Skip to main content

Part of the book series: Protoplasmatologia ((2121,volume 3 / D / 1,2,3a,3b))

Abstract

A contractile vacuole is a vesicle containing water and lying within the cytoplasm of the cell. It increases in volume, and finally discharges its contents to the outside. In many Protozoa there is a permanent position at which contractile vacuoles continually form, grow and discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph, E. F., 1926: The metabolism of water in Amoeba as measured in the contractile vacuole. J. exper. Zool. 44, 355–381.

    Article  CAS  Google Scholar 

  • Belda, W. H., 1942 a: Permeability to water in Pelomyxa carolinensis. I. Changes in volume of Pelomyxa carolinensis in solutions of different osmotic concentration. Salesianum 37, 68–81.

    Google Scholar 

  • Belda, W. H., 1942 b: Permeability to water in Pelomyxa carolinensis. II. The contractile vacuoles of Pelomyxa carolinensis. Salesianum 37, 125–134.

    Google Scholar 

  • Belda, W. H., 1943: Permeability to water in Pelomyxa carolinensis. III. The permeability constant for water in Pelomyxa carolinensis. Salesianum 38, 17–24.

    Google Scholar 

  • Carter, L., 1955: Ionic regulation in the ciliate Spirostomum ambiguum. Ph. D. thesis, University of Bristol; publication pending.

    Google Scholar 

  • Conway, E. J., and J. I. McCormack, 1953: The total intracellular concentration of mammalian tissues compared with that of the extracellular fluid. J. Physiol. (Brit.) 120, 1–14.

    CAS  Google Scholar 

  • Dalton, A. J., and M. D. Felix, 1954: Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis—in situ, in homogenates and after isolation. Amer. J. Anat. 94, 171–208.

    Article  PubMed  CAS  Google Scholar 

  • Danielli, J. F., 1952: Structural factors in cell permeability and secretion. Symp. Soc. exper. Biol. 6, 1–15.

    Google Scholar 

  • Davson, H., 1951: A text-book of general physiology. J. and A. Churchill Ltd., London, 659 pp.

    Google Scholar 

  • Davson, H. and J. F. Danielli, 1943 and 1952: The permeability of natural membranes. Cambridge University Press, 365 pp.

    Google Scholar 

  • Doyle, W. L., and J. P. Harding, 1937: Quantitative studies on the ciliate Glaucoma. Excretion of ammonia. J. exper. Biol. 14, 462–469.

    CAS  Google Scholar 

  • Edwards, D. J., and McK. Cattell, 1928: The stimulating action of hydrostatic pressure on cardiac function. Amer. J. Physiol. 84, 472–484.

    Google Scholar 

  • Frey-Wyssling, A., 1948: Submicroscopic morphology of protoplasm and its derivatives. Elsevier Publishing Company, Inc., New York and Amsterdam, 255 pp.

    Google Scholar 

  • Frisch, J. A., 1939: The experimental adaptation of Paramecium to sea water. Arch. Protistenk. 93, 38–71.

    Google Scholar 

  • Gatenby, J. B., 1941: Behaviour of the osmic reducing substance of Protozoa during cell division. Proc. roy. Irish Acad. 46, 161–172.

    Google Scholar 

  • Gatenby, J. B., A. J. Dalton, and M. D. Felix, 1955: The contractile vacuole of Parazoa and Protozoa, and the Golgi apparatus. Nature (Brit.) 176, 301–302.

    Article  CAS  Google Scholar 

  • Gatenby, J. B. and B. N. Singh, 1937: The Golgi apparatus of Copromonas subtilis and Euglena sp. Quart. J. microsc. Sci. 80, 567–592.

    Google Scholar 

  • Gelfan, S., 1928: The electrical conductivity of protoplasm. Protoplasma 4, 192–200.

    Article  CAS  Google Scholar 

  • Gelei, J., 1935 a: A véglények kiválasztószerve alkati, fejlödéstani és élettani szempontból. Math. term. Közl. 37, 1–128.

    Google Scholar 

  • Gelei, J., 1938: Das Exkretionsplasma von Didinium nasutum in Ruhe und Teilung. Arch. Protistenk. 90, 369–382.

    Google Scholar 

  • Goldacre, R. J., 1952: The folding and unfolding of protein molecules as a basis of osmotic work. Internat. Rev. Cytol. 1, 135–164.

    Article  CAS  Google Scholar 

  • Gross, F., 1934: Zur Biologie und Entwicklungsgeschichte von Noctiluca miliaris. Arch. Protistenk. 83, 178–196.

    Google Scholar 

  • Harvey, E. N., 1937: Methods of measuring surface forces of living cells. Trans. Faraday Soc. 33, 943–946.

