Advertisement

Active Transport through Animal Cell Membranes

  • Paul G. LeFevre
Part of the Protoplasmatologia book series (PROTOPLASMATOL., volume 8 / 7 / a)

Abstract

The province covered by the title assigned to this division of the handbook might reasonably be taken to include an appalling diversity of physiological processes. However, there is no intention here to cover such aspects as the elaboration of special glandular secretions, or the extensive renal and gastrointestinal physiology which might conceivably be included under the heading. A survey of such scope would not only involve a literature of impractically enormous proportions, but would misplace the intended emphasis. The effort here is to cover those lines of investigation which purport to deal more or less directly with the activity of cells in the translocation of substances through the cell surfaces. The transfers concerned will be in general either between the interior and the exterior of the cells, or through layers of cells from one side to the other. Discussion of-the cellular extrusion of special secretory products has been avoided; and details of the operation of the special absorptive and excretory organs are taken up only insofar as the experimental approach has been directed toward analysis of the transport phenomena in the various epithelia involved.

Keywords

Glutamic Acid Active Transport Human Erythrocyte Phosphate Uptake Frog Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Abderhalden, E., und G. Effkemann, 1934: Über den Einfluß von α- und β-Glucosiden auf die Phosphorylierung von Traubenzucker. Biochem. Z. 268, 461–468.Google Scholar
  2. Abderhalden, E., und E. Tetzner, 1935: Beitrag zur Kenntnis des Verhaltens racemischer Aminosäuren im tierischen Organismus. Z. physiol. Chem. 232, 79–86.CrossRefGoogle Scholar
  3. Abelson, P. H., 1947: Permeability of eggs of Arbacia punctulata to radioactive phosphorus. Biol. Bull. (Am.) 93, 203.Google Scholar
  4. Aebi, H., 1950: Kationenmilieu und Gewebsatmung. Helv. Physiol. Acta 8, 525–543.Google Scholar
  5. Aebi, H., 1951: Die Bedeutung des Kaliums für die Atmung und Osmoregulation von Leberschnitten. Experientia 7, 346–347.PubMedCrossRefGoogle Scholar
  6. Aebi, H., 1953: Elektrolyt-Akkumulierung und Osmoregulation in Gewebschnitten. Helv. Physiol. Pharmacol. Acta 11, 96–121.PubMedGoogle Scholar
  7. Aebi, H., und A. Meyer, 1951: Das Osmometer-Verhalten von Leberschnitten. Ein Versuch zur Bestimmung des kolloidosmotischen Druckes an isoliertem, überlebendem Gewebe. Helv. Physiol. Acta 9, C 51–C 52.Google Scholar
  8. Allan, F. N., B. R. Dickson, and J. Markowitz, 1924: The relationship of phosphate and carbohydrate metabolism. II. The effect of adrenalin and phloridzin on the excretion of phosphate. Amer. J. Physiol. 70, 333–343.Google Scholar
  9. Aubel, E., et J. Szulmajster, 1950: Contribution à l’étude de la fermentation et de la respiration de Escherichia coli. IV. Rôle de la permeabilité dans l’étude du métabolisme bactérien de E. coli. Biochim. Biophys. Acta 5, 515–523.PubMedCrossRefGoogle Scholar
  10. Auchinlachie, D. W., J. J. R. Macleod, and H. E. Magee, 1930: Studies on diffusion through surviving isolated intestine. J. Physiol. (Brit.) 69, 185–209.Google Scholar
  11. Baldwin, D., E. M. Kahana, and R. W. Clarke, 1950: Renal excretion of sodium and potassium in the dog. Amer. J. Physiol. 162, 655–664.PubMedGoogle Scholar
  12. Bang, O., and S. L. Ørskov, 1937: Variations in permeability of red blood cells in man, with particular reference to conditions obtaining in pernicious anemia. J. clin. Invest. (Am.) 16, 279–288.CrossRefGoogle Scholar
  13. Bárány, E., and E. Sperber, 1939: Absorption of glucose against a concentration gradient by the small intestine of the rabbit. Skand. Arch. Physiol. 81, 290–299.Google Scholar
  14. Barnes, R. H., A. N. Wick, E. S. Miller, and E. M. Mackay, 1939: Effect of adrenalectomy on rate of fat absorption. Proc. Soc. exper. Biol. a. Med. (Am.) 40, 651–655.Google Scholar
  15. Barron, E. S. G., J. A. Muntz, and B. Gasvoda, 1948: Regulatory mechanisms of cellular respiration. I. The rôle of cell membranes: uranium inhibition of cellular respiration. J. gen. Physiol. (Am.) 32, 163–178.CrossRefGoogle Scholar
  16. Bartlett, G. R., A. N. Wick, and E. M. Mackay, 1949: The influence of insulin and adrenal cortical compounds on the metabolism of radioactive C14-glucose in the isolated rat diaphragm. J. biol. Chem. (Am.) 178, 1003–1004.Google Scholar
  17. Bartley, W., and R. E. Davies, 1952: Secretory activity of mitochondria. Biochem. J. 52, xx–xxi.PubMedGoogle Scholar
  18. Bartley, W., and R. E. Davies, 1954: Active transport of ions by sub-cellular particles. Biochem. J. 57, 37–49.PubMedGoogle Scholar
  19. Bartley, W., and R. E. Davies, and H. A. Krebs, 1954: Active transport in animal tissues and subcellular particles. Proc. roy. Soc, Lond. B 142, 187–196.CrossRefGoogle Scholar
  20. Bavetta, L., 1943: The effect of adrenalectomy on the absorption of the short chain fatty acids and their triglycerides. Amer. J. Physiol. 140, 44–46.Google Scholar
  21. Bavetta, L., L. Hollman, H. J. Deuel Jr., and P. O. Greeley, 1941: The effect of adrenalectomy on fat absorption. Amer. J. Physiol. 134, 619–622.Google Scholar
  22. Beament, J. W. L., 1954: Water transport in insects. Symp. Soc. exper. Biol. 8 (in press).Google Scholar
  23. Beck, L. V., 1942 a: Organic phosphate and “fructose” in rat intestinal mucosa, as affected by glucose and by phlorhizin. J. biol. Chem. (Am.) 143, 403–415.Google Scholar
  24. Beck, L. V., 1942 b: Action of phlorhizin on acid phosphatase activity and on glucose phosphorylation of kidney cortex extracts. Proc. Soc. exper. Biol. a. Med. (Am.) 49, 435–439.Google Scholar
  25. Berliner, R. W., and T. J. Kennedy Jr., 1948: Renal tubular secretion of potassium in the normal dog. Proc. Soc. exper. Biol. a. Med. (Am.) 67, 542–545.Google Scholar
  26. Berliner, R. W., and T. J. Kennedy Jr., and J. G. Hilton, 1950: Renal mechanisms for excretion of potassium. Amer. J. Physiol. 162, 348–367.PubMedGoogle Scholar
  27. Berliner, R. W., and T. J. Kennedy Jr., and J. Orloff, 1951: Relationship between acidification of the urine and potassium metabolism. Effect of carbonic anhydrase inhibition on potassium excretion. Amer. J. Med. 11, 274–282.PubMedCrossRefGoogle Scholar
  28. Beyer, K. H., R. H. Painter, and V. D. Wiebelhaus, 1950: Enzymatic factors in renal tubular secretion of phenol red. Amer. J. Physiol. 161, 259–267.PubMedGoogle Scholar
  29. Beyer, K. H., L. D. Wright, H. F. Russo, H. R. Skeggs, and E. A. Patch, 1946: The renal clearance of essential amino acids: tryptophane, leucine, isoleucine and valine. Amer. J. Physiol. 146, 330–335.PubMedGoogle Scholar
  30. Beyer, K. H., L. D. Wright, H. R. Skeggs, H. F. Russo, and G. A. Shaner, 1947: Renal clearance of essential amino acids: their competition for reabsorption by the renal tubules. Amer. J. Physiol. 151, 202–210.PubMedGoogle Scholar
  31. Blickenstaff, D., D. M. Bachman, M. E. Steinberg, and W. B. Youmans, 1951: Intestinal absorption of sodium chloride solutions as influenced by intraluminal pressure and concentration. Amer. J. Physiol. 167, 768.Google Scholar
  32. Blowers, R., E. M. Clarkson, and M. Maizels, 1951: Flicker phenomenon in human erythrocytes. J. Physiol. (Brit.) 113, 228–239.Google Scholar
  33. Bogdanove, E. M., and S. B. Barker, 1950: Effect of phlorhizin on intestinal absorption of glucose, galactose, fructose, mannose, and sorbose. Proc. Soc. exper. Biol. a. Med. (Am.) 75, 77–80.Google Scholar
  34. Bornstein, J., and C. R. Park, 1953: Inhibition of glucose uptake by the serum of diabetic rats. J. Biol. Chem. (Am.) 205, 503–511.Google Scholar
  35. Bouckaert, J. P., and C. de Duve, 1947: The action of insulin. Physiol. Rev. (Am.) 27, 39–71.Google Scholar
  36. Boyle, P. J., and E. J. Conway, 1941: Potassium accumulation in muscle and associated changes. J. Physiol. (Brit.) 100, 1–63.Google Scholar
  37. Brodsky, W. A., and S. Rapoport, 1951: The mechanism of polyuria of diabetes insipidus in man. The effect of osmotic loading. J. clin. Invest. (Am.) 30, 282–291.CrossRefGoogle Scholar
  38. Brooks, S. C., 1943 a: Intake and loss of ions by living cells. I. Eggs and larvae of Arbacia punctulata and Asterias forbesii exposed to phosphate and sodium ions. Biol. Bull. (Am.) 84, 213–225.CrossRefGoogle Scholar
  39. Brooks, S. C., 1943 b: Intake and loss of ions by living cells. II. Early changes of phosphate content of Fundulus eggs. Biol. Bull. (Am.) 84, 226–239.CrossRefGoogle Scholar
  40. Brooks, S. C. and E. L. Chambers, 1954: The penetration of radioactive phosphate into marine eggs. Biol. Bull. (Anm.) 106, 279–296.CrossRefGoogle Scholar
  41. Brückner, J., 1951: Beeinflussung der selektiven Zuckerresorption durch Phlorrhizin, 2, 4-Dinitrophenol und Atebrin. Helv. Physiol. Acta 9, 259–268.Google Scholar
  42. Caldwell, P. C., and Sir C. Hinshelwood, 1951: The phosphorus metabolism of B. lactis aerogenes. J. Chem. Soc. (1951), 158–166.Google Scholar
  43. Calkins, E., I. M. Taylor, and A. B. Hastings, 1954: Potassium exchange in the isolated rat diaphragm; effect of anoxia and cold. Amer. J. Physiol. 117, 211–218.Google Scholar
