuole Contractile Vacuole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexeieff, A., 1933: Phagocytose chez l’Entamoeba histolytica. Bull. Soc. Pat. exot. 26, 909–913.Google Scholar
  2. Andresen, N., 1942: Cytoplasmic inclusions in the amoeba Chaos chaos Linné. C. r. Lab. Carlsberg Sér. chim. 24, 139–184Google Scholar
  3. Andresen, N., C. Chapman-Andresen, and H. Holter, 1952: Autoradiographic studies on the amoeba Chaos chaos with 14C. C. r. Lab. Carlsberg, Sér. chim. 28, 189–220.Google Scholar
  4. Andresen, N. and H. Holter, 1945: Cytoplasmic changes during starvation of the amoeba Chaos chaos. C. r. Lab. Carlsberg, Sér. chim. 25, 107–146.Google Scholar
  5. Andrews, E. A., 1923: Folliculina; case making, anatomy and transformation. J. Morph. (Am.) 38, 207–276.CrossRefGoogle Scholar
  6. Andrews, E. A., 1946: Ingestion organs in Folliculinids and in Stentors. J. Morph. (Am.) 79, 419–444CrossRefGoogle Scholar
  7. Arnold G., 1909: Intracellular and general digestive processes in Planariae. Quart. J. microsc. Sci. 54, 207–220.Google Scholar
  8. Baker, J. R., 1942: The free border of the intestinal epithelial cell of vertebrates. Quart. J. microsc. Sci. 84, 73–103.Google Scholar
  9. Baker, J. R., 1951: The absorption of lipoid by the intestinal epithelium of the mouse. Quart. J. microsc. Sci. 92, 79–86.Google Scholar
  10. Becker, E. R., 1926: The rôle of the nucleus in the cell functions of amoebae. Biol. Bull Mar. biol. Labor., Woods Hole (Am.) 50, 382–391.CrossRefGoogle Scholar
  11. Beers, C. D., 1924: Observations on Amoeba feeding on the ciliate Frontonia. J. exper. Biol. 1, 335–341.Google Scholar
  12. Bernheimer, A. W., 1938: Fate of the crystals in amebas. Arch. Protistenk. 90, 365–368.Google Scholar
  13. Bessis, M. C., 1955: Cytologic aspects of immunohematology: a study with phase contrast cinematography. In “Leukocytic functions”, Ann. N. Y. Acad. Sci. 59, 665–1070. Editor, R. W. Miner.Google Scholar
  14. Beutler, R., 1924: Experimentelle Untersuchungen über die Verdauung bei Hydra. Z. vergl. Physiol. 1, 1–56.Google Scholar
  15. Bishop, A., 1923: Some observations upon Spirostomum ambiguum (Ehrenberg). Quart. J. microsc. Sci. 67, 391–434.Google Scholar
  16. Boschma, H., 1925: On the feeding reactions and digestion in the coral Astrangia danae, with notes on its symbiosis with zoöxanthellae. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 49, 407–439.CrossRefGoogle Scholar
  17. Bozler, E., 1924: Über die Morphologie der Ernährungsorganellen und die Physiologie der Nahrungsaufnahme von Paramecium caudatum Ehrb. Arch. Protistenk. 49, 163–215.Google Scholar
  18. Brachet, J., 1954: Nuclear control of enzymatic activities. In “Recent developments in Cell Physiology”, editor J. A. Kitching, Colston Papers 7, 91–102. Butterworths Scientific Publications, London, 206 pp.Google Scholar
  19. Bragg, A. N., 1935: The initial movements of the food vacuole of Paramecium trichium Stokes. Arch. Protistenk. 85, 420–425.Google Scholar
  20. Bragg, A. N., 1936 a: Selection of food in Paramecium trichium. Physiol. Zool. 9, 433–442.Google Scholar
  21. Bragg, A. N., 1936 b: Observations on the initial movements of the food vacuoles of Paramecium multimicronucleata Powers and Mitchell with comments on conditions in other species of the genus. Arch. Protistenk. 88, 76–84.Google Scholar
  22. Bruyn, P. P. H. de, 1947: Theories of amoeboid movement. Quart. Rev. Biol. (Am.) 22, 1–24.CrossRefGoogle Scholar
  23. Cain, A. J., 1947: The use of Nile blue in the examination of lipoids. Quart. J. microsc. Sci. 88, 383–392.Google Scholar
  24. Cameron, G. R., 1932: Inflammation in earthworms. J. Path. a. Bacter. 35, 933–972.CrossRefGoogle Scholar
  25. Carter, H. J., 1856: Notes on the freshwater infusoria of the island of Bombay. No. 1. Organization. Ann. Mag. nat. Hist., 2nd series, 18, 115–132 and 221–249.Google Scholar