    Article  CAS  Google Scholar 

  • Hogue, M. J., 1923: Contractile vacuoles in amoebae — Factors influencing their formation and rate of contraction. J. Elisha Mitchell Sci. Soc. 39, Nos. 1 and 2, 6 pp.

    Google Scholar 

  • Hopkins, D. L., 1938: The vacuoles and vacuolar activity in the marine amoeba Flabellula mira Schaeffer and the nature of the neutral red system in Protozoa. Biodynamica 2, no. 34 (33 pp.).

    Google Scholar 

  • Hopkins, D. L., 1946: The contractile vacuole and the adjustment to changing concentration in fresh water amoebae. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 90, 158–176.

    Article  CAS  Google Scholar 

  • Howland, R. B., and H. Pollack, 1927 a: Micrurgical studies on the contractile vacuole. J. exper. Zool. 48, 441–458.

    Article  CAS  Google Scholar 

  • Hull, R. W., 1953: Observations on Suctoria: contractile vacuole rate changes during feeding and reproduction in Solenophrya micraster Penard 1914. Proc. Soc. Protozool. 4, 20.

    Google Scholar 

  • Hyman, L. H, 1936: Observations on protozoa. I. The impermanence of the contractile vacuole in Amoeba vespertilio. II. Structure and mode of food ingestion of Peranema. Quart. J. microsc. Sci. N. S. 79, 43–56.

    Google Scholar 

  • Hyman, L. H, 1938: Observations on Protozoa. III. The vacuolar system of the Euglenida. Bot. Zbl. 58, 379–382.

    Google Scholar 

  • Jacobs, M. H., 1935: Diffusion processes. Erg. Biol. 12, 2–160.

    Google Scholar 

  • Jennings, H. S., 1904: A method of demonstrating the external discharge of the contractile vacuole. Zool. Anz. 27, 656–658.

    Google Scholar 

  • Jepps, M. W., 1947: Contribution to the studv of the sponges. Proc. roy. Soc., Lond. B 134, 408–417.

    Article  CAS  Google Scholar 

  • Kamada, T., 1935: Contractile Vacuole of Paramecium. J. Fac. Sci. Tokyo Univ. 4, 49–62.

    Google Scholar 

  • King, R. L., 1928: The Contractile Vacuole in Paramecium trichium. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 55, 59–64.

    Article  Google Scholar 

  • King, R. L., 1933: Contractile Vacuole of Euplotes. Trans. Amer. microsc. Soc. 52, 103–106.

    Article  Google Scholar 

  • King, R. L., 1954: Origin and morphogenetic movements of the pores of the contractile vacuoles in Paramecium aurelia. J. Protozool. 1, 121–130.

    Google Scholar 

  • King, R. L., 1935: The contractile vacuole of Paramecium multimicronucleata. J. Morph. (Am.) 58, 555–572.

    Article  Google Scholar 

  • King, R. L., 1954: Origin and morphogenetic movements of the contractile vacuoles in Paramecium aurelia. J. Protozool. 1, 121–130.

    Google Scholar 

  • King, R. L. and H. W. Beams, 1937: The effect of ultracentrifuging on Paramecium, with special reference to recovery and macronuclear reorganization. J. Morph. (Am.) 61, 27–49.

    Article  Google Scholar 

  • Kitching, J. A., 1934: The physiology of contractile vacuoles. I. Osmotic relations. J. exper. Biol. 11, 364–381.

    Google Scholar 

  • Kitching, J. A., 1936: The physiology of contractile vacuoles. II. The control of body volume in marine peritrichs. J. exper. Biol. 13, 11–27.

    CAS  Google Scholar 

  • Kitching, J. A., 1938 a: The physiology of contractile vacuoles. III. The water balance of freshwater Peritricha. J. exper. Biol. 15, 143–151.

    CAS  Google Scholar 

  • Kitching, J. A., 1938 b: Contractile vacuoles. Biol. Rev. 13, 403–444.

    Article  CAS  Google Scholar 

  • Kitching, J. A., 1939 a: The physiology of contractile vacuoles. IV. A note on the sources of the water evacuated, and on the function of contractile vacuoles in marine Protozoa. J. exper. Biol. 16, 34–37.

    CAS  Google Scholar 

  • Kitching, J. A., 1939 b: On the activity of Protozoa at low oxygen tensions. J. cellul. a. comp. Physiol. (Am.) 14, 219–236.

    Google Scholar 

  • Kitching, J. A., 1939 c: The effects of a lack of oxygen and of low oxygen tension on Paramecium. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 77, 339–353.

    Article  Google Scholar 

  • Kitching, J. A., 1948 a: The physiology of contractile vacuoles. V. The effects of short-term variations of temperature on a fresh-water peritrich ciliate. J. exper. Biol. 25, 406–420.

    CAS  Google Scholar 

  • Kitching, J. A., 1948 b: The physiology of contractile vacuoles. VI. Temperature and osmotic stress. J. exper. Biol. 25, 421–436.