  44. Capraro, V., 1953: Über den aktiven Wassertransport durch die Froschhaut. XIXth Internat. Physiol. Congr., 259–260.Google Scholar
  45. Capraro, V., and G. Bernini, 1952: Mechanism of action of extracts of the posthypophysis on water transport through the skin of the frog (Rana esculenta). Nature 169, 454.PubMedCrossRefGoogle Scholar
  46. Carroll, T. C. N., C. J. Danby, A. A. Eddy, and Sir C. Hinshelwood, 1950: The uptake of alkali metals by bacteria. J. Chem. Soc. (1950), 946–949.CrossRefGoogle Scholar
  47. Causey, G., and E. J. Harris, 1951: The uptake and loss of phosphate by frog muscle. Biochem. J. 49, 176–183.PubMedGoogle Scholar
  48. Chambers, E. L., and W. E. White, 1949: The accumulation of phosphate and evidence for synthesis of adenosine triphosphate in the fertilized sea-urchin egg. Biol. Bull. (Am.) 97, 225–226.Google Scholar
  49. Chambers, E. L., and W. E. White, 1954: The accumulation of phosphate by fertilized sea urchin eggs. Biol. Bull. (Am.) 106, 297–307.CrossRefGoogle Scholar
  50. Chambers, E. L., and W. E. White, N. Jeung, and S. C. Brooks, 1948: Penetration and effects of low temperature and cyanide on penetration of radioactive potassium into the eggs of Strongylocentrotus purpuratus and Arbacia punctulata. Biol. Bull. (Am.) 95, 252–253.Google Scholar
  51. Christensen, H. N., M. K. Cushing, and J. A. Stretcher, 1949: Concentration of amino-acids by the excised diaphragm suspended in artificial media. II. Inhibition of the concentration of glycine by amino acids and related substances. Arch. Biochem. 23, 106–110.PubMedGoogle Scholar
  52. Christensen, H. N., and M. E. Henderson, 1952: Comparative uptake of free amino acids by mouseascites carcinoma cells and normal tissues. Cancer Res. 12, 229–231.PubMedGoogle Scholar
  53. Christensen, H. N., B. Hess, and T. R. Riggs, 1954: Concentration of taurine, β-alanine, and triiodothyronine by ascites carcinoma cells. Cancer Res. 14, 124–127.PubMedGoogle Scholar
  54. Christensen, H. N., and T. R. Riggs, 1951: Physostigmine uptake by cells and its effect on potassium exchange. J. biol. Chem. (Am.) 193, 621–626.Google Scholar
  55. Christensen, H. N., and T. R. Riggs, 1952: Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J. biol. Chem. (Am.) 194, 57–68.Google Scholar
  56. Christensen, H. N., T. R. Riggs, and B. A. Coyne, 1954: Effects of pyridoxal and indoleacetate on cell uptake of amino acids and potassium. J. biol. Chem. (Am.) 209, 413–427.Google Scholar
  57. Christensen, H. N., T. R. Riggs, H. Fischer, and I. M. Palatine, 1952 a: Amino acid concentration by a free cell neoplasm: relations among amino acids. J. biol. Chem. (Am.) 198, 1–15.Google Scholar
  58. Christensen, H. N., T. R. Riggs, H. Fischer, and I. M. Palatine, 1952 b: Intense concentration of α, γ-diaminobutyric acid by cells. J. biol. Chem. (Am.) 198, 17–22.Google Scholar
  59. Christensen, H. N., T. R. Riggs, and N. E. Ray, 1952: Concentrative uptake of amino acids by erythrocytes in vitro. J. biol. Chem. (Am.) 194, 41–51.Google Scholar
  60. Christensen, H. N., and J. A. Streicher, 1948: Association between rapid growth and elevated cell concentrations of amino acids. I. In fetal tissues. J. biol. Chem. (Am.) 175, 95–100.Google Scholar
  61. Christensen, H. N. Christensen, H. N., and J. A. , and J. A. Streicher, 1949: Concentration of amino acids by the excised diaphragm suspended in artificial media. I. Maintenance and inhibition of the concentrating activity. Arch. Biochem. 23, 96–105.PubMedGoogle Scholar
  62. Christensen, H. N., and J. A. Streicher, and R. L. Elbinger, 1948: Effects of feeding individual amino acids upon the distribution of other amino acids between cells and extracellular fluid. J. biol. Chem. (Am.) 172, 515–524.Google Scholar
  63. Cicardo, V. H., and J. A. Moglia, 1940: Liberation of potassium from muscle by acetylcholine. Nature 145, 551.CrossRefGoogle Scholar
  64. Clark, G. A., 1922: Glucose absorption in the renal tubules of the frog. J. Physiol. (Brit.) 56, 201–205.Google Scholar
  65. Clarke, E. W., Q. H. Gibson, D. H. Smyth, and G. Wiseman, 1951: Selective absorption of amino-acids from Thiry-Vella loops. J. Physiol. (Brit.) 112, 46 P.Google Scholar
  66. Clarkson, E. M., and M. Maizels, 1954: Respiration, glycolysis and sodium transport in chicken erythrocytes. J. Physiol. (Brit.) 124, 19 P–20 P.Google Scholar
  67. Cohen, P. P., 1939: Microdetermination of glutamic acid. Biochem. J. 33, 551–560.PubMedGoogle Scholar
  68. Collet, R. A., et P. Favarger, 1951: Renouvellement du glycérol dans les phos-pholipides pendant la résorption intestinale des graisses. Helv. Physiol. Pharmacol. Acta 9, C 61–C 62.Google Scholar
  69. Conway, E. J., 1942: Potassium, fermentation and the cell membrane. Nature 150, 461–462.CrossRefGoogle Scholar
  70. Conway, E. J., 1946: Ionic permeability of skeletal muscle fibres. Nature 157, 715–717.PubMedCrossRefGoogle Scholar
  71. Conway, E. J., 1951: The biological performance of osmotic work. A redox pump. Science 113, 270–273.PubMedCrossRefGoogle Scholar
  72. Conway, E. J., 1954: Some aspects of ion transport through membranes. Symp. Soc. exper. Biol. 8 (in press).Google Scholar
  73. Conway, E. J., M. Carey, and P. T. Moore, 1950: Concerning the entrance rate of KCl into the whole isolated sartorius of the frog and into single fibres. Biochem. J. 47, iii–iv.Google Scholar
  74. Conway, E. J., and M. Downey, 1950: An outer metabolic region of the yeast cell. Biochem. J. 47, 347–360.PubMedGoogle Scholar
  75. Conway, E. J., O. Fitzgerald, and T. C. MacDougald, 1946: Potassium accumulation in the proximal convoluted tubules of the frog’s kidney. J. gen. Physiol. (Am.) 29, 305–334.CrossRefGoogle Scholar
  76. Conway, E. J., and D. Hingerty, 1948: Relations between potassium and sodium levels in mammalian muscle and blood plasma. Biochem. J. 42, 372–376.Google Scholar
  77. Conway, E. J., and J. I. McCormack, 1953: The total intracellular concentration of mammalian tissues compared with that of the extracellular fluid. J. Physiol. (Brit.) 120, 1–14.Google Scholar
  78. Conway, E. J., and P. T. Moore, 1950: The azide effect in yeast with respect to potassium and phosphate permeability. Biochem. J. 47, iii.Google Scholar
  79. Conway, E. J., and E. O’Malley, 1943: Linkage of physico-chemical processes in biological systems. Nature 151, 252.CrossRefGoogle Scholar
  80. Conway, E. J., and E. O’Malley, 1944: Nature of the cation exchanges during short-period yeast fermentation. Nature 153, 555–556.CrossRefGoogle Scholar
  81. Conway, E. J., and E. O’Malley, 1946: The nature of the cation exchanges during yeast fermentation, with formation of 0.02 N — H ion. Biochem. J. 40, 59–67.Google Scholar
  82. Cori, C. F., 1925: The fate of sugar in the animal body. I. The rate of absorption of hexoses and pentoses from the intestinal tract. J. biol. Chem. (Am.) 66, 691–715.Google Scholar
  83. Cori, C. F., 1926 a: The rate of absorption of a mixture of glucose and galactose. Proc. Soc. exper. Biol. a. Med. (Am.) 23, 290–291.Google Scholar
  84. Cori, C. F., 1926 b: The absorption of glycine and d, 1-alanine. Proc. Soc. exper. Biol. a. Med. 24, 125–126.Google Scholar
  85. Cori, C. F., G. T. Cori, and H. L. Goltz, 1929: On the mechanism of glucose absorption from the intestinal tract. Proc. Soc. exper. Biol. a. Med. (Am.) 26, 433–436.Google Scholar
  86. Cowie, D. B., R. B. Roberts, and I. Z. Roberts, 1949: Potassium metabolism in Escherichia coli. I. Permeability to sodium and potassium ions. J. cellul. a. comp. Physiol. (Am.) 34, 243–258.CrossRefGoogle Scholar
  87. Crampton, R. F., Q. H. Gibson, and D. H. Smyth, 1951: The excretion of the D- and L-isomers of amino-acids in the urine. J. Physiol. (Brit.) 115, 7 P.Google Scholar
  88. Creese, R., 1951: Exchangeability of muscle potassium. J. Physiol. (Brit.) 115, 23 P.Google Scholar
  89. Creese, R., 1952: Bicarbonate ion and muscle potassium. Biochem. J. (Brit.) 50, xviii.Google Scholar
  90. Cross, R. J., and J. V. Taggart, 1950: Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Amer. J. Physiol. 161, 181–190.PubMedGoogle Scholar
  91. Cumings, J. N., 1940: The rôle of potassium in myasthenia gravis. J. Neur. Psychiat. 3, 115–122.CrossRefGoogle Scholar
  92. Danowski, T. S., 1941: The transfer of potassium across the human blood cell membrane. J. biol. Chem. (Am.) 139, 693–705.Google Scholar
  93. Darlington, W. A., and J. H. Quastel, 1953: Absorption of sugars from isolated surviving intestine. Arch. Biochem. Biophys. 43, 194–207.PubMedCrossRefGoogle Scholar
  94. Davies, M. E., and E. B. Edney, 1953: The evaporation of water from spiders. J. exper. Biol. 29, 571–582.Google Scholar
  95. Davies, R., J. P. Folkes, E. F. Gale, and L. C. Bigger, 1953: The assimilation of amino-acids by micro-organisms. 16. Changes in sodium and potassium accompanying the accumulation of glutamic acid or lysine by bacteria and veast. Biochem. J. 54, 430–437.PubMedGoogle Scholar
  96. Davies, R. E., and A. W. Galston, 1951: Rapid rate of turnover of potassium ions in kidney slices. Nature 168, 700.PubMedCrossRefGoogle Scholar
  97. Davies, R. E. and H. A. Krebs, 1952: Biochemical aspects of the transport of ions by nervous tissue. Biochem. J. 50, xxv.Google Scholar
  98. Davson, H., 1939: Studies on the permeability of erythrocytes. VI. The effect of reducing the salt content of the medium surrounding the cell. Biochem. J. 33, 389–401.PubMedGoogle Scholar