  26. Causey, D., 1925: Mitochondria and Golgi bodies in Entamoeba gingivalis (Gros) Brumpt. Univ. Calif. Publ. Zool. 28, 1–18.Google Scholar
  27. Causey, D., 1926: Mitochondria in ciliates with especial reference to Paramecium caudatum Ehr. Univ. Calif. Publ. Zool. 28, 231–247.Google Scholar
  28. Chambers, R., and M. J. Kopac, 1937: The coalescence of living cells with oil drops. 1. Arbacia eggs immersed in sea water. J. cellul. a. comp. Physiol. (Am.) 9, 331–343.CrossRefGoogle Scholar
  29. Chapeaux, M., 1893: Recherches sur la digestion des coelentérés. Arch. Zool. exp. gén., 3e série, 1, 139–160.Google Scholar
  30. Chuin, T. T., 1929: Les phénomènes cytologiques au cours de la digestion intracellulaire chez le scyphistome de Chrysaora. C. r. Soc. Biol. 102, 557–558.Google Scholar
  31. Claff, C. L., V. C. Dewey, and G. W. Kidder, 1941: Feeding mechanisms and nutrition in three species of Bresslaua. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 81, 221–234.CrossRefGoogle Scholar
  32. Clark, A. M., 1942: Some effects of removing the nucleus from Amoeba. Austral. J. exper. Biol. a. med. Sci. 20, 241–247.CrossRefGoogle Scholar
  33. Clark, A. M., 1943: Some physiological functions of the nucleus in Amoeba, investigated by micrurgical methods. Austral. J. exper. Biol. a. med. Sci. 21, 215–220.CrossRefGoogle Scholar
  34. Claus, C., 1874: Die Gattung Monophyes Cls. und ihr Abkömmling Diplophysa Gbr. Schriften zoologischen Inhalts 1, 27–33.Google Scholar
  35. Comandon, J., and P. de Fonbrune, 1936: Mécanisme de l’ingestion d’oscillaires par des amibes. Enregistrement cinématographique. C. r. Soc. Biol., Paris 123, 1170–1172.Google Scholar
  36. Comandon, J., and P. de Fonbrune, 1939 a: Ablation du noyau chez une amibe. Reaction cinétiques à la piqûre de l’amibe normale ou dénucléée. C. r. Soc. Biol., Paris 130, 740–744.Google Scholar
  37. Comandon, J., and P. de Fonbrune, 1939 b: Greffe nucléaire totale, simple ou multiple, chez une amibe. C. r. Soc. Biol., Paris 130, 744–748.Google Scholar
  38. Cotte, J., 1904: Contribution à l’étude de la nutrition chez les spongiaires. Bull. sci. France et Belg. (Fr.) 38, 420–573.Google Scholar
  39. Dantec F. le, 1890: Recherches sur la digestion intracellulaire chez les Protozoaires. Ann. Inst. Pasteur 4, 776–791.Google Scholar
  40. Dantec F. le, 1891: Recherches sur la digestion intracellulaire chez les Protozoaires (2e partie). Ann. Inst. Pasteur 5, 163–170.Google Scholar
  41. Davtes, R. E., 1951: The mechanism of hydrochloric acid production by the stomach. Biol. Rev. 26, 87–120.Google Scholar
  42. Dembowsky, J., 1922: Weitere Studien über die Nahrungswahl bei Paramecium caudatum. Trav. Lab. Biol. gén. Nencki 1, 1–16.Google Scholar
  43. Dunihue, F. W., 1931: The vacuome and the neutral red reaction in Paramecium caudatum. Arch. Protistenk. 75, 476–497.Google Scholar
  44. Dustin, P., 1947: Ribonucleic acid and the vital staining of cytoplasmic vacuoles in animal cells. Symp. Soc. exper. Biol. 1, 114–126.Google Scholar
  45. Edwards, J. G., 1924: The action of certain reagents on amoeboid movement. II. Locomotor and physiological reactions. J. exper. Biol. 1, 571–595.Google Scholar
  46. Edwards, J. G., 1925: Formation of food-cups in Amoeba induced by chemicals. Biol. Bull. Mar. biol. Labor. Woods Hole (Am.) 48, 236–239.CrossRefGoogle Scholar
  47. Emery, F. E., 1928: The metabolism of amino acids by Paramecium caudatum. J. Morph. (Am.) 45, 555–577.CrossRefGoogle Scholar
  48. Fenn, W. O., 1921: The phagocytosis of solid particles. III. Carbon and quartz. J. gen. Physiol. (Am.) 3, 575–593.CrossRefGoogle Scholar
  49. Fleisher, G. A., 1955: Peptidases in human leucocytes. In “Leukocytic functions.” Ann. N. Y. Acad. Sci. 59, 665–1070. Editor, R. W. Miner.Google Scholar