    CAS  Google Scholar 

  • Kitching, J. A., 1951: The physiology of contractile vacuoles. VII. Osmotic relations in a suctorian, with special reference to the mechanism of control of vacuolar output. J. exper. Biol. 28, 203–214.

    CAS  Google Scholar 

  • Kitching, J. A., 1952 a: The physiology of contractile vacuoles. VIII. The water relations of the suctorian Podophyra during feeding. J. exper. Biol. 29, 363–371.

    Google Scholar 

  • Kitching, J. A., 1952 b: Contractile vacuoles. Symp. Soc. exper. Biol. 6, 145–165.

    Google Scholar 

  • Kitching, J. A., 1954 a: The physiology of contractile vacuoles. IX. Effects of sudden changes in temperature on the contractile vacuole of a suctorian; with a discussion of the mechanism of contraction. J. exper. Biol. 31, 68–75.

    Google Scholar 

  • Kitching, J. A., 1954 b: The physiology of contractile vacuoles. X. Effects of high hydrostatic pressure on the contractile vacuole of a suctorian. J. exper. Biol. 31, 76–83.

    Google Scholar 

  • Kitching, J. A., 1954 c: Osmoregulation and ionic regulation in animals without kidneys. Symp. Soc. exper. Biol. 8, 63–75.

    CAS  Google Scholar 

  • Krogh, A., 1939: Osmotic regulation in aquatic animals. Cambridge University Press, 242 pp.

    Google Scholar 

  • Lison, L., 1936: Histochimie animale. Gauthier-Villars, Paris, 320 pp.

    Google Scholar 

  • Lilly, S. J., 1955: Osmoregulation and ionic regulation in Hydra. J. exper. Biol. 32, 423–439.

    CAS  Google Scholar 

  • Lloyd, F. E., 1928: The contractile vacuole. Biol. Rev. 3, 329–358.

    Article  Google Scholar 

  • Lloyd, F. E. and J. Beattie, 1928: The pulsatory rhythm of the contractile vesicle in Paramecium. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 55. 404–416.

    Article  Google Scholar 

  • Lovtrup, S., and A. Pigon, 1951: Diffusion and active transport of water in the amoeba Chaos chaos L. C. r. Lab. Carlsberg 28, No. 1, 36 pp.

    Google Scholar 

  • Ludwig, W., 1928: Der Betriebsstoffwechsel von Paramecium caudatum Ehrbg. Zugleich ein Beitrag zur Frage nach der kontraktilen Vakuolen. Arch. Protistenk. 62, 12–40.

    CAS  Google Scholar 

  • MacLennan, R. F., 1933: The pulsatory cycle of the contractile vacuoles in the Ophryoscolecidae, ciliates from the stomach of cattle. Univ. Calif. Publ. Zool. 39, 205–250.

    Google Scholar 

  • MacLennan, R. F., 1944 a: The growth of the contractile vacuole in Amoeba proteus. Physiol. Zool. 17, 260–269.

    Google Scholar 

  • MacLennan, R. F., 1944 b: The pulsatory cycle of the contractile canal in the ciliate Haptophrya. Trans. Amer. microsc. Soc. 63, 187–198.

    Article  Google Scholar 

  • Mast, S. O., 1926: Structure, Movement. Locomotion, and Stimulation in Amoeba. J. Morph. (Am.) 41, 347–425.

    Article  Google Scholar 

  • Mast, S. O., 1938: The contractile vacuole in Amoeba proteus (Leidy). Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 74, 306–313.

    Article  Google Scholar 

  • Mast, S. O., 1947: The food-vacuole in Paramecium. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 92, 31–72.

    Article  CAS  Google Scholar 

  • Mast, S. O. and W. J. Bowen, 1944: The food-vacuole in the Peritricha, with special reference to the hydrogen-ion concentration of its contents and of the cytoplasm. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 87, 188–222.

    Article  CAS  Google Scholar 

  • Mast, S. O. and C. Fowler, 1935: Permeability of Amoeba proteus to water. J. cellul. a. comp. Physiol. (Am.) 6, 151–167.

    Article  CAS  Google Scholar 

  • Mast, S. O., and D. J. Hopkins, 1941: Regulation of the water content of Amoeba mira and adaptation to changes in the osmotic concentration of the surrounding medium. J. cellul. a. comp. Physiol. (Am.) 17, 31–48.

    Article  CAS  Google Scholar 

  • Metcalf, M. M., 1910: Studies upon Amoeba. J. exper. Zool. 9, 301–331.

    Article  Google Scholar 

  • Mitchison, J. M., 1952: Cell membranes and cell division. Symp. Soc. exper. Biol. 6, 105–127.