  99. Davson, H., 1940: Ionic permeability. The comparative effects of environmental changes on the permeability of the cat erythrocyte membrane to sodium and potassium. J. cellul. a. comp. Physiol. (Am.) 15, 317–330.CrossRefGoogle Scholar
  100. Davson, H., 1941: The effect of some metabolic poisons on the permeability of the rabbit erythrocyte to potassium. J. cellul. a. comp. Physiol. (Am.) 18, 173–185.CrossRefGoogle Scholar
  101. Davson, H., 1951: Textbook of General Physiology, Philadelphia.Google Scholar
  102. Davson, H., and J. F. Danielli, 1938: Studies on the permeability of erythrocytes. V. Factors in cation permeability. Biochem. J. 32, 991–1001.PubMedGoogle Scholar
  103. Davson, H., and J. F. Danielli, 1943: The Permeability of Natural Membranes, Cambridge.Google Scholar
  104. Davson, H., and J. M. Reiner, 1942: Ionic permeability; enzyme-like factor concerned in migration of sodium through cat erythrocyte membrane. J. cellul. a. comp. Physiol. (Am.) 20, 325–342.CrossRefGoogle Scholar
  105. Dean, R. B., 1940: Anaerobic loss of potassium from frog muscle. J. cellul. a. comp. Physiol. (Am.) 15, 189–193.CrossRefGoogle Scholar
  106. Dean, R. B., T. R. Noonan, L. Haege, and W. O. Fenn, 1941: Permeability of erythrocytes to radioactive potassium. J. gen. Physiol. (Am.) 24, 353–365.CrossRefGoogle Scholar
  107. Demis, D. J., 1953: A study of the effects of insulin and of mercury on the utilization of monosaccharides by excised rat diaphragm. University of Rochester Atomic Energy Project, Report UR—297.Google Scholar
  108. Desmedt, J., 1953: Electrical activity and intracellular sodium concentration in frog muscle. J. Physiol. (Brit.) 121, 191–205.Google Scholar
  109. Deyrup, I., 1953: A study of the fluid uptake of rat kidney slices in vitro. J. gen. Physiol. (Am.) 36, 739–749.CrossRefGoogle Scholar
  110. Dixon, K. C., 1949: Anaerobic leakage of potassium from brain. Biochem. J. 44, 187–190.Google Scholar
  111. Donhoffer, Sz., 1935: Über die elektive Resorption der Zucker. Arch. exper. Path. (D.) 177, 689–692.CrossRefGoogle Scholar
  112. Doty, J. R., 1941: Reabsorption of certain amino acids and derivatives by the kidney tubules. Proc. Soc. exper. Biol. a. Med. (Am.) 46, 129–130.Google Scholar
  113. Drury, D. R., and A. N. Wick, 1951: Insulin and the volume of distribution of glucose. Amer. J. Physiol. 166, 159–164.PubMedGoogle Scholar
  114. Drury, D. R., and A. N. Wick, 1952: Insulin and cell permeability to galactose. Amer. J. Physiol. 171, 721.Google Scholar
  115. Drury, D. R., and A. N. Wick, 1953: The nature of the action of insulin. XIXth Internat. Physiol. Congr. 319–320.Google Scholar
  116. Eddy, A. A., T. C. N. Carroll, C. J. Danby, and Sir C. Hinshelwood, 1951: Alkali-metal ions in the metabolism of Bad. lactis aerogenes. I. Experiments on the uptake of radioactive potassium, rubidium and phosphorus. Proc. roy. Soc. Lond. B 138, 219–228.CrossRefGoogle Scholar
  117. Eddy, A. A., and Sir C. Hinshelwood, 1950: The utilization of potassium by Bact. ladis aerogenes. Proc. roy. Soc, Lond. B 136, 544–562.CrossRefGoogle Scholar
  118. Eddy, A. A., and Sir C. Hinshelwood, 1951: Alkali-metal ions in the metabolism of Bad. ladis aerogenes. III. General discussion of their role and mode of action. Proc rov. Soc, Lond. B 138, 237–240.CrossRefGoogle Scholar
  119. Ege, R., 1919: Studier over glukosens fordeling mellem plasmaet og de rode blodlegemer. Thesis, Copenhagen. Cited by Bang and Ørskov (1937).Google Scholar
  120. Ege, R., E. Gottlieb, and N. W. Rakestraw, 1925: The distribution of glucose between human blood plasma and red corpuscles and the rapiditv of its penetration. Amer. J. Physiol. 72, 76–83.Google Scholar
  121. Ege, R., and K. M. Hansen, 1927: Distribution of sugar between plasma and red blood corpuscles in man. Acta med. scand. (Schwd.) 65, 279–299.CrossRefGoogle Scholar
  122. Eggleton, M. G., and Y. A. Habib, 1950: Urinarv excretion of phosphate in man and the cat. J. Physiol. (Brit.) 111, 423–436.Google Scholar
  123. Eggleton, M. G., and S. Shuster, 1954 a: Glucose and phosphate excretion in the cat. J. Physiol. (Brit.) 124, 613–622.Google Scholar
  124. Eggleton, M. G., and S. Shuster, 1954 b: The effect of insulin on the excretion of glucose and phosphate by the kidney of the cat. J. Physiol. (Brit.) 124, 623–630.Google Scholar
  125. Eisenmann, A. J., L. Ott, P. K. Smith, and A. W. Winkler, 1940: Permeability of human erythrocytes to potassium, sodium, and inorganic phosphate by the use of radioactive isotopes. J. biol. Chem. (Am.) 135 165–173.Google Scholar
  126. Ellinger, P., et A. Lambrechts, 1937: La localisation de l’effet de la phlorhizine dans le rein vivant. C. r. Soc. Biol. 124, 261–263.Google Scholar
  127. Elliott, K. A. C., 1946: Swelling of brain slices and the permeability of brain cells to glucose. Proc. Soc. exper. Biol. a. Med. (Am.) 63, 234–236.Google Scholar
  128. Elsden, S. R., Q. H. Gibson, and G. Wiseman, 1950: Selective absorption of aminoacids from the small intestine of the rat. J. Physiol. (Brit.) 111, 56 P.Google Scholar
  129. Emmens, C. W., and A. W. Blackshaw, 1953: The fertility of ram and bull semen after deep freezing. XIXth Internat. Physiol. Congr. 334–335.Google Scholar
  130. Fenn, W. O., 1937: Loss of potassium in voluntary contraction. Amer. J. Physiol. 120, 675–680.Google Scholar
  131. Fenn, W. O., and D. M. Cobb, 1936: Electrolyte changes in muscle during activity. Amer. J. Physiol. 115, 345–356.Google Scholar
  132. Fenn, W. O., and D. M. Cobb, J. F. Manery, and W. R. Bloor, 1937: Electrolyte changes in cat muscle during stimulation. Amer. J. Physiol. 121, 595–608.Google Scholar
  133. Fenn, W. O., and R. Gerschman, 1950: The loss of potassium from frog nerves in anoxia and other conditions. J. gen. Physiol. (Am.) 33, 195–203.CrossRefGoogle Scholar
  134. Fenn, W. O., R. H. Koenemann, and E. T. Sheridan, 1940: The potassium exchange of perfused frog muscle during asphyxia. J. cellul. a. comp. Physiol. (Am.) 16, 225–264.Google Scholar
  135. Fenn, W. O., T. R. Noonan, L. J. Mullins, and L. Haege, 1942: The exchange of radioactive potassium with body potassium. Amer. J. Physiol. 135, 149–163.Google Scholar
  136. Fenton, P. F., 1945: Response of the gastrointestinal tract to ingested glucose solutions. Amer. J. Physiol. 144, 609–619.Google Scholar
  137. Feyder S., and H. B. Pierce, 1935: Rates of absorption and glycogenesis from various sugars. J. Nutrit. (Am.) 9, 435–455.Google Scholar
  138. Fisher, R. B., and D. B. Lindsay, 1954: The effect of insulin on the penetration of galactose into the perfused rat heart. J. Physiol. (Brit.) 124, 20 P–21 P.Google Scholar
  139. Fisher, R. B., and D. S. Parsons, 1953 a: Glucose movements across the wall of the rat small intestine. J. Physiol. (Brit.) 119, 210–223.Google Scholar
  140. Fisher, R. B., and D. S. Parsons, 1953 b: Galactose absorption from the surviving small intestine of the rat. J. Physiol. (Brit.) 119, 224–232.Google Scholar
  141. Flemister, L. J., and S. C. Flemister, 1951: Chloride ion regulation and oxygen consumption in the crab Ocypode albicans (Bosq). Biol. Bull. (Am.) 101, 259–273.CrossRefGoogle Scholar
  142. Flynn, F., and M. Maizels. 1950: Cation control in human erythrocytes. J. Physiol. (Brit.) 110, 301–318.Google Scholar
  143. Forster, R. P., and J. V. Taggart, 1950: Use of isolated renal tubules for the examination of metabolic processes associated with active cellular transport. J. cellul. a. comp. Physiol. (Am.) 36, 251–270.CrossRefGoogle Scholar
  144. Foulks, J., P. Brazeau, E. S. Koelle, and A. Gilman, 1952: Renal secretion of thiosulfate in the dog. Amer. J. Physiol. 168, 77–85.PubMedGoogle Scholar
  145. Foulks, J., G. H. Mudge, and A. Gilman, 1952: Renal excretion of cation in the dog during infusion of isotonic solutions of lithium chloride. Amer. J. Physiol. 168, 642–649.PubMedGoogle Scholar
  146. Franck, J., and J. E. Mayer, 1947: An osmotic diffusion pump. Arch. Biochem. 14, 297–313.PubMedGoogle Scholar
  147. Fridlander, L., and J. H. Quastel, 1953: Absorption of sugars and amino acids by isolated surviving intestine. XIXth Internat. Physiol. Congr. 365–366.Google Scholar
  148. Fuhrman, F. A., 1952: Inhibition of active sodium transport in the isolated frog skin. Amer. J. Physiol. 171, 266–278.PubMedGoogle Scholar
  149. Fuhrman, F. A., and H. H. Ussing, 1951: A characteristic response of the isolated frog skin potential to neurohypophysial principles and its relation to the transport of sodium and water. J. cellul. a. comp. Physiol. (Am.) 38, 109–130.CrossRefGoogle Scholar
  150. Furchgott, R. F., and E. Shorr, 1943: Phosphate exchange in resting cardiac muscle as indicated by radioactivity studies. IV. J. biol. Chem. (Am.) 151, 65–86.Google Scholar
  151. Gale, E. F., 1947 a: The assimilation of amino-acids by bacteria. I. The passage of certain amino-acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. J. gen. Microbiol. 1, 53–76.PubMedGoogle Scholar
  152. Gale, E. F., 1947 b: The assimilation of amino-acids by bacteria. 6. The effect of protein synthesis on glutamic acid accumulation and the action thereon of sulpha-thiazole. J. gen. Microbiol. 1, 327–334.PubMedGoogle Scholar
  153. Gale, E. F., 1949: The assimilation of amino-acids by bacteria. 8. Trace metals in glutamic acid assimilation and their inactivation by 8-hydroxyquinoline. J. gen. Microbiol. 3, 369–386.PubMedGoogle Scholar
  154. Gale, E. F., 1951 a: The assimilation of amino-acids by bacteria. 10. Action of inhibitors on the accumulation of free glutamic acid in Staphylococcus aureus and Streptococcus faecalis. Biochem. J. 48, 286–290.PubMedGoogle Scholar
  155. Gale, E. F., 1951b: The assimilation of amino-acids by bacteria. 11. The relationship between accumulation of free glutamic acid and the formation of combined glutamic acid in Staphylococcus aureus. Biochem. J. 48, 290–297.PubMedGoogle Scholar
  156. Gale, E. F., 1953: Assimilation of amino-acids by gram-positive bacteria and some actions of antibiotics thereon. Adv. in Prot. Chem. 8, 285–391.CrossRefGoogle Scholar
  157. Gale, E. F., 1954: The accumulation of amino-acids within staphylococcal cells. Symp. Soc. exper. Biol. 8 (in press).Google Scholar
  158. Gale, E. F., and P. D. Mitchell, 1947: The assimilation of amino-acids by bacteria. 4. The action of triphenvlmethane dyes on glutamic acid assimilation. J. gen. Microbiol. 1, 299–313.PubMedGoogle Scholar
  159. Gale, E. F., and A. W. Rodwell, 1948: Amino acid metabolism of penicillin-resistant staphylococci. J. Bacter. (Am.) 55, 161–167.Google Scholar
  160. Gale, E. F., and A. W. Rodwell 1949: The assimilation of amino-acids by bacteria. 7. The nature of resistance to penicillin in Staphylococcus aureus. J. gen. Microbiol. 3, 127–142.PubMedGoogle Scholar
  161. Gale, E. F., and E. S. Taylor, 1947: The assimilation of amino-acids by bacteria. 5. The action of penicillin in preventing the assimilation of glutamic acid by Staphylococcus aureus. J. gen. Microbiol. 1, 314–326.PubMedGoogle Scholar
  162. Gammeltoft, A., and K. Kjerulf-Jensen, 1943: The mechanism of renal excretion of fructose and galactose in rabbit, cat, dog and man (with special reference to the phosphorylation theory). Acta Physiol. Scand. (D.) 6, 368–384.CrossRefGoogle Scholar
  163. Geiger, A., J. Magnes, and J. Dobkin, 1953: The role of a liver factor in maintaining the glucose uptake, carbohydrate metabolism and the responsiveness of the brain. The utilization of glucosamine. XIXth Internat. Physiol. Congr. 383–384.Google Scholar
  164. Geiger, A., J. Magnes, R. M. Taylor, and M. Veralli, 1954: Effect of blood constituents on uptake of glucose and on metabolic rate of the brain in perfusion experiments. Amer. J. Physiol. 177, 138–149.PubMedGoogle Scholar
  165. Gemmill, C. L., and L. Hamman Jr., 1941: The effect of insulin on glycogen deposition and on glucose utilization by isolated muscles. Bull. Johns Hopkins Hosp. 68, 50–57.Google Scholar
  166. Gibson, Q. H., and G. Wiseman, 1951: Selective absorption of stereo-isomers of amino-acids from loops of the small intestine of the rat. Biochem. J. 48, 426–429.PubMedGoogle Scholar
  167. Goldstein, M. S., W. L. Henry, B. Huddlestun, and R. Levine, 1953: Action of insulin on transfer of sugars across cell barriers: common chemical configuration of substances responsive to action of the hormone. Amer. J. Physiol. 173, 207–211.PubMedGoogle Scholar
  168. Goldstein, M. S., V. Mullick, B. Huddlestun, and R. Levine, 1953: Action of muscular work on transfer of sugars across cell barriers: comparison with action of insulin. Amer. J. Physiol. 173, 212–216.PubMedGoogle Scholar
  169. Gourley, D. R. H., 1951: Inhibition of uptake of radioactive phosphate by human erythrocytes in vitro. Amer. J. Physiol. 164, 213–220.PubMedGoogle Scholar
  170. Gourley, D. R. H., 1952: The role of adenosine triphosphate in the transport of phosphate in the human erythrocyte. Arch. Biochem. 40, 1–12.PubMedCrossRefGoogle Scholar
  171. Gourley, D. R. H., and C. L. Gemmill, 1950: The effect of temperature upon the uptake of radioactive phosphate by human erythrocytes in vitro. J. cellul. a. comp. Physiol. (Am.) 35, 341–352.CrossRefGoogle Scholar
  172. Greig, M. E., J. S. Faulkner, and T. C. Mayberry, 1953: Studies on permeability. IX. Replacement of potassium in erythrocytes during Cholinesterase activity. Arch. Biochem. Biophys. 43, 39–47.PubMedCrossRefGoogle Scholar
  173. Greig, M. E., and W. C. Holland, 1949 a: Effect of the D- and L-isomers of isoamidone on the permeability of dog erythrocytes. Proc. Soc. exper. Biol. a. Med. (Am.) 71, 189–192.Google Scholar
  174. Greig, M. E., and W. C. Holland, 1949 b: Studies on the permeability of erythrocytes. I. The relationship between Cholinesterase activity and permeability of dog erythrocytes. Arch. Biochem. 23, 370–384.PubMedGoogle Scholar
  175. Greig, M. E., and W. C. Holland, 1951: Studies on the permeability of erythrocytes. IV. Effect of certain choline and non-choline esters on permeability of dog erythrocytes. Amer. J. Physiol. 164, 423–427.PubMedGoogle Scholar
  176. Greig, M. E., T. C. Mayberry, and C. E. Dunn, 1951: Replacement of potassium in the human erythrocyte during Cholinesterase activity. Fed. Proc. 10, 302–303.Google Scholar
  177. Groen, J., 1937: Absorption of hexoses from upper part of small intestine in man. J. clin. Invest. (Am.) 16, 245–255.CrossRefGoogle Scholar
  178. Grossfeld, H. D., 1951: Cell permeability to electrolytes in tissue culture. Exper. Cell Res. 2, 141–143.CrossRefGoogle Scholar
  179. Grundfest, H., and D. Nachmansohn, 1950: Increased sodium entry into squid giant axons during activity at high frequencies and during reversible inactivation of Cholinesterase. Fed. Proc. 9, 53.Google Scholar
  180. Guensberg, E., 1947: Die Glukoseaufnahme in menschliche rote Blutkörperchen. Inauguraldissertation, Bern; Schwarzenburg.Google Scholar
  181. Hahn, L., and G. Hevesy, 1942: Rate of penetration of ions into erythrocytes. Acta Physiol. Scand. (D.) 3, 193–223.CrossRefGoogle Scholar
  182. Hahn, L., and G. Hevesy, and O. H. Rebbe, 1939: Do the potassium ions inside the muscle cells and blood corpuscles exchange with those present in the plasma? Biochem. J. 33, 1549–1558.PubMedGoogle Scholar
  183. Hald, P. M., A. J. Heinsen, and J. P. Peters, 1948: Effects of isotonic solutions and of sulfates and phosphates on the distribution of water and electrolytes in human blood. Amer. J. Physiol. 152, 77–85.PubMedGoogle Scholar
  184. Hald, P. M., M. Tulin, T. S. Danowski, P. H. Lavietes, and J. P. Peters, 1947: The distribution of sodium and potassium in oxygenated human blood and their effects upon the movements of water between cells and plasma. Amer. J. Physiol. 149, 340–349.PubMedGoogle Scholar
  185. Halpern, L., 1936: The transfer of inorganic phosphorus across the red blood cell membrane. J. biol. Chem. (Am.) 114, 747–770.Google Scholar
  186. van Harreveld, A., 1950: The potassium permeability of the myelin sheath of a vertebrate nerve. J. cellul. a. comp. Physiol. (Am.) 35, 331–340.CrossRefGoogle Scholar
  187. Harris, E. J., 1953 a: The exchange of frog muscle potassium. J. Physiol. (Brit). 120, 246–253.Google Scholar
  188. Harris, E. J., 1953 b: Phosphate liberation from isolated frog muscle. J. Physiol. (Brit.) 122, 366–370.Google Scholar
  189. Harris, E. J., 1954: Linkage of Na and K transport in human erythrocytes. Symp. Soc. exper. Biol. 8 (in press).Google Scholar
  190. Harris, E. J., and G. P. Burn, 1949: The transfer of sodium and potassium ions between muscle and the surrounding medium. Trans. Farad. Soc. 45, 508–528.CrossRefGoogle Scholar
  191. Harris, E. J., and M. Maizels, 1951: The permeability of human erythrocytes to sodium. J. Physiol. (Brit.) 113, 506–524.Google Scholar
  192. Harris, E. J., and M. Maizels, 1952: Distribution of ions in suspensions of human erythrocytes. J. Physiol. (Brit.) 118, 40–53.Google Scholar
  193. Harris, J. E., 1941: The influence of the metabolism of human erythrocytes on their potassium content. J. biol. Chem. (Am.) 141, 579–595.Google Scholar
  194. Heinsen, A. J., 1948: Effect of inorganic phosphate on the glycolysis of human blood. Amer. J. Physiol. 152, 216–218.PubMedGoogle Scholar
  195. Heppel, L. A., 1939: The electrolytes of muscle and liver in potassium-depleted rats. Amer. J. Physiol. 127, 385–392.Google Scholar
  196. Heppel, L. A., 1940: The diffusion of radioactive sodium into the muscles of potassium-deprived rats. Amer. J. Physiol. 128, 449–454.Google Scholar
  197. Hestrin-Lerner, S., and B. Shapiro 1953: Active absorption of glucose from the intestine. Nature 171, 745–746.PubMedCrossRefGoogle Scholar
  198. Hetényi, G., and M. Winter, 1952: Contributions to the mechanism of the intestinal absorption of amino acids. Acta Physiol. Acad. Sci. Hungar. 3, 49–58.CrossRefGoogle Scholar
  199. Hevesy, G., E. Hofer, and A. Krogh, 1935: The permeability of the skin of frogs to water as determined by D2O and H2O. Skand. Arch. Physiol. (D.) 72, 199–214.Google Scholar
  200. Hevesy, G., and N. Nielsen, 1941: Potassium interchange in yeast cells. Acta Physiol. Scand. 2, 347–354.CrossRefGoogle Scholar
  201. Hewitt, J. A., 1924: The metabolism of carbohydrates. Part III. The absorption of glucose, fructose and galactose from the small intestine. Biochem. J. 18, 160–170.Google Scholar
  202. Hodgkin, A. L., 1949: Ionic exchange and electrical activity in nerve and muscle. Arch. Sci. Physiol. 3, 151–163.Google Scholar