  50. Fortner, H., 1928: Zur Kenntnis der Verdauungsvorgänge bei Protisten. Studien an Paramaecium caudatum. Arch. Protistenk. 61, 282–292.Google Scholar
  51. Fortner, H., 1933: Über den Einfluß der Stoffwechselendprodukte der Futterbakterien auf die Verdauungsvorgänge bei Protozoen (Untersuchungen an Paramaecium caudatum Ehrbg.). Arch. Protistenk. 81, 19–56.Google Scholar
  52. Frazer, A. C., 1946: The absorption of triglyceride fat from the intestine. Physiol. Rev. (Am.) 26, 103–119.Google Scholar
  53. George, W. C., 1952: The digestion and absorption of fat in lamellibranchs. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 102, 118–127.CrossRefGoogle Scholar
  54. Glücksmann, A., 1951: Cell deaths in normal vertebrate ontogeny. Biol. Rev. 26, 59–86.CrossRefGoogle Scholar
  55. Goldacre, R. J., 1952: The action of general anaesthetics and the mechanism of response to touch. Symp. Soc. exper. Biol. 6, 128–144.Google Scholar
  56. González, M. D. P., 1949: Sôbre a digestão e a respiração des Temnocephalas (Temnocephala bresslaui spec. nov.). Bol. Fac. Filos. Cienc. S. Paulo. Zool. Ser. 14, 277–325.Google Scholar
  57. Graham, A., 1931: On the morphology, feeding mechanisms, and digestion of Ensis siliqua (Schumacher). Trans. roy. Soc. Edinb. 56, 725–751.Google Scholar
  58. Grassé, P.-P., 1952 “Traité de Zoologie.” La symbiose flagellés-termites, pp. 945–962. Tome 1, Fasc. 1, 1071 pp. Masson & Cie, Paris.Google Scholar
  59. Grassé, P.-P., 1953: “Traité de Zoologie.” Tome 1, Fasc. 2. 1160 pp. Masson & Cie, Paris.Google Scholar
  60. Gray, J., 1931: “A text-book of experimental cytology.” 516 pp. Cambridge University Press.Google Scholar
  61. Greeff, R., 1870–71: Untersuchungen über den Bau und die Naturgeschichte der Vorticellen. Arch. Naturgesch. 36, 353–384Google Scholar
  62. Greeff, R., 1870–71: Untersuchungen über den Bau und die Naturgeschichte der Vorticellen. Arch. Naturgesch. und 37, 185–221.Google Scholar
  63. Greenwood, M., 1887: On the digestive process in some rhizopods. Part II. J. Physiol. (Brit.) 8, 263–287.Google Scholar
  64. Greenwood, M., 1894: On the constitution and mode of formation of “food vacuoles” in infusoria, as illustrated by the history of the processes of digestion in Carchesium polypinum. Phil. Trans. B. 185, 355–383.CrossRefGoogle Scholar
  65. Grittner, I., 1951: Die Nahrungswahl des Pantoffeltierchens Paramecium caudatum Ehrb. Mikrokosmos 41, 62–65.Google Scholar
  66. Hall, R. P., 1931: Yacuome and Golgi apparatus in the ciliate Stylonychia. Z. Zeilforsch. 13, 770–782.CrossRefGoogle Scholar
  67. Hall, R. P. and F. W. Dunihue, 1931: On the vacuome and food vacuoles in Vorticella. Trans. amer. microsc. Soc. 50, 196–205.CrossRefGoogle Scholar
  68. Hall, R. P. and R. F. Nigrelli, 1930: Relation between mitochondria and food vacuoles in the ciliate Vorticella. Trans. amer. microsc. Soc. 49, 54–57.CrossRefGoogle Scholar
  69. Hirsch, G. C., 1925: Probleme der intraplasmatischen Verdauung. Ihre Beziehungen zur Resorption, Diffusion, Nahrungsaufnahme, Darmbau und Nahrungswahl bei den Metazoen. Z. vergl. Physiol. 3, 183–208.CrossRefGoogle Scholar
  70. Hofender, H., 1930: Über die animalische Ernährung von Ceratium hirundinella O. F. Müller und über die Rolle des Kernes bei dieser Zellfunktion. Arch. Protistenk. 71, 1–32.Google Scholar
  71. Holter, H., 1954: Distribution of some enzymes in the cytoplasm of amoebae. Proc. roy. Soc. B. 142, 140–146.CrossRefGoogle Scholar
  72. Holter, H. und W. L. Doyle, 1938: Über die Lokalisation der Amylase in Amöben. C. r. Labor. Carlsberg, Sér. chim. 22, 219–225.Google Scholar
  73. Holter, H. and S. Løvtrup, 1949: Proteolytic enzymes in Chaos chaos, C. r. Labor. Carlsberg, Sér. chim. 27, 27–62.Google Scholar