    Google Scholar 

  • Moore, I., 1934: Morphology of the contractile vacuole and cloacal region in Blepharisma undulans. J. exper. Zool. 69, 59–104.

    Article  Google Scholar 

  • Müller, R., 1936: Die osmoregulatorische Bedeutung der kontraktilen Vakuolen von Amoeba proteus, Zoothamnium hiketes und Frontonia marina. Arch. Protistenk. 87, 345–392.

    Google Scholar 

  • Nardone, R. M., and C. G. Wilber, 1950: Nitrogenous excretion in Colpidium campylum. Proc. Soc. exper. Biol. a. Med. (Am.) 75, 559–561.

    CAS  Google Scholar 

  • Nassonov, D., 1924: Der Exkretionsapparat (kontraktile Vakuole) der Protozoa als Homologen des Golgischen Apparats der Metazoazellen. Arch. mikrosk. Anat. 103, 437–482.

    Google Scholar 

  • Oberthür, K., 1937: Untersuchungen an Frontonia marina Fabre-Dom. aus einer Binnenland-Salzquelle unter besonderer Berücksichtigung der pulsierenden Vakuole. Arch. Protistenk. 88, 387–420.

    Google Scholar 

  • Pace, D. M., and K. K. Kimura, 1944: The effect of temperature on respiration in Paramecium aurelia and Paramecium caudatum. J. cellul. a. comp. Physiol. (Am.) 24, 173–183.

    Article  CAS  Google Scholar 

  • Pantin, C. F. A., 1931: On the Physiology of amoeboid movement. VIII. A. The action of certain non-electrolytes. B. A note on the isoelectric point of the proteins of a marine amoeba. J. exper. Biol. 8, 365–378.

    CAS  Google Scholar 

  • Robinson, J. R., 1953: The active transport of water in living systems. Biol. Rev. 28. 158–194.

    Article  CAS  Google Scholar 

  • Robinson, J. R., 1954: Secretion and active transport of water. Symp. Soc. exper. Biol. 8, 42–62.

    CAS  Google Scholar 

  • Rudzinska, M., and R. Chambers, 1951: The activity of the contractile vacuole in a suctorian (Tokophrya infusionum). Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 100, 49–58.

    Article  CAS  Google Scholar 

  • Schmidt, W. J., 1939: Über die Doppelbrechung des Amöbenplasmas. Protoplasma 33, 44–49.

    Article  Google Scholar 

  • Schmitt, F. O., and K. J. Palmer, 1940: X-ray diffraction studies of lipide and lipide-protein systems. Cold Spr. Harb. Symp. Quant. Biol. 8, 94–101.

    Article  CAS  Google Scholar 

  • Specht, H., 1934: Aerobic Respiration in Spirostomum ambiguum and the production of ammonia. J. cellul. a. comp. Physiol. (Am.) 5, 319–333.

    Article  CAS  Google Scholar 

  • Taylor, J. V., 1923: The contractile vacuole in Euplotes: an example of the sol-gel reversibility of cytoplasm. J. exper. Zool. 37, 259–282.

    Article  CAS  Google Scholar 

  • Weatherby, J. H., 1927: The function of the contractile vacuole in Paramecium caudatum; with special reference to the excretion of nitrogenous compounds. Biol. Bull. Mar. biol. Labor., Woods Hole (Am.) 52, 208–218.

    Article  CAS  Google Scholar 

  • Weatherby, J. H., Excretion of nitrogenous substances in Protozoa. Physiol. Zool. 2, 375–394.

    Google Scholar 

  • Weatherby, J. H., 1941: “The contractile vacuole” in “Protozoa in biological research” by G. H. Calkins and F. M. Summers, Columbia University Press, New York, 1148 pp.

    Google Scholar 

  • Wichterman, R., 1953: The Biology of Paramecium. The Blakiston Company, Inc., New York and Toronto, 527 pp.

    Google Scholar 

  • Wilber, C. G., 1945: Origin and function of the protoplasmic constituents in Pelomyxa carolinensis. Biol. Bull. Mar. biol. Labor.. Woods Hole (Am.) 88, 207–219.

    Article  Google Scholar 

  • Zuelzer, M., 1927: Über Amoeba biddulphiae n. sp., eine in der marinen Diatomee Biddulphia sinensis Grèv. parasitierende Amöbe. Arch. Protistenk. 57, 247–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1956 Springer-Verlag

About this chapter

Cite this chapter

Kitching, J.A. (1956). Contractile Vacuoles of Protozoa. In: Le Vacuome de la Cellule Végétale: Morphologie. Le Vacuome Animal. Contractile Vacuoles of Protozoa. Food Vacuoles. Protoplasmatologia, vol 3 / D / 1,2,3a,3b. Springer, Vienna. https://doi.org/10.1007/978-3-7091-5770-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-5770-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-80423-0

  • Online ISBN: 978-3-7091-5770-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics