Contractile Vacuoles of Protozoa

  • J. A. Kitching
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 3 / D / 1,2,3a,3b)


A contractile vacuole is a vesicle containing water and lying within the cytoplasm of the cell. It increases in volume, and finally discharges its contents to the outside. In many Protozoa there is a permanent position at which contractile vacuoles continually form, grow and discharge.


Osmotic Pressure Vacuolar Membrane Body Volume Food Vacuole Contractile Vacuole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolph, E. F., 1926: The metabolism of water in Amoeba as measured in the contractile vacuole. J. exper. Zool. 44, 355–381.CrossRefGoogle Scholar
  2. Belda, W. H., 1942 a: Permeability to water in Pelomyxa carolinensis. I. Changes in volume of Pelomyxa carolinensis in solutions of different osmotic concentration. Salesianum 37, 68–81.Google Scholar
  3. Belda, W. H., 1942 b: Permeability to water in Pelomyxa carolinensis. II. The contractile vacuoles of Pelomyxa carolinensis. Salesianum 37, 125–134.Google Scholar
  4. Belda, W. H., 1943: Permeability to water in Pelomyxa carolinensis. III. The permeability constant for water in Pelomyxa carolinensis. Salesianum 38, 17–24.Google Scholar
  5. Carter, L., 1955: Ionic regulation in the ciliate Spirostomum ambiguum. Ph. D. thesis, University of Bristol; publication pending.Google Scholar
  6. Conway, E. J., and J. I. McCormack, 1953: The total intracellular concentration of mammalian tissues compared with that of the extracellular fluid. J. Physiol. (Brit.) 120, 1–14.Google Scholar
  7. Dalton, A. J., and M. D. Felix, 1954: Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis—in situ, in homogenates and after isolation. Amer. J. Anat. 94, 171–208.PubMedCrossRefGoogle Scholar
  8. Danielli, J. F., 1952: Structural factors in cell permeability and secretion. Symp. Soc. exper. Biol. 6, 1–15.Google Scholar
  9. Davson, H., 1951: A text-book of general physiology. J. and A. Churchill Ltd., London, 659 pp.Google Scholar
  10. Davson, H. and J. F. Danielli, 1943 and 1952: The permeability of natural membranes. Cambridge University Press, 365 pp.Google Scholar
  11. Doyle, W. L., and J. P. Harding, 1937: Quantitative studies on the ciliate Glaucoma. Excretion of ammonia. J. exper. Biol. 14, 462–469.Google Scholar
  12. Edwards, D. J., and McK. Cattell, 1928: The stimulating action of hydrostatic pressure on cardiac function. Amer. J. Physiol. 84, 472–484.Google Scholar
  13. Frey-Wyssling, A., 1948: Submicroscopic morphology of protoplasm and its derivatives. Elsevier Publishing Company, Inc., New York and Amsterdam, 255 pp.Google Scholar
  14. Frisch, J. A., 1939: The experimental adaptation of Paramecium to sea water. Arch. Protistenk. 93, 38–71.Google Scholar
  15. Gatenby, J. B., 1941: Behaviour of the osmic reducing substance of Protozoa during cell division. Proc. roy. Irish Acad. 46, 161–172.Google Scholar
  16. Gatenby, J. B., A. J. Dalton, and M. D. Felix, 1955: The contractile vacuole of Parazoa and Protozoa, and the Golgi apparatus. Nature (Brit.) 176, 301–302.CrossRefGoogle Scholar
  17. Gatenby, J. B. and B. N. Singh, 1937: The Golgi apparatus of Copromonas subtilis and Euglena sp. Quart. J. microsc. Sci. 80, 567–592.Google Scholar
  18. Gelfan, S., 1928: The electrical conductivity of protoplasm. Protoplasma 4, 192–200.CrossRefGoogle Scholar
  19. Gelei, J., 1935 a: A véglények kiválasztószerve alkati, fejlödéstani és élettani szempontból. Math. term. Közl. 37, 1–128.Google Scholar
  20. Gelei, J., 1938: Das Exkretionsplasma von Didinium nasutum in Ruhe und Teilung. Arch. Protistenk. 90, 369–382.Google Scholar
  21. Goldacre, R. J., 1952: The folding and unfolding of protein molecules as a basis of osmotic work. Internat. Rev. Cytol. 1, 135–164.CrossRefGoogle Scholar
  22. Gross, F., 1934: Zur Biologie und Entwicklungsgeschichte von Noctiluca miliaris. Arch. Protistenk. 83, 178–196.Google Scholar
  23. Harvey, E. N., 1937: Methods of measuring surface forces of living cells. Trans. Faraday Soc. 33, 943–946.CrossRefGoogle Scholar
  24. Hogue, M. J., 1923: Contractile vacuoles in amoebae — Factors influencing their formation and rate of contraction. J. Elisha Mitchell Sci. Soc. 39, Nos. 1 and 2, 6 pp.Google Scholar
  25. Hopkins, D. L., 1938: The vacuoles and vacuolar activity in the marine amoeba Flabellula mira Schaeffer and the nature of the neutral red system in Protozoa. Biodynamica 2, no. 34 (33 pp.).Google Scholar
  26. Hopkins, D. L., 1946: The contractile vacuole and the adjustment to changing concentration in fresh water amoebae. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 90, 158–176.CrossRefGoogle Scholar
  27. Howland, R. B., and H. Pollack, 1927 a: Micrurgical studies on the contractile vacuole. J. exper. Zool. 48, 441–458.CrossRefGoogle Scholar
  28. Hull, R. W., 1953: Observations on Suctoria: contractile vacuole rate changes during feeding and reproduction in Solenophrya micraster Penard 1914. Proc. Soc. Protozool. 4, 20.Google Scholar
  29. Hyman, L. H, 1936: Observations on protozoa. I. The impermanence of the contractile vacuole in Amoeba vespertilio. II. Structure and mode of food ingestion of Peranema. Quart. J. microsc. Sci. N. S. 79, 43–56.Google Scholar
  30. Hyman, L. H, 1938: Observations on Protozoa. III. The vacuolar system of the Euglenida. Bot. Zbl. 58, 379–382.Google Scholar
  31. Jacobs, M. H., 1935: Diffusion processes. Erg. Biol. 12, 2–160.Google Scholar
  32. Jennings, H. S., 1904: A method of demonstrating the external discharge of the contractile vacuole. Zool. Anz. 27, 656–658.Google Scholar
  33. Jepps, M. W., 1947: Contribution to the studv of the sponges. Proc. roy. Soc., Lond. B 134, 408–417.CrossRefGoogle Scholar
  34. Kamada, T., 1935: Contractile Vacuole of Paramecium. J. Fac. Sci. Tokyo Univ. 4, 49–62.Google Scholar
  35. King, R. L., 1928: The Contractile Vacuole in Paramecium trichium. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 55, 59–64.CrossRefGoogle Scholar
  36. King, R. L., 1933: Contractile Vacuole of Euplotes. Trans. Amer. microsc. Soc. 52, 103–106.CrossRefGoogle Scholar
  37. King, R. L., 1954: Origin and morphogenetic movements of the pores of the contractile vacuoles in Paramecium aurelia. J. Protozool. 1, 121–130.Google Scholar
  38. King, R. L., 1935: The contractile vacuole of Paramecium multimicronucleata. J. Morph. (Am.) 58, 555–572.CrossRefGoogle Scholar
  39. King, R. L., 1954: Origin and morphogenetic movements of the contractile vacuoles in Paramecium aurelia. J. Protozool. 1, 121–130.Google Scholar
  40. King, R. L. and H. W. Beams, 1937: The effect of ultracentrifuging on Paramecium, with special reference to recovery and macronuclear reorganization. J. Morph. (Am.) 61, 27–49.CrossRefGoogle Scholar
  41. Kitching, J. A., 1934: The physiology of contractile vacuoles. I. Osmotic relations. J. exper. Biol. 11, 364–381.Google Scholar
  42. Kitching, J. A., 1936: The physiology of contractile vacuoles. II. The control of body volume in marine peritrichs. J. exper. Biol. 13, 11–27.Google Scholar
  43. Kitching, J. A., 1938 a: The physiology of contractile vacuoles. III. The water balance of freshwater Peritricha. J. exper. Biol. 15, 143–151.Google Scholar
  44. Kitching, J. A., 1938 b: Contractile vacuoles. Biol. Rev. 13, 403–444.CrossRefGoogle Scholar
  45. Kitching, J. A., 1939 a: The physiology of contractile vacuoles. IV. A note on the sources of the water evacuated, and on the function of contractile vacuoles in marine Protozoa. J. exper. Biol. 16, 34–37.Google Scholar
  46. Kitching, J. A., 1939 b: On the activity of Protozoa at low oxygen tensions. J. cellul. a. comp. Physiol. (Am.) 14, 219–236.Google Scholar
  47. Kitching, J. A., 1939 c: The effects of a lack of oxygen and of low oxygen tension on Paramecium. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 77, 339–353.CrossRefGoogle Scholar
  48. Kitching, J. A., 1948 a: The physiology of contractile vacuoles. V. The effects of short-term variations of temperature on a fresh-water peritrich ciliate. J. exper. Biol. 25, 406–420.Google Scholar
  49. Kitching, J. A., 1948 b: The physiology of contractile vacuoles. VI. Temperature and osmotic stress. J. exper. Biol. 25, 421–436.Google Scholar
  50. Kitching, J. A., 1951: The physiology of contractile vacuoles. VII. Osmotic relations in a suctorian, with special reference to the mechanism of control of vacuolar output. J. exper. Biol. 28, 203–214.Google Scholar
  51. Kitching, J. A., 1952 a: The physiology of contractile vacuoles. VIII. The water relations of the suctorian Podophyra during feeding. J. exper. Biol. 29, 363–371.Google Scholar
  52. Kitching, J. A., 1952 b: Contractile vacuoles. Symp. Soc. exper. Biol. 6, 145–165.Google Scholar
  53. Kitching, J. A., 1954 a: The physiology of contractile vacuoles. IX. Effects of sudden changes in temperature on the contractile vacuole of a suctorian; with a discussion of the mechanism of contraction. J. exper. Biol. 31, 68–75.Google Scholar
  54. Kitching, J. A., 1954 b: The physiology of contractile vacuoles. X. Effects of high hydrostatic pressure on the contractile vacuole of a suctorian. J. exper. Biol. 31, 76–83.Google Scholar
  55. Kitching, J. A., 1954 c: Osmoregulation and ionic regulation in animals without kidneys. Symp. Soc. exper. Biol. 8, 63–75.Google Scholar
  56. Krogh, A., 1939: Osmotic regulation in aquatic animals. Cambridge University Press, 242 pp.Google Scholar
  57. Lison, L., 1936: Histochimie animale. Gauthier-Villars, Paris, 320 pp.Google Scholar
  58. Lilly, S. J., 1955: Osmoregulation and ionic regulation in Hydra. J. exper. Biol. 32, 423–439.Google Scholar
  59. Lloyd, F. E., 1928: The contractile vacuole. Biol. Rev. 3, 329–358.CrossRefGoogle Scholar
  60. Lloyd, F. E. and J. Beattie, 1928: The pulsatory rhythm of the contractile vesicle in Paramecium. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 55. 404–416.CrossRefGoogle Scholar
  61. Lovtrup, S., and A. Pigon, 1951: Diffusion and active transport of water in the amoeba Chaos chaos L. C. r. Lab. Carlsberg 28, No. 1, 36 pp.Google Scholar
  62. Ludwig, W., 1928: Der Betriebsstoffwechsel von Paramecium caudatum Ehrbg. Zugleich ein Beitrag zur Frage nach der kontraktilen Vakuolen. Arch. Protistenk. 62, 12–40.Google Scholar
  63. MacLennan, R. F., 1933: The pulsatory cycle of the contractile vacuoles in the Ophryoscolecidae, ciliates from the stomach of cattle. Univ. Calif. Publ. Zool. 39, 205–250.Google Scholar
  64. MacLennan, R. F., 1944 a: The growth of the contractile vacuole in Amoeba proteus. Physiol. Zool. 17, 260–269.Google Scholar
  65. MacLennan, R. F., 1944 b: The pulsatory cycle of the contractile canal in the ciliate Haptophrya. Trans. Amer. microsc. Soc. 63, 187–198.CrossRefGoogle Scholar
  66. Mast, S. O., 1926: Structure, Movement. Locomotion, and Stimulation in Amoeba. J. Morph. (Am.) 41, 347–425.CrossRefGoogle Scholar
  67. Mast, S. O., 1938: The contractile vacuole in Amoeba proteus (Leidy). Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 74, 306–313.CrossRefGoogle Scholar
  68. Mast, S. O., 1947: The food-vacuole in Paramecium. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 92, 31–72.CrossRefGoogle Scholar
  69. Mast, S. O. and W. J. Bowen, 1944: The food-vacuole in the Peritricha, with special reference to the hydrogen-ion concentration of its contents and of the cytoplasm. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 87, 188–222.CrossRefGoogle Scholar
  70. Mast, S. O. and C. Fowler, 1935: Permeability of Amoeba proteus to water. J. cellul. a. comp. Physiol. (Am.) 6, 151–167.CrossRefGoogle Scholar
  71. Mast, S. O., and D. J. Hopkins, 1941: Regulation of the water content of Amoeba mira and adaptation to changes in the osmotic concentration of the surrounding medium. J. cellul. a. comp. Physiol. (Am.) 17, 31–48.CrossRefGoogle Scholar
  72. Metcalf, M. M., 1910: Studies upon Amoeba. J. exper. Zool. 9, 301–331.CrossRefGoogle Scholar
  73. Mitchison, J. M., 1952: Cell membranes and cell division. Symp. Soc. exper. Biol. 6, 105–127.Google Scholar
  74. Moore, I., 1934: Morphology of the contractile vacuole and cloacal region in Blepharisma undulans. J. exper. Zool. 69, 59–104.CrossRefGoogle Scholar
  75. Müller, R., 1936: Die osmoregulatorische Bedeutung der kontraktilen Vakuolen von Amoeba proteus, Zoothamnium hiketes und Frontonia marina. Arch. Protistenk. 87, 345–392.Google Scholar
  76. Nardone, R. M., and C. G. Wilber, 1950: Nitrogenous excretion in Colpidium campylum. Proc. Soc. exper. Biol. a. Med. (Am.) 75, 559–561.Google Scholar
  77. Nassonov, D., 1924: Der Exkretionsapparat (kontraktile Vakuole) der Protozoa als Homologen des Golgischen Apparats der Metazoazellen. Arch. mikrosk. Anat. 103, 437–482.Google Scholar
  78. Oberthür, K., 1937: Untersuchungen an Frontonia marina Fabre-Dom. aus einer Binnenland-Salzquelle unter besonderer Berücksichtigung der pulsierenden Vakuole. Arch. Protistenk. 88, 387–420.Google Scholar
  79. Pace, D. M., and K. K. Kimura, 1944: The effect of temperature on respiration in Paramecium aurelia and Paramecium caudatum. J. cellul. a. comp. Physiol. (Am.) 24, 173–183.CrossRefGoogle Scholar
  80. Pantin, C. F. A., 1931: On the Physiology of amoeboid movement. VIII. A. The action of certain non-electrolytes. B. A note on the isoelectric point of the proteins of a marine amoeba. J. exper. Biol. 8, 365–378.Google Scholar
  81. Robinson, J. R., 1953: The active transport of water in living systems. Biol. Rev. 28. 158–194.CrossRefGoogle Scholar
  82. Robinson, J. R., 1954: Secretion and active transport of water. Symp. Soc. exper. Biol. 8, 42–62.Google Scholar
  83. Rudzinska, M., and R. Chambers, 1951: The activity of the contractile vacuole in a suctorian (Tokophrya infusionum). Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 100, 49–58.CrossRefGoogle Scholar
  84. Schmidt, W. J., 1939: Über die Doppelbrechung des Amöbenplasmas. Protoplasma 33, 44–49.CrossRefGoogle Scholar
  85. Schmitt, F. O., and K. J. Palmer, 1940: X-ray diffraction studies of lipide and lipide-protein systems. Cold Spr. Harb. Symp. Quant. Biol. 8, 94–101.CrossRefGoogle Scholar
  86. Specht, H., 1934: Aerobic Respiration in Spirostomum ambiguum and the production of ammonia. J. cellul. a. comp. Physiol. (Am.) 5, 319–333.CrossRefGoogle Scholar
  87. Taylor, J. V., 1923: The contractile vacuole in Euplotes: an example of the sol-gel reversibility of cytoplasm. J. exper. Zool. 37, 259–282.CrossRefGoogle Scholar
  88. Weatherby, J. H., 1927: The function of the contractile vacuole in Paramecium caudatum; with special reference to the excretion of nitrogenous compounds. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 52, 208–218.CrossRefGoogle Scholar
  89. Weatherby, J. H., Excretion of nitrogenous substances in Protozoa. Physiol. Zool. 2, 375–394.Google Scholar
  90. Weatherby, J. H., 1941: “The contractile vacuole” in “Protozoa in biological research” by G. H. Calkins and F. M. Summers, Columbia University Press, New York, 1148 pp.Google Scholar
  91. Wichterman, R., 1953: The Biology of Paramecium. The Blakiston Company, Inc., New York and Toronto, 527 pp.Google Scholar
  92. Wilber, C. G., 1945: Origin and function of the protoplasmic constituents in Pelomyxa carolinensis. Biol. Bull. Mar. biol. Labor.. Woods Hole (Am.) 88, 207–219.CrossRefGoogle Scholar
  93. Zuelzer, M., 1927: Über Amoeba biddulphiae n. sp., eine in der marinen Diatomee Biddulphia sinensis Grèv. parasitierende Amöbe. Arch. Protistenk. 57, 247–284.Google Scholar

Copyright information

© Springer-Verlag 1956

Authors and Affiliations

  • J. A. Kitching
    • 1
  1. 1.Department of ZoologyUniversity of BristolUK

Personalised recommendations