  74. Holter, H. and J. M. Marshall, 1954: Studies on pinocytosis in the amoeba Chaos chaos. C. r. Labor. Carlsberg, Sér. chim. 29, 7–26.Google Scholar
  75. Hopkins, D. L., 1938: The vacuoles and vacuolar activity in the marine amoeba, Flabellula mira Schaeffer and the nature of the neutral red system Protozoa. Biodynamica 34, 22 pp.Google Scholar
  76. Hopkins, D. L., 1946: The contractile vacuole and the adjustment to changing concentrations in fresh water amoebae. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 90, 158–176.CrossRefGoogle Scholar
  77. Hopkins, D. L., and K. L. Warner, 1946: Functional cytology of Entamoeba histolytica. J. Parasitol. (Am.) 32, 175–189.CrossRefGoogle Scholar
  78. Horning, E. S., 1926: Observations on mitochondria. Austral. J. exper. Biol. a. med. Sci. 3, 149–159.CrossRefGoogle Scholar
  79. Howland, R. B., 1929: The pH of gastric vacuoles. Protoplasma 5, 127–134.CrossRefGoogle Scholar
  80. Hughes, A., 1953: The growth of the embryonic neurite in tissue culture. J. Anat. (Proc. anat. Soc.) 87, 446.Google Scholar
  81. Hyman, L. H., B. H. Willier, and S. A. Rifenburgh, 1924: Physiological studies on Planaria. VI. A respiratory and histochemical investigation of the source of the increased metabolism after feeding. J. exper. Zool. 40, 473–494.CrossRefGoogle Scholar
  82. Ivanic, M., 1933: Über die bei der Nahrungsaufnahme einiger Süßwasseramöben vorkommende Bildung cytostomähnlicher Gebilde. Arch. Protistenk. 79, 200–233.Google Scholar
  83. Ivanic, M., 1936 a: Über die mittels cytostomähnlicher Gebilde vorkommende Gefangennahme und Einverleibung der Nahrung und deren Zerkleinerung bei einer Süßwasseramöbe (Amoeba Entzii spec. nov.). Cellule (Belg.) 44, 367–386.Google Scholar
  84. Ivanic, M., 1936 b: Recherches nouvelles sur l’ingestion des aliments au moyen de cytostomes chez quelques amibes d’eau douce (Amoeba vespertilio Penard et Hartmanella maasi Ivanic). Cellule (Belg.) 45, 179–206.Google Scholar
  85. Jacek, S., 1917: Untersuchungen über den Stoffwechsel bei rhabdocoelen Turbellarien (Stenostomum). Bull. internat. Acad. Sci. Cracovie (Acad. pol. Sci.), Sci. nat., 8 B, 241–261.Google Scholar
  86. Jennings, H. S., 1904: Contributions to the study of the behaviour of lower organisms. Carnegie Inst., Wash., 256 pp.CrossRefGoogle Scholar
  87. Jullien, A., 1928: Sur les phénomènes de phagocytose par les cellules sanguines de la seiche. Bull. Zool. Fr. 53, 87–89.Google Scholar
  88. Kelley, E. G., 1931: The intracellular digestion of thymus nucleoprotein in triclad flatworms. Physiol. Zoöl. 4, 515–541.Google Scholar
  89. Kepner, W. A. and W. C. Whitlock, 1921: Food reactions of Amoeba proteus. J. exper. Zool. 32, 397–425.CrossRefGoogle Scholar
  90. Kilian, E. F., 1952: Wasserströmung und Nahrungsaufnahme beim Süßwasserschwamm Ephydatia fluviatilis. Z. vergl. Physiol. 34, 407–447.CrossRefGoogle Scholar
  91. Kitching, J. A., 1938: On the mechanism of movement of food vacuoles in peritrich ciliates. Arch. Protistenk. 91, 78–88.Google Scholar
  92. Kitching, J. A., 1948: The physiology of contractile vacuoles. Y. The effects of short-term variations of temperature on a fresh-water peritrich ciliate. J. exper. Biol. 25, 406–420.Google Scholar
  93. Kitching, J. A., 1956: Contractile vacuoles of Protozoa. Protoplasmatologia III D 3 a.Google Scholar
  94. Koehping, V., 1930: The neutral-red reaction. J. Morph. (Am.) 49, 45–137.CrossRefGoogle Scholar
  95. Krijgsman, B. J., 1953: Die Resorption von physiologisch wichtigen Stoffen im Magendarmkanal bei Vertebraten und Invertebraten. Tabul. biol. Hague 21, Part 2, 203–239.Google Scholar
  96. Levetzow, K. G. von, 1943: Zur Biologie und Verdauungsphysiologie der polycladen Turbellarien. Zool. Anz. Leipzig. 141, 189–196.Google Scholar
  97. Lewis, W. H., 1931: Pinocytosis. Johns Hopk. Hosp. Bull. 49, 17–27.Google Scholar
  98. Losina-Losinsky, L. K., 1931: Zur Ernährungsphysiologie der Infusorien. Untersuchungen über die Nahrungsauswahl und Vermehrung bei Paramecium caudatum. Arch. Protistenk. 74, 18–120.Google Scholar
  99. Lucké, B., 1940: The living cell as an osmotic system and its permeability to water. Cold Spr. Hbr. Symp. quant. Biol. 8, 123–132.CrossRefGoogle Scholar
  100. Lund, E. J., 1914 a: The relations of Bursaria to food. I. Selection in feeding and in extrusion. J. exper. Zool. 16, 1–52.CrossRefGoogle Scholar
  101. Lund, E. J., 1914 b: The relations of Bursaria to food. II. Digestion and resorption in the food vacuole, and further analysis of the process of extrusion. J. exper. Zool. 17, 1–43.CrossRefGoogle Scholar
  102. Lund, E. E., 1935: A correlation of the silverline and neuromotor systems of Paramecium. Univ. Calif. Publ. Zool. 39, 35–76.Google Scholar
  103. Lund, E. E., 1941: The feeding mechanisms of various ciliated Protozoa. J. Morph. (Am.) 69, 563–573.CrossRefGoogle Scholar
  104. Lynch, V., 1919: The function of the nucleus of the living cell. Amer. J. Physiol. 48, 258–283.Google Scholar
  105. MacLennan, R. F., 1936: Dedifferentiation and redifferentiation in Ichthyophthirius. II. The origin and function of cytoplasmic granules. Arch. Protistenk. 86, 404–426.Google Scholar
  106. MacLennan, R. F., 1941: Cytoplasmic inclusions. Chapter 3, pp. 111–190, in “Protozoa in biological research.” Editors: G. N. Calkins and F. N. Summers. Columbia University Press. 1148 pp.Google Scholar
  107. Mansour, K., 1946: The zooxanthellae, morphological peculiarities and food and feeding habits of the Tridacnidae with reference to other lamellibranchs. Proc. Egypt. Acad. Sci. 1, 1–12.Google Scholar
  108. Mansour-Bek, J. J., 1946: The digestive enzymes of Tridacna elongata Lamk. and Pinctada vulgaris L. Proc. Egypt. Acad. Sci. 1, 13–20.Google Scholar
  109. Mansour-Bek, J. J., 1954: The digestive enzymes in Invertebrata and Protochordata. Tabul. biol. Hague 21, part 3, 75–367.Google Scholar
  110. Marchant, J., 1952: Phase contrast and electron microscope studies of the appearance and behaviour of the white cells of normal human blood. Quart. J. microsc. Sci. 93, 395–412.Google Scholar
  111. Mast, S. O., 1938: Digestion of fat by Amoeba proteus. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 75, 389–394.CrossRefGoogle Scholar
  112. Mast, S. O., 1942: The hydrogen ion concentration of the content of the food vacuoles and the cytoplasm in Amoeba and other phenomena concerning food vacuoles. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 83, 173–204.CrossRefGoogle Scholar
  113. Mast, S. O., 1947: The food vacuole in Paramecium. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 92, 31–71.CrossRefGoogle Scholar
  114. Mast, S. O. and W. J. Bowen, 1944: The food vacuole in the Peritricha, with special reference to the hydrogen ion concentration of its content and of its cytoplasm. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 87, 188–222.CrossRefGoogle Scholar
  115. Mast, S. O. and W. L. Doyle, 1934: Ingestion of fluid by Amoeba. Protoplasma 20, 555–560.CrossRefGoogle Scholar
  116. Mast, S. O. and W. L. Doyle, 1935 a: Structure, origin and function of cytoplasmic constituents in Amoeba proteus. I. Structure. Arch. Protistenk. 86, 155–180.Google Scholar
  117. Mast, S. O. and W. L. Doyle, 1935 b: Structure, origin and function of cytoplasmic constituents in Amoeba proteus with special reference to mitochondria and Golgi substance. II. Origin and function based on experimental evidence; effect of centrifuging on Amoeba proteus. Arch. Protistenk. 86, 278–306.Google Scholar
  118. Mast, S. O. and W. F. Hahnert, 1935: Feeding, digestion, and starvation in Amoeba proteus. (Leidy). Physiol. Zool. 8, 255–272.Google Scholar
  119. Mast, S. O. and D. L. Hopkins, 1941: Regulation of the water content of Amoeba mira and adaptation to changes in the osmotic concentration of the surrounding medium. J. cellul. a. comp. Physiol. (Am.) 17, 31–48.CrossRefGoogle Scholar
  120. McCutcheon, M., 1946: Chemotaxis in leucocytes. Physiol. Rev. (Am.) 26, 319–336.Google Scholar
  121. McCutcheon, M., 1955: Chemotaxis and locomotion of leukocytes. In “Leukocytic functions”, Ann. N. Y. Acad. Sci. 59, 665–1070. Editor, R. W. Miner.Google Scholar
  122. Mesnil, M., 1901: Recherches sur la digestion intracellulaire et les diastases des Actinies. Ann. Inst. Pasteur 15, 352–397.Google Scholar
  123. Metalnikov, S., 1912: Contribution à l’étude de la digestion intracellulaire chez les protozoaires. Arch. Zool. expér. gén. 5e sér. 9, 373–499.Google Scholar
  124. Metalnikov, S., 1916: Sur la digestion intracellulaire chez les protozoaires (La circulation des vacuoles digestives). Ann. Inst. Pasteur 30, 427–445.Google Scholar
  125. Metschnikoff, E., 1878: Über die Verdauungsorgane einiger Süßwasserturbellarien. Zool. Anz. 1, 387–390.Google Scholar
  126. Metschnikoff, E., 1880: Über die intracelluläre Verdauung bei Coelenteraten. Zool. Anz. 3, 261–263.Google Scholar
  127. Metschnikoff, E., 1893: “Lectures on the comparative pathology of inflammation.” Translated by F. A. and E. H. Starling. Kegan Paul, Trench, Trübner & Co. Ltd., London. 218 pp.Google Scholar
  128. Metschnikoff, E., 1905: “Immunity in infective diseases.” Translated by F. G. Binnie. Cambridge University Press. 591 pp.Google Scholar
  129. Millott, N., 1938: On the morphology of the alimentary canal, process of feeding, and physiology of digestion of the nudibranch mollusc, Jorunna tomentosa Cuvier. Phil. Trans. B. 228, 173–217.Google Scholar
  130. Mitchison, J. M., 1952: Cell membranes and cell division. Symp. Soc. exper. Biol. 6, 105–127.Google Scholar
  131. Moellendorff W. v., 1925: Beiträge zur Kenntnis der Stoffwanderungen bei wachsenden Organismen. IV. Die Einschaltung des Farbstofftransportes in die Resorption bei Tieren verschiedenen Lebensalters. Z. Zellforsch. 2, 129–202.CrossRefGoogle Scholar
  132. Mouton, H., 1902: Recherches sur la digestion chez les amibes et leur diastase intracellulaire. Ann. Inst. Pasteur 16, 457–507.Google Scholar
  133. Mudd, S., M. McCutcheon, and B. Lucké, 1934: Phagocytosis. Physiol. Rev. (Am.) 14, 210–275.Google Scholar
  134. Nelson, E. C., 1933: The feeding reactions of Balantidium coli from the chimpanzee and pig. Amer. J. Hyg. 18, 185–201.Google Scholar
  135. Nierenstein E., 1905: Beiträge zur Ernährungsphysiologie der Protisten. Z. allg. Physiol. 5, 435–510.Google Scholar
  136. Nierenstein E., 1910: Über Fettverdauung und Fettspeicherung bei Infusorien. Z. allg. Physiol. 10. 137–149.Google Scholar
  137. Nierenstein, E., 1910: Über die Natur und Stärke der Säureabscheidung in den Nahrungsvakuolen von Paramecium caudatum. Z. wiss. Zool. 125, 513–518.Google Scholar
  138. Nouvel, H., 1933: Recherches sur le cytologie, la physiologie et la biologie des dicyémides. Ann. Inst. océanogr. Monaco. N. S. 13, 163–256.Google Scholar
  139. Parker, T. J., 1880: On the histology of Hydra fusca. Quart. J. microsc. Sci. 20, 219–224.Google Scholar
  140. Penard, E., 1905: Observations sur les amibes à pellicule. Arch. Protistenk. 6, 175–206.Google Scholar
  141. Pitts, R. F., and R. S. Alexander, 1945: The nature of the renal tubular mechanism for acidifying the urine. Amer. J. Physiol. 144, 239–254.Google Scholar
  142. Policard, A., et M. Bessis, 1953: Fractionnement d’hématies par les leucocytes au cours de leur phagocytose. C. r. Soc. Biol. 147, 982–984.Google Scholar
  143. Pourbaix, N., 1931: Contribution à l’étude de la nutrition chez les spongiaires. Bull. Sta. océanogr. Salammbô 23, 3–27.Google Scholar
  144. Radir, P. L., 1931: A demonstration of mon-axial polarity in the naked ameba. Protoplasma 12, 42–51.CrossRefGoogle Scholar
  145. Ray, D. L., 1951: Agglutination of bacteria: a feeding method in the soil ameba Hartmanella sp. J. exper. Zool. 118, 443–465.CrossRefGoogle Scholar
  146. Reichenow, E., 1921: Die Hämococcidien der Eidechsen. Vorbemerkungen und I. Teil. Die Entwicklungsgeschichte von Karolysus. Arch. Protistenk. 42, 179–291.Google Scholar
  147. Reiser, R., M. J. Bryson, M. J. Carr, and K. A. Kuiken, 1952: The intestinal absorption of triglycerides. J. biol. Chem. (Am.) 194, 131–138.Google Scholar
  148. Rhumbler, L., 1910: Die verschiedenartigen Nahrungsaufnahmen bei Amöben als Folge verschiedener Colloidzustände ihrer Oberflächen. Arch. Entw.mechan. 30, 194–223.Google Scholar
  149. Roesler, R., 1934: Histologische, physiologische und serologische Untersuchungen über die Verdauung bei der Zeckengattung Ixodes Latr. Z. wiss. Biol. 28, 297–317.Google Scholar
  150. Rothschild, Lord, 1952: Spermatozoa. Sci. Progr., Lond. 40, No. 157, 10 pp.Google Scholar
  151. Saint-Hilaire, C., 1910: Beobachtungen über die intrazelluläre Verdauung in den Darmzellen der Planarien. Z. allg. Physiol. 11, 177–248.Google Scholar
  152. Schaeffer, A. A., 1910: Selection of food in Stentor coeruleus (Ehr.). J. exper. Zool. 8, 75–132.CrossRefGoogle Scholar
  153. Schaeffer, A. A., 1916: On the behavior of ameba toward fragments of glass and carbon and other indigestible substances, and toward some very soluble substances. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 31, 303–326.CrossRefGoogle Scholar
  154. Schaeffer, A. A., 1917: Choice of food in ameba. J. Anim. Behav. 7, 220–258.Google Scholar
  155. Schröder, O., 1906 a: Beiträge zur Kenntnis von Campanella umbellaria L. sp. Arch. Protistenk. 7, 75–105.Google Scholar
  156. Schröder, O., 1906 b: Beiträge zur Kenntnis von Epistilis plicatilis (Ehrbg.) Arch. Protistenk. 7, 173–185.Google Scholar
  157. Schröder, O., 1906 c: Beiträge zur Kenntnis von Vorticella monilata Tatem. Arch. Protistenk. 7, 395–410.Google Scholar
  158. Schwartz, V., 1935: Versuche über Regeneration und Kerndimorphismus bei Stentor coeruleus Ehrbg. Arch. Protistenk. 85, 100–139.Google Scholar
  159. Semenoff, W. E., 1937: Phases of phagocytosis in Entamoeba histolytica Schaudinn. Bull. Biol. Méd. expér. URSS 4, 192–194.Google Scholar
  160. Semenoff, W. E., 1938: Further contribution to the study of phagocytosis in Entamoeba histolytica (Schaudinn, 1903). Bull. Biol. Med. expér. URSS 5, 186–188.Google Scholar
  161. Shapiro, N. H., 1927: The cycle of hydrogen-ion concentration in the food vacuoles of Paramecium, Vorticella, and Stylonychia. Trans. Amer. micosc. Soc. 46, 45–53.CrossRefGoogle Scholar
  162. Singh, B. N., 1937: Effect of centrifuging on Amoeba proteus (Y). Nature (Brit.) 139, 675.CrossRefGoogle Scholar
  163. Singh, B. N., 1945: The selection of bacterial food by soil amoebae, and the toxic effects of bacterial pigments and other products on soil protozoa. Brit. J. exper. Path. 26, 316–325.Google Scholar
  164. Smith, D. T., H. S. Willis, and M. R. Lewis, 1922: The behavior of cultures of chick embryo tissue containing avian tubercle bacilli. Amer. Rev. Tbc. 6, 21–34.Google Scholar
  165. Takatsuki, S., 1934: On the nature and function of the amoebocytes of Ostrea edulis. Quart. J. microsc. Soc. 76, 379–431.Google Scholar
  166. Trigt, H. van, 1919: A contribution to the physiology of the fresh-water sponges (Spongillidae). Tschr. ned. dierk. Ver. 17, 1–220.Google Scholar
  167. Ussing, H., 1954: Membrane structure as revealed by permeability studies. Pp. 33–41 in “Recent developments in cell physiology“, Editor J. A. Kitching, Colston Papers, 7, 206 pp. Butterworths Scientific Publications.Google Scholar
  168. Yolkonsky, M., 1929: Les phénomènes cytologiques au cours de la digestion intracellulaire de quelques ciliés. C. r. Soc. Biol. Paris 101, 133–135.Google Scholar
  169. Yolkonsky, M., 1930: Les choanocytes des éponges calcaires. Les phénomènes cytologiques au cours de la digestion intracellulaire. C. r. Soc. Biol., Paris 103, 668–672.Google Scholar
  170. Yolkonsky, M., 1933: Digestion intracellulaire et accumulation des colorants acides. Étude cytologique des cellules sanguines des sipunculidés. Bull. biol. France et Belg. (Fr.) 67, 135–288.Google Scholar
  171. Yolkonsky, M., 1934: L’aspect cytologique de la digestion intracellulaire. Arch. exper. Zeilforsch. 15, 355–372.Google Scholar
  172. Vonk, H. J., 1924: Verdauungsphagocytose bei den Austern. Z. vergl. Physiol. 1. 607–623.CrossRefGoogle Scholar
  173. Wagge, L. E., 1955: Amoebocytes. Internat. Rev. Cytol. 4, 31–78.CrossRefGoogle Scholar
  174. Weel, P. B. van, 1949: On the physiology of the tropical fresh-water sponge. Spongilla proliferans Annand. I. Ingestion, digestion and excretion. Physiol. comp. 1, 110–126.Google Scholar
  175. Wenrich, D. H., 1941: Observations on the food habits of Entamoeba muris and Entamoeba ranarum. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 81, 324–340.CrossRefGoogle Scholar
  176. Westblad, E., 1922: Zur Physiologie der Turbellarien. I. Die Verdauung. II. Die Exkretion. Acta Univ. Lund. 2, 1–212.Google Scholar
  177. Wichterman, R., 1953: The biology of Paramecium. The Blakiston Company Inc., New York and Toronto. 527 pp.Google Scholar
  178. Wilber, G. C., 1945: Origin and function of the protoplasmic constituents in Pelomyxa carolinensis. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 88. 207–219.CrossRefGoogle Scholar
  179. Wilber, G. C., 1946: The presence of lipase in Pelomyxa carolinensis. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 91, 235.Google Scholar
  180. Willier, B. H., L. H. Hyman, and S. A. Rifenburgh, 1925: A histochemical study of intracellular digestion in triclad flatworms. J. Morph. 40, 299–340.CrossRefGoogle Scholar
  181. Willis, H. S., 1916: The influence of the nucleus on the behaviour of Amoeba. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 30, 253–270.CrossRefGoogle Scholar
  182. Wittmann, H., 1950: Untersuchungen zur Dynamik einiger Lebensvorgänge von Amoeba sphaerunucleolosus (Greeff) bei natürlichem „Zeitmoment“ und unter Zeitraffung. Protoplasma 39, 450–482.CrossRefGoogle Scholar
  183. Wright, C. S., and M. C. Dodd, 1955: Phagocytosis. In “Leukocytic functions”. Ann. N. Y. Acad. Sci. 59, 665–1070. Editor, R. W. Miner.Google Scholar
  184. Yonge, C. M., 1923: Studies on the comparative physiology of digestion. I. The mechanism of feeding, digestion and assimilation in the lamellibranch Mya. J. exper. Biol. 1, 15–65.Google Scholar
  185. Yonge, C. M., 1926: Structure and physiology of the organs of feeding and digestion in Ostrea edulis. J. mar. biol. Ass. U.K. 14, 295–386.CrossRefGoogle Scholar
  186. Yonge, C. M., 1931: Studies on the physiology of corals III. Assimilation and excretion. Great Barrier Reef Expedition 1928–29. Scientific Reports 1. 83–92.Google Scholar
  187. Yonge, C. M., 1954: Physiological anatomy of the alimentary canal in invertebrates. Tabul. biol. Hague 21, No. 20, 24 pp.Google Scholar
  188. Zacks, S. I., and J. Welsh, 1953: Cholinesterase and lipase in the amoebocytes, intestinal epithelium and heart muscle of the quahog. Venus mercenaria. Biol. Bull. Mar. biol. Labor.. Woods Hole (Am.) 105. 200–211.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1956

Authors and Affiliations

  • J. A. Hitching
    • 1
  1. 1.Department of ZoologyUniversity of BristolUK

Personalised recommendations