  203. Hodgkin, A. L., and A. F. Huxley, 1952 a: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Brit.) 116, 449–472.Google Scholar
  204. Hodgkin, A. L., and A. F. Huxley, 1952 b: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Brit.) 116, 473–496.Google Scholar
  205. Hodgkin, A. L., and A. F. Huxley, 1952 c: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Brit.) 116, 497–506.Google Scholar
  206. Hodgkin, A. L., and A. F. Huxley, 1953: Movement of radioactive potassium and membrane current in a giant axon. J. Physiol. (Brit.) 121, 403–414.Google Scholar
  207. Hodgkin, A. L., and R. D. Keynes, 1953: The mobility and diffusion coefficient of potassium in giant axons from Sepia. J. Physiol. (Brit.) 119, 513–528.Google Scholar
  208. Hodgkin, A. L., and R. D. Keynes, 1954: Movement of cations during recovery in nerve. Symp. Soc. exper. Biol. 8 (in press).Google Scholar
  209. Höber, R., 1945: Physical Chemistry of Cells and Tissues, Philadelphia.Google Scholar
  210. Höber, R., and J. Höber, 1937: Experiments on the absorption of organic solutes in the small intestine of rats. J. cellul. a. comp. Physiol. (Am.) 10, 401–422.CrossRefGoogle Scholar
  211. Hogben, C. A. M., and J. L. Bollman, 1951: Excretion of phosphate by isolated frog kidney: an “adsorption semipermeability” model for maximal tubular transport. Amer. J. Physiol. 164, 662–669.PubMedGoogle Scholar
  212. Holland, W. C., C. E. Dunn, and M. E. Greig, 1952 a: Studies on permeability. VII. Effect of several substrates and inhibitors of acetyl Cholinesterase on permeability of isolated auricles to Na and K. Amer. J. Physiol. 168, 546–556.PubMedGoogle Scholar
  213. Holland, W. C., C. E. Dunn, and M. E. Greig, 1952 b: Studies on permeability. VIII. Role of acetylcholine metabolism in the genesis of the electrocardiogram. Amer. J. Physiol. 170, 339–345.PubMedGoogle Scholar
  214. Holland, W. C., and M. E. Greig, 1950 a: Studies on permeability. II. The effect of acetylcholine and physostigmine on the permeability to potassium of dog erythrocytes. Arch. Biochem. 26, 151–155.Google Scholar
  215. Holland, W. C., and M. E. Greig, 1950 b: Studies on the permeability of erythrocytes. III. The effect of physostigmine and acetyl choline on the permeability of dog, cat and rabbit erythrocytes to sodium and potassium. Amer. J. Physiol. 162, 610–615.PubMedGoogle Scholar
  216. Holland, W. C., and M. E. Greig, 1951: Studies on permeability. VI. Increased permeability of dog erythrocytes caused by Cholinesterase inhibitors. Arch. Biochem. Biophys. 32, 428–435.PubMedCrossRefGoogle Scholar
  217. Horváth, I., and G. Wix, 1951: Hormonal influences on glucose resorption from the intestines. I. Methodical principles. Daily variations in the absorption of sugar. The proportion between the absorption of glucose and xylose. Acta Physiol. Acad. Sci. Hungar. 2, 435–443.Google Scholar
  218. Hotchkiss, R. D., 1944: Gramicidin, tyrocidine, and tyrothricin. Adv. in Enzymol. 4, 153–199.Google Scholar
  219. Huf, E. G., 1935 a: Versuche über den Zusammenhang zwischen Stoffwechsel, Potentialbildung und Funktion der Froschhaut. Arch. ges. Physiol. 235, 655–673.CrossRefGoogle Scholar
  220. Huf, E. G., 1935 b: Über den Anteil vitaler Kräfte bei der Resorption von Flüssigkeit durch die Froschhaut. Arch. ges. Physiol. 236, 1–19.CrossRefGoogle Scholar
  221. Huf, E. G., 1936 a: Über aktiven Wasser- und Salztransport durch die Froschhaut. Arch, ges. Physiol. 237, 143–166.CrossRefGoogle Scholar
  222. Huf, E. G., 1936 b: Die Bedeutung der Atmungsvorgänge für die Resorptionsleistung und Potentialbildung bei der Froschhaut. Biochem. Z. 288, 116–122.Google Scholar
  223. Huf, E. G., 1936 c: Die Reproduzierbarkeit des Reidschen Versuchs. Arch. ges. Physiol. 238, 97–102.Google Scholar
  224. Huf, E. G., and J. Parrish, 1951: Nature of the electrolyte pump in surviving frog skin. Amer. J. Physiol. 164, 428–436.PubMedGoogle Scholar
  225. Huf, E. G., J. Parrish, and C. Weatherford, 1951: Active salt and water uptake by isolated frog skin. Amer. J. Physiol. 164, 137–142.PubMedGoogle Scholar
  226. Huf, E. G., and J. Wills, 1951: Influence of some inorganic cations on active salt and water uptake by isolated frog skin. Amer. J. Physiol. 167, 255–260.PubMedGoogle Scholar
  227. Huf, E. G., and J. Wills, 1953: The relationship of sodium uptake, potassium rejection, and skin potential in isolated frog skin. J. gen. Physiol. (Am.) 36, 473–487.CrossRefGoogle Scholar
  228. Huf, E. G., and J. Wills, and M. J. Cooley, 1951: The significance of the anion in active salt uptake by isolated frog skin. Arch. ges. Physiol. 255, 16–26.Google Scholar
  229. Hunter, F. R., 1936: The effect of lack of oxygen on cell permeability. J. cellul. a. comp. Physiol. (Am.) 9, 15–27.CrossRefGoogle Scholar
  230. Hunter, F. R., 1937: Effect of prolonged exposures to lack of oxygen on permeability of erythrocyte. J. cellul. a. comp. Physiol. (Am.) 10, 241–245.CrossRefGoogle Scholar
  231. Hunter, F. R., 1941: Metabolism and permeability. Anat. Rec. (Am.) 81 Suppl., 31–32.Google Scholar
  232. Hunter, F. R., 1947 a: Further studies on the relationship between cell permeability and metabolism. The effect of certain respiratory inhibitors on the permeability of erythrocytes to non-electrolytes. J. cellul. a. comp. Physiol. (Am.) 29, 301–312.CrossRefGoogle Scholar
  233. Hunter, F. R., 1947 b: The effect of washing on the permeability and metabolism of chicken erythrocytes. J. cellul. a. comp. Physiol. (Am.) 29, 313–321.CrossRefGoogle Scholar
  234. Hunter, F. R., and V. Pahigian, 1940: The effect of temperature on cell permeability and on cell respiration. J. cellul. a. comp. Physiol. (Am.) 15, 387–394.CrossRefGoogle Scholar
  235. Hurwitz, L., and A. Rothstein, 1951: The relationship of the cell surface to metabolism. VII. The kinetics and temperature characteristics of uranium-inhibition. J. cellul. a. comp. Physiol. (Am.) 38, 437–450.CrossRefGoogle Scholar
  236. Ingraham, R. C., and M. B. Visscher, 1936 a: The production of chloride-free solutions by the action of the intestinal epithelium. Amer. J. Physiol. 114, 676–680.Google Scholar
  237. Ingraham, R. C., and M. B. Visscher, 1936 b: The influence of various poisons on the movement of chloride against concentration gradients from intestine to plasma. Amer. J. Physiol. 114, 681–687.Google Scholar
  238. Ingraham, R. C., and M. B. Visscher, 1938: Further studies on intestinal absorption with the performance of osmotic work. Amer. J. Physiol. 121, 771–785.Google Scholar
  239. Jacobs, M. H., 1931: The permeability of the erythrocyte. Erg. Biol. 7, 1–55.CrossRefGoogle Scholar
  240. Jacobs, M. H., 1950: Surface properties of the erythrocyte. Ann. N. Y. Ac. Sci. 50, 824–834.CrossRefGoogle Scholar
  241. Jacobs, M. H., and S. A. Corson, 1934: The influence of minute traces of copper on certain hemolytic processes. Biol. Bull. (Am.) 67, 325–326.Google Scholar
  242. Jacobs, M. H., H. N. Glassman, and A. K. Parpart, 1935: Osmotic properties of the erythrocyte. VII. The temperature coefficients of certain hemolytic processes. J. cellul. a. comp. Physiol. (Am.) 7, 197–225.CrossRefGoogle Scholar
  243. Jacobs, M. H., H. N. Glassman, and A. K. Parpart, 1938: Osmotic properties of the erythrocyte. XI. Differences in the permeability of the erythrocytes of two closely related species. J. cellul. a. comp. Physiol. (Am.) 11, 479–494.CrossRefGoogle Scholar
  244. Jacobs, M. H., and A. K. Parpart, 1933: Osmotic properties of the erythrocyte. VI. The influence of the escape of salts on hemolysis by hypotonic solutions. Biol. Bull. (Am.) 65, 512–528.CrossRefGoogle Scholar
  245. Jacobs, M. H., and A. K. Parpart, 1937: The influence of certain alcohols on the permeability of the erythrocyte. Biol. Bull. (Am.) 73, 380–381.Google Scholar
  246. Jacobs, M. H., and D. R. Stewart, 1946: Observations on an oligodynamic action of copper on human erythrocytes. Amer. J. med. Sci. 211, 246.PubMedGoogle Scholar
  247. Jørgensen, C. B., 1947: The effect of adrenaline and related compounds on the permeability of isolated frog skin to ions. Acta Physiol. Scand. 14, 213–219..CrossRefGoogle Scholar
  248. Jørgensen, C. B., H. Levi, and H. H. Ussing, 1947: On the influence of the neurohypophyseal principles on the sodium metabolism in the axolotl (Amblystoma mexicanum). Acta Physiol. Scand. 12, 350–371.CrossRefGoogle Scholar
  249. Johnson, C. A., and O. Bergeim, 1951: The distribution of free amino-acids between erythrocytes and plasma in man. J. Biol. Chem. (Am.) 188, 833–838.Google Scholar
  250. Jonas, H., 1954: Observations on the mechanism of phosphate uptake by rabbit erythrocytes. Phosphate adsorption in relation to cell surface structure; equilibria of phosphate adsorption and absorption. Biochim. Biophys. Acta 13, 241–250.PubMedCrossRefGoogle Scholar
  251. Jonas, H., and D. R. H. Gourley, 1954: Effect of adenosine triphosphate, magnesium and calcium on the phosphate uptake by rabbit erythrocytes. Biochim. Biophys. Acta (in press).Google Scholar
  252. Jones, L. L., 1941: Osmotic regulation in several crabs of the Pacific coast of North America. J. cellul. a. comp. Physiol. (Am.) 18, 79–92.CrossRefGoogle Scholar
  253. Kabat, E. A., and J. Furth, 1941: A histochemical study of the distribution of alkaline phosphatase in various normal and neoplastic tissues. Amer. J. Path. 17, 303–318.PubMedGoogle Scholar
  254. Kamen, M. D., and S. Spiegelman, 1948: Studies on the phosphate metabolism of some unicellular organisms. Cold Spring Harbor Symp. Quant. Biol. 13, 151–163.CrossRefGoogle Scholar
  255. Kamin, H., and P. Handler, 1951: Effect of infusion of single amino acids upon excretion of other amino acids. Amer. J. Physiol. 164, 654–661.PubMedGoogle Scholar
  256. Katzin, L. I., 1940: The use of radioactive tracers in the determination of irreciprocal permeability of biological membranes. Biol. Bull. (Am.) 79, 342.Google Scholar
  257. Kekwik, R. A., and E. N. Harvey, 1934: The effect of anaerobic conditions on the permeability of the egg of Arbacia punctulata to water. J. cellul. a. comp. Physiol. (Am.) 5, 43–51.CrossRefGoogle Scholar
  258. Keynes, R. D., 1949: Movements of radioactive ions in resting and stimulated nerve. Arch. Sci. Physiol. 3, 165–175.Google Scholar
  259. Keynes, R. D., 1951 a: The leakage of radioactive potassium from stimulated nerve. J. Physiol. (Brit.) 113, 99–114.Google Scholar
  260. Keynes, R. D., 1951b: The ionic movements during nervous activity. J. Physiol. (Brit.) 114, 119–150.Google Scholar
  261. Keynes, R. D., 1954: The ionic fluxes in frog muscle. Proc. roy. Soc, Lond. B 142, 359–382.CrossRefGoogle Scholar
  262. Keynes, R. D., and P. R. Lewis, 1950: Determination of the ionic exchange during nervous activity by activation analysis. Nature 165, 809–810.PubMedCrossRefGoogle Scholar
  263. Keynes, R. D., and P. R. Lewis, 1951: The resting exchange of radioactive potassium in crab nerve. J. Physiol. (Brit.) 113, 73–98.Google Scholar
  264. Keynes, R. D., and G. W. Maisel, 1954: The energy requirement for sodium extrusion from a frog muscle. Proc. roy. Soc, Lond. B 142, 383–392.CrossRefGoogle Scholar
  265. Keys, A. B., 1931: Chloride and water secretion and absorption by the gills of the eel. Z. vergl. Physiol. 15, 364–388.CrossRefGoogle Scholar
  266. Keys, A. B., and E. N. Willmer, 1932: “Chloride secreting cells” in the gills of fishes, with special reference to the common eel. J. Physiol. (Brit.) 76, 368–378.Google Scholar
  267. Kirschner, L. B., 1953: Effect of Cholinesterase inhibitors and atropine on active sodium transport across frog skin. Nature 172, 348–350.PubMedCrossRefGoogle Scholar
  268. Kitching, J. A., 1938 a: Contractile vacuoles. Biol. Rev. 13, 403–444.CrossRefGoogle Scholar
  269. Kitching, J. A., 1938 b: The physiology of contractile vacuoles. III. The water balance of fresh-water peritricha. J. exper. Biol. 15, 143–151.Google Scholar
  270. Kjerulf-Jensen, K., und E. Lundsgaard, 1940: Quantitative Wertung des Umsatzes der Phosphatester in der Darmschleimhaut von Ratten während der Fructose-resorption. Z. physiol. Chem. 266, 217–224.CrossRefGoogle Scholar
  271. Klinghoffer, K. A., 1935: Permeability of the red cell membrane to glucose. Amer. J. Physiol. 111, 231–242.Google Scholar
  272. Klinghoffer, K. A., 1938: The effect of monoiodoacetatic acid on the intestinal absorption of monosaccharides and sodium chloride. J. biol. Chem. (Am.) 126, 201–205.Google Scholar
  273. Klingmuller, V. O. G., 1953: Asymmetric absorption, distribution and excretion of optical antipodes. XIXth Internat. Physiol. Congr. 925–926.Google Scholar
  274. Koch, H. J., 1938: The absorption of chloride ions by the anal papillae of Diptera larvae. J. exper. Biol. 15, 152–160.Google Scholar
  275. Koefoed-Johnsen, V., H. Levi, and H. H. Ussing, 1952: The mode of passage of chloride ions through the isolated frog skin. Acta Physiol. Scand. 25, 150–163.CrossRefGoogle Scholar
  276. Koefoed-Johnsen, V., and H. H. Ussing, 1949: The influence of the corticotropic hormone from ox on the active salt uptake in the axolotl. Acta Physiol. Scand. 17, 38–43.CrossRefGoogle Scholar
  277. Koefoed-Johnsen, V., and H. H. Ussing, 1953: The contributions of diffusion and flow to the passage of D2O through living membranes. Effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol. Scand. 28, 60–76.PubMedCrossRefGoogle Scholar
  278. Koefoed-Johnsen, V., H. H. Ussing, and K. Zerahn, 1952: The origin of the short-circuit current in the adrenaline stimulated frog-skin. Acta Physiol. Scand. 27, 38–48.PubMedCrossRefGoogle Scholar
  279. Korey, S. R., 1950: Permeability of axonal surface membranes to amino acids. Fed. Proc. 9, 191–192.Google Scholar
  280. Korey, S. R., 1952: Studies on permeability in relation to nerve function. IV. Effect of glutamate and aspartate upon the rate of entrance of potassium into brain cortical slices. Biochim. Biophys. Acta 9, 633–635.PubMedCrossRefGoogle Scholar
  281. Korey, S. R., and R. Mitchell, 1951: Studies on permeability in relation to nerve function. III. Permittivity of brain cortex slices to glycin and aspartic acid. Biochim. Biophys. Acta 7, 507–519.PubMedCrossRefGoogle Scholar
  282. Kozawa, S., 1914: Beiträge zum arteigenen Verhalten der roten Blutkörperchen. III. Artdifferenzen in der Durchlässigkeit der roten Blutkörperchen. Biochem. Z. 60, 231–256.Google Scholar
  283. Krahl, M. E., 1951: The effect of insulin and pituitary hormones on glucose uptake in muscle. Ann. N.Y. Ac. Sci. 54, 649–670.CrossRefGoogle Scholar
  284. Krahl, M. E., and C. F. Cori, 1947: The uptake of glucose by the isolated diaphragm of normal, diabetic and adrenalectomized rats. J. biol. Chem. (Am.) 170, 607–618.Google Scholar
  285. Krahl, M. E., and C. R. Park, 1948: The uptake of glucose by the isolated diaphragm of normal and hypophysectomized rats. J. biol. Chem. (Am.) 174, 939–946.Google Scholar
  286. Krebs, H. A., L. V. Eggleston, and C. Terner, 1951: In vitro measurements of the turnover rate of potassium in brain and retina. Biochem. J. 48, 530–537.PubMedGoogle Scholar
  287. Kritzler, R. A., and A. B. Gutman, 1941: “Alkaline” phosphatase activity of the proximal convoluted tubules and the mechanism of phlorizin glycuresis. Amer. J. Physiol. 134, 94–101.Google Scholar
  288. Krogh, A., 1937 a: Osmotic regulation in the frog (Rana esculenta) by active absorption of chloride ions. Skand. Arch. Physiol. 76, 60–73.Google Scholar
  289. Krogh, A., 1937 b: Active absorption of anions in the animal kingdom. Nature 139, 755.CrossRefGoogle Scholar
  290. Krogh, A., 1937 c: Osmotic regulation in fresh water fishes by active absorption of chloride ions. Z. vergl. Physiol. 24, 656–666.CrossRefGoogle Scholar
  291. Krogh, A., 1938: The active absorption of ions in some freshwater animals. Z. vergl. Physiol. 25, 335–350.Google Scholar
  292. Krogh, A., 1943: The exchange of ions between cells and extracellular fluid. I. The uptake of potassium into the chorion membrane from the hen’s egg. Acta Physiol. Scand. 6, 203–221.CrossRefGoogle Scholar
  293. Krogh, A., 1946: The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally. Proc. roy. Soc, Lond. B 133, 140–200.CrossRefGoogle Scholar
  294. Lambrechts, A., 1934: Appréciation de la quantité de phlorhizine dans le foie et les reins après injection intraveineuse chez le chien. C. r. Soc. Biol. 116, 355–357.Google Scholar
  295. Lambrechts, A., 1936 a: Processus de déphosphorylation pendant le diabète phlorhizique chez le chien. C. r. Soc. Biol. 122, 72–73.Google Scholar
  296. Lambrechts, A., 1936 b: Phlorhizine et excrétion urinaire de phosphore. C. r. Soc. Biol. 122, 468–470.Google Scholar
  297. Lambrechts, A., 1936: Influence de la phlorhizine sur la phosphatase rénale in vitro. C. r. Soc. Biol. 123, 311–313.Google Scholar
  298. Lambrechts, A., 1937: Nouvelles recherches sur le diabète phlorhizique, la phlorhizine et quelques substances apparentées. Quatrième memoire: Quelques recherches sur le mécanisme de la glycosurie phlorhizique. Arch, internat. Physiol. 44, Suppl., 136–162.CrossRefGoogle Scholar
  299. Laszt, L., 1935: Die Resorption von Glukose und Xylose bei verschiedener H-Kon-zentration. Biochem. Z. 276, 40–43.Google Scholar
  300. Laszt, L., und H. Süllmann, 1935: Nachweis der Bildung von Phosphorsäureestern in der Darmschleimhaut bei der Resorption von Zuckern und Glyzerin. Biochem. Z. 278, 401–417.Google Scholar
  301. Lees, A. D., 1947: Transpiration and the structure of the epicuticle in ticks. J. exper. Biol. 23, 379–410.Google Scholar
  302. LeFevre, P. G., 1947: Evidence of active transfer across the human erythrocyte membrane. Biol. Bull. (Am.) 93, 224.Google Scholar
  303. LeFevre, P. G., 1948: Evidence of active transfer of certain non-electrolytes across the human red cell membrane. J. gen. Physiol. (Am.) 31, 505–527.CrossRefGoogle Scholar
  304. LeFevre, P. G., 1953: Further characterization of the sugar-transfer system in the red cell membrane by the use of phloretin. Fed. Proc. 12, 84.Google Scholar
  305. LeFevre, P. G., 1954: The evidence for active transport of monosaccharides across the red cell membrane. Symp. Soc. exper. Biol. 8 (in press).Google Scholar
  306. LeFevre, P. G., and R. I. Davies, 1951: Active transport into the human erythrocyte: evidence from comparative kinetics and competition among monosaccharides. J. gen. Physiol. (Am.) 34, 515–524.CrossRefGoogle Scholar
  307. LeFevre, P. G., and M. E. LeFevre, 1952: The mechanism of glucose transfer into and out of the human red cell. J. gen. Physiol. (Am.) 35, 891–906.Google Scholar
  308. Leibowitz, J., and N. Kupermintz, 1942: Potassium in bacterial fermentation. Nature 150, 233.CrossRefGoogle Scholar
  309. Levi, H., and H. H. Ussing, 1948: The exchange of sodium and chloride ions across the fibre membrane of the isolated frog sartorius. Acta Physiol. Scand. 16, 232–249.CrossRefGoogle Scholar
  310. Levi, H., and H. H. Ussing, 1949: Resting potential and ion movements in the frog skin. Nature 164, 928–929.PubMedCrossRefGoogle Scholar
  311. Levine, R., and M. S. Goldstein, 1955: The effect of insulin on the transfer of sugars across cell barriers. XIXth Internat. Physiol. Congr. 557–558.Google Scholar
  312. Levine, R., and M. S. Goldstein, B. Huddlestun, and S. P. Klein, 1950: Action of insulin on the “permeability” of cells to free hexoses, as studied by its effect on the distribution of galactose. Amer. J. Physiol. 163, 70–76.PubMedGoogle Scholar
  313. Levine, R., and M. S. Goldstein, S. Klein, and B. Huddlestun, 1949: The action of insulin on the distribution of galactose in eviscerated nephrectomized dogs. J. biol. Chem. (Am.) 179, 985–986.Google Scholar
  314. Levinsky, N. G., and W. H. Sawyer, 1953: Relation of metabolism of frog skin to cellular integrity and electrolyte transfer. J. gen. Physiol. (Am.) 36, 607–615.CrossRefGoogle Scholar
  315. Lillie, R. S., 1916: Increase of permeability to water following normal and artificial activation in sea-urchin eggs. Amer. J. Physiol. 40, 249–266.Google Scholar
  316. Lindberg, O., 1950: On surface reactions in the sea urchin egg. Exper. Cell. Res. 1, 105–114CrossRefGoogle Scholar
  317. Linderholm, H., 1952: Active transport of ions through frog skin with special reference to the action of certain diuretics. A study of the relation between electrical properties, the flux of labelled ions, and respiration. Acta Physiol. Scand. 27, suppl. 97.Google Scholar
  318. Linderholm, H., 1953: The electrical potential across isolated frog skins and its dependence on the permeability of the skins to chloride ions. Acta Physiol. Scand. 28, 211–217.PubMedCrossRefGoogle Scholar
  319. Lindvig, P. E., M. E. Greig, and S. W. Peterson, 1951: Studies on permeability. Y. The effects of acetylcholine and physostigmine on the permeability of human erythrocytes to sodium and potassium. Arch. Biochem. 30, 241–250.PubMedGoogle Scholar
  320. Ling, G. N., 1953: Selective cellular permeability according to the fixed charge hypothesis (FCH). XIXth Internat. Physiol. Congr. 566–567.Google Scholar
  321. Lotspeich, W. D., 1947: Renal tubular reabsorption of inorganic sulphate in the normal dog. Amer. J. Physiol. 151, 311–318.PubMedGoogle Scholar
  322. Lotspeich, W. D., R. C. Swan, and R. F. Pitts, 1947: The renal tubular reabsorption of chloride. Amer. J. Physiol. 148, 445–448.PubMedGoogle Scholar
  323. Lourau, M., et O. Lartigue, 1951: L’absorption intestinale du glucose chez les cobayes irradiés. Arch. Sci. Physiol. 5, 83–92.Google Scholar
  324. Lundsgaard, E., 1933 a: Hemmung von Esterifizierungsvorgängen als Ursache der Phlorrhizinwirkung. Biochem. Z. 264, 209–220.Google Scholar
  325. Lundsgaard, E., 1933 b: Die Wirkung von Phlorrhizin auf die Glukoseresorption. Biochem. Z. 264, 221–223.Google Scholar
  326. Lundsgaard, E., 1935: The effect of phloridzin on the isolated kidev and isolated liver. Skand. Arch. Physiol. 72, 265–270.Google Scholar
  327. Lundsgaard, E., 1939: Die säurelöslichen Phosphatverbindungen in der Darmschleimhaut bei Ruhe und während der Hexoseresorption. Z. physiol. Chem. 261, 193–208.CrossRefGoogle Scholar
  328. Macfarlane, M. G., and A. G. Spencer, 1953: Changes in the water, sodium and potassium content of rat-liver mitochondria during metabolism. Biochem. J. 54, 569–575.PubMedGoogle Scholar
  329. Mackay, E. M., and H. C. Bergman, 1933: The rate of absorption of glucose from the intestinal tract. J. biol. Chem. (Am.) 101, 453–462.Google Scholar
  330. Macleod, J. J. R., H. E. Magee, and C. B. Purves, 1930: Selective absorption of carbohydrates. J. Physiol. (Brit.) 70, 404–416.Google Scholar
  331. Magee, H. E., and E. Ried, 1931: Absorption of glucose from alimentary canal. J. Physiol. (Brit.) 73, 163–183.Google Scholar
  332. Maizels, M., 1935: The permeation of erythrocytes by cations. Biochem. J. 29, 1970–1982.PubMedGoogle Scholar
  333. Maizels, M., 1948: Control of cations in erythrocytes. J. Physiol. (Brit.) 107, 9 P–10 P.Google Scholar
  334. Maizels, M., 1949: Cation control in human erythrocytes. J. Physiol. (Brit.) 108, 247–263.Google Scholar
  335. Maizels, M., 1951: Factors in active transport of cations. J. Physiol. (Brit.) 112, 59–83.Google Scholar
  336. Maizels, M., 1954: Cation transport in chicken erythrocytes. J. Physiol. (Brit.) 125, 263–277.Google Scholar
  337. Malm, M., 1940: Quantitative Bestimmungen der Permeabilität der Hefezellen für Fluor. Die Naturwissenschaften 28, 723–724.CrossRefGoogle Scholar
  338. Malm, M., 1948: Über die Permeabilität der Hefezellen und die von den permeierenden Stoffen, insbesondere Fluorwasserstoff, bedingten Plasmaveränderungen. Ark. Kemi Mineral. Geol. 25, 1–187.Google Scholar
  339. Marsh, J. B., and D. L. Drabkin, 1947: Kidney phosphatase in alimentary hyperglycemia and phlorhizin glycosuria. A dynamic mechanism for renal threshold for glucose. J. biol. Chem. (Am.) 168, 61–73.Google Scholar
  340. Mathieu, Fr., 1935: Die Resorption von Hexose-di- und -monophosphorsäure im Vergleich zu anderen Hexosen. Biochem. Z. 276, 49–54.Google Scholar
  341. Matthews, D. M., and D. H. Smyth, 1952: Stereochemically specific absorption of alanine from the intestine into the blood stream. J. Physiol. (Brit.) 116. 20 P–21 P.Google Scholar
  342. Meldahl, K. F., und S. L. Orskov, 1940: Photoelektrische Methode zur Bestimmung der Permeierungsgeschwindigkeit von Anelektrolyten durch die Membran von roten Blutkörperchen. Untersuchungen über die Gültigkeit des Fickschen Gesetzes für die Permeierungsgeschwindigkeit. Skand. Arch. Physiol. 83, 266–280.Google Scholar
  343. Meyer, D. K., 1951: Sodium flux through the gills of goldfish. Amer. J. Physiol. 165, 580–587.PubMedGoogle Scholar
  344. Minibeck, H., 1939: Die selektive Zuckerresorption beim Kaltblüter und ihre Beeinflussung durch Nebennieren- und Hypophysenexstirpation. Arch. ges. Physiol. 242, 344–353.CrossRefGoogle Scholar
  345. Monroy Oddo, A., and M. Esposito, 1951: Changes in the potassium content of sea urchin eggs on fertilization. J. gen. Physiol. (Am.) 34, 285–293.CrossRefGoogle Scholar
  346. Montgomery, H., and J. A. Pierce, 1937: The site of acidification of the urine within the renal tubule in amphibia. Amer. J. Physiol. 118, 144–152.Google Scholar
  347. Mortensen, R. A., and K. E. Kellogg, 1944: The uptake of lead by blood cells as measured with a radioactive isotope. J. cellul. a. comp. Physiol. (Am.) 23, 11–20.CrossRefGoogle Scholar
  348. Mudge, G. H., 1951a: Studies on potassium accumulation by rabbit kidney slices: effect of metabolic activity. Amer. J. Physiol. 165, 113–127.PubMedGoogle Scholar
  349. Mudge, G. H., 1951b: Electrolyte and water metabolism of rabbit kidney slices: effect of metabolic inhibitors. Amer. J. Physiol. 167, 206–223.PubMedGoogle Scholar
  350. Mudge, G. H., 1953: Electrolyte metabolism of rabbit-kidney slices: studies with radioactive potassium and sodium. Amer. J. Physiol. 173, 511–522.PubMedGoogle Scholar
  351. Mudge, G. H., 1954: Renal Mechanisms of Electrolyte Transport, in Clarke, H. T., and D. Nachmansohn: Ion Transport across Membranes, New York.Google Scholar
  352. Mudge, G. H., J. Foulks, and A. Gilman, 1948: The renal excretion of potassium. Proc. Soc. exper. Biol. a. Med. (Am.) 67, 545–547.Google Scholar
  353. Mudge, G. H., J. Foulks, and A. Gilman, 1949: Effect of urea diuresis on renal excretion of electrolytes. Amer. J. Physiol. 158, 218–230.PubMedGoogle Scholar
  354. Mudge, G. H., J. Foulks, and A. Gilman, 1950: Renal secretion of potassium during cellular dehydration. Amer. J. Physiol. 161, 159–166.PubMedGoogle Scholar
  355. Mudge, G. H., and J. V. Taggart, 1950 a: Effect of 2,4-dinitrophenol on renal transport mechanisms in the dog. Amer. J. Physiol. 161, 173–180.PubMedGoogle Scholar
  356. Mudge, G. H., and J. V. Taggart, 1950 b: Effect of acetate on the renal excretion of p-aminohippurate in the dog. Amer. J. Physiol. 161, 191–197.PubMedGoogle Scholar
  357. Mueller, C. B., and A. B. Hastings, 1951: The rate of transfer of phosphorus across the red blood cell membrane. J. biol. Chem. (Am.) 189, 869–879.Google Scholar
  358. Mullins, L. J., 1942: The permeability of yeast cells to radiophosphate. Biol. Bull. (Am.) 83, 326–333.CrossRefGoogle Scholar
  359. Nagano, J., 1902: Zur Kenntnis der Resorption einfacher, im besonderen sterioisomerer Zucker im Dünndarm. Arch. ges. Physiol. 90, 389–404.CrossRefGoogle Scholar
  360. Nagel, H., 1934: Die Aufgabe der Excretionsorgane und der Kiemen bei der Osmoregulation von Carciuus maenas. Z. vergl. Physiol. 21, 468–491.Google Scholar
  361. Nakazawa, F., 1922: Influence of phlorhizin on intestinal absorption. Tohoku J. exper. Med. 3, 288–294.CrossRefGoogle Scholar
  362. Nickerson, W. J., 1948: Riboflavin enhancement of radioactive phosphate exchange by yeasts. J. gen. Microbiol. 2, 1. c.Google Scholar
  363. Nickerson, W. J., 1949: Dependence, in yeasts, of phosphate uptake and polymerization upon the occurrence of glucose polymerization. Experientia 5, 202–203.PubMedCrossRefGoogle Scholar
  364. Nickerson, W. J., and L. J. Mullins, 1948: Riboflavin enhancement of radioactive phosphate exchange by yeasts. Nature 161, 939–940.PubMedCrossRefGoogle Scholar
  365. Nickerson, W. J., and K. Zerahn, 1949: Accumulation of radioactive cobalt by dividing yeast cells. Biochim. Biophys. Acta 3, 476–483.CrossRefGoogle Scholar
  366. Öhnell, R., and R. Höber, 1939: Effect of various poisons on absorption of sugars and some other non-electrolytes from normal and isolated artificially perfused intestine. J. cellul. a. comp. Physiol. (Am.) 13, 161–174.CrossRefGoogle Scholar
  367. Ørskov, S. L., 1935: Untersuchungen über den Einfluß von Kohlensäure und Blei auf die Permeabilität der Blutkörperchen für Kalium und Rubidium. Biochem. Z. 279, 250–261.Google Scholar
  368. Ørskov, S. L., 1945: Investigations on the permeability of yeast cells. Acta Path. Microbiol. Scand. 22, 523–559.CrossRefGoogle Scholar
  369. Ørskov, S. L., 1948: Experiments on active and passive permeability of Bacillus coli communis. Acta Path. Microbiol. Scand. 25, 277–283.CrossRefGoogle Scholar
  370. Ørskov, S. L., 1950: Experiments with substances which make bakers yeast absorb potassium. Acta Physiol. Scand. 20, 62–78.PubMedCrossRefGoogle Scholar
  371. Opie, E. L., 1949: The movement of water in tissues removed from the body and its relation to movement of water during life. J. exper. Med. (Am.) 89, 185–208.CrossRefGoogle Scholar
  372. Opie, E. L., 1950: The effect of injury by toxic agents upon osmotic pressure maintained by cells of liver and of kidney. J. exper. Med. (Am.) 91, 285–294.CrossRefGoogle Scholar
  373. Paine, T. F. Jr., 1951: The similarity in action of bacitracin and penicillin on the staphylococcus. J. Bacter. (Am.) 61, 259–260.Google Scholar
  374. Park, C. R., 1952: in W. D. McElroy and B. Glass: Phosphorus Metabolism, Vol. II, Baltimore.Google Scholar
  375. Park, C. R., 1954: An effect of insulin on glucose metabolism by muscle. Fed. Proc. 13, 108.Google Scholar
  376. Park, C. R., D. H. Brown, M. Cornblath, W. H. Daughaday, and M. E. Krahl, 1952: The effect of growth hormone on glucose uptake by the isolated rat diaphragm. J. biol. Chem. (Am.) 197, 151–166.Google Scholar
  377. Park, C. R., and W. H. Daughaday, 1949: Effect of growth hormone on the glucose uptake and glycogen synthesis by the rat diaphragm. Fed. Proc. 9, 212–213.Google Scholar
  378. Park, C. R., and L. H. Johnson, 1953: The effect of insulin on the distribution of free glucose in muscle. XIXth Internat. Physiol. Congr. 661.Google Scholar
  379. Parpart, A. K., E. S. G. Barron, and T. Dey 1947: Are -SH groups involved in the penetration of glycerol into human red cells? Biol. Bull. (Am.) 93, 199.Google Scholar
  380. Parpart, A. K., and J. F. Hoffman, 1952: Acidity vs. acetylcholine and cation permeability of red cells. Fed. Proc. 11, 117.Google Scholar
  381. Parpart, A. K., and J. F. Hoffman, 1954: Ion Permeability of the Red Cell, in Clarke, H. T., and D. Nachmansohn, Ion Transport across Membranes, New York.Google Scholar
  382. Pertzoff, V., and C. L. Gemmill, 1949: The effect of anesthetics on the uptake of radioactive phosphorus by human erythrocytes. J. Pharmacol. (Am.) 95, 106–115.Google Scholar
  383. Pitts, R., 1943 a: A renal reabsorptive mechanism in the dog common to glycin and creatine. Amer. J. Physiol. 140, 156–167.Google Scholar
  384. Pitts, R., 1943 b: A comparison of the renal reabsorptive processes for several amino acids. Amer. J. Physiol. 140, 535–547.Google Scholar
  385. Pitts, R., and R. S. Alexander, 1944: The renal reabsorptive mechanism for inorganic phosphate in normal and acidotic dogs. Amer. J. Physiol. 142, 648–662.Google Scholar
  386. Pitts, R., J. L. Ayer, and W. A. Schiess, 1948: The reabsorption and excretion of bicarbonate in normal man. Fed. Proc. 7, 94.PubMedGoogle Scholar
  387. Pitts, R., W. D. Lotspeich, W. A. Schiess, and J. L. Ayer, 1948: The renal regulation of acid-base balance in man. I. The nature of the mechanism for acidifying the urine. J. clin. Invest. (Am.) 27, 48–56.CrossRefGoogle Scholar
  388. Ponder, E., 1949: The rate of loss of potassium from human red cells in systems to which lysins have not been added. J. gen. Physiol. (Am.) 32, 461–479.CrossRefGoogle Scholar
  389. Ponder, E., 1950: Accumulation of potassium by human red cells. J. gen. Physiol. (Am.) 33, 745–757.CrossRefGoogle Scholar
  390. Ponder, E., 1951: Anomalous features of the loss of K from human red cells: results of extended observations. J. gen. Physiol. (Am.) 34, 359–372.CrossRefGoogle Scholar
  391. Ponder, E., and G. Saslow, 1931: Measurement of red cell volume; alterations of cell volume in extremely hypotonic solutions. J. Physiol. (Brit.) 73, 267–296.Google Scholar
  392. Popják, G., 1950: Mechanism of absorption of inorganic phosphate from blood by tissue cells. Nature 166, 184–185.PubMedCrossRefGoogle Scholar
  393. Poulsson, L. T., 1930: On the mechanism of sugar elimination in phlorrhizin glycosuria. A contribution to the filtration-reabsorption theory on kidney function. J. Physiol. (Brit.) 69, 411–422.Google Scholar
  394. Prankerd, T. A. J., and K. I. Altman, 1954: Phosphate partition and turnover in human red cells. Nature 173, 870–871.PubMedCrossRefGoogle Scholar
  395. Prescott, D. M., and E. Zeuthen, 1953: Comparison of water diffusion and water filtration across cell surfaces. Acta Physiol. Scand. 28, 77–94.PubMedCrossRefGoogle Scholar
  396. Price, C. A., and R. E. Davies, 1954: Active transport of water by mitochondria. Biochem. J. 58, xvii.PubMedGoogle Scholar
  397. Pulver, R., und F. Verzár, 1940 a: Der Zusammenhang von Kalium- und Kohlehydratstoffwechsel bei der Hefe. Helvet. Chim. Acta 23, 1087–1100.CrossRefGoogle Scholar
  398. Pulver, R., und F. Verzár, 1940 b: Connexion between carbohydrate and potassium metabolism in the yeast cell. Nature 145, 823–824.CrossRefGoogle Scholar
  399. Pulver, R., und F. Verzár, 1941: Kalium- und Kohlehydratstoffwechsel der Leukocyten. Helvet. Chim. Acta 24, 272–277.CrossRefGoogle Scholar
  400. Raker, J. W., I. M. Taylor, J. M. Weller, and A. B. Hastings, 1950: Rate of potassium exchange of the human erythrocyte. J. gen. Physiol. (Am.) 33, 691–702.CrossRefGoogle Scholar
  401. Ramsay, J. A., 1951: Osmotic regulation in mosquito larvae: the role of the Malpighian tubules. J. exper. Biol. 28, 62–73.Google Scholar
  402. Ramsay, J. A., 1953: Active transport of potassium by the Malpighian tubules of insects. J. exper. Biol. 30, 358–369.Google Scholar
  403. Reiser, R., 1942: The lipids of the duodenal mucosa of swine during the absorption of fat. J. biol. Chem. (Am.) 143, 109–114.Google Scholar
  404. Rice, L., J. Frieden, and M. Smith, 1953: Tubular action of mercurial diuretics. Amer. J. Physiol. 175, 47–50.PubMedGoogle Scholar
  405. Richards, A. G., and O. H. Schmitt, 1953: Asymmetrical penetration through the isolated cuticles of fly larvae. XIXth Internat. Physiol. Congr. 699–700.Google Scholar
  406. Riggs, T. R., H. N. Christensen, and I. M. Palatine, 1952: Concentrating activity of reticulocytes for glycine. J. biol. Chem. (Am.) 194, 53–55.Google Scholar
  407. Riggs, T. R., B. Coyne, and H. N. Christensen, 1953: Intensification of the cellular accumulation of amino acids by pyridoxal. Biochim. Biophys. Acta 11, 303–304.PubMedCrossRefGoogle Scholar
  408. Riggs, T. R., B. Coyne, and H. N. Christensen, 1954: Amino acid concentration by a free cell neoplasm. Structural influences. J. biol. Chem. (Am.) 209, 395–411.Google Scholar
  409. Roberts, R. B., and I. Z. Roberts, 1950: Potassium metabolism of Escherichia coli. III. Interrelationship of potassium and phosphorus metabolism. J. cellul. a. comp. Physiol. (Am.) 36, 15–39.CrossRefGoogle Scholar
  410. Roberts, R. B., and I. Z. Roberts, and D. B. Cowie, 1949: Potassium metabolism in Escherichia coli. II. Metabolism in the presence of carbohydrates and their metabolic derivatives. J. cellul. a. comp. Physiol. (Am.) 34, 259–291.CrossRefGoogle Scholar
  411. Robinson, J. R., 1950 a: Osmoregulation in surviving slices of the kidneys of adult rats. Proc. roy. Soc., Lond. B 137, 378–402.CrossRefGoogle Scholar
  412. Robinson, J. R., 1950 b: Effect of 2, 4-dinitrophenol on osmoregulation in isolated kidney slices. Nature 166, 989–990.PubMedCrossRefGoogle Scholar
  413. Robinson, J. R., 1952 a: Osmoregulation in surviving slices from the livers of adult rats (with a note on cloudy swelling). Proc. roy. Soc, Lond. B 140, 135–144.CrossRefGoogle Scholar
  414. Robinson, J. R., 1952 b: Total concentration of fixed base in cells of the renal cortex of the rat. Nature 169, 713–714.PubMedCrossRefGoogle Scholar
  415. Robinson, J. R., 1953: The active transport of water in living systems. Biol. Rev. 28, 158–194.CrossRefGoogle Scholar
  416. Ronkin, R. R., 1950 a: The uptake of radioactive phosphate by the excised gill of the mussel, Mytilus edulis. J. cellul. a. comp. Physiol. (Am.) 35, 241–260.CrossRefGoogle Scholar
  417. Ronkin, R. R., 1950 b: Effect of inhibitors on phosphate uptake in excised gills of the mussel (Mytilus edulis). Proc. Soc. exper. Biol. a. Med. (Am.) 73, 41–44.Google Scholar
  418. Rosenberg, T., 1948: On accumulation and active transport in biological systems. I. Thermodynamic considerations. Acta Chem. Scand. 2, 14–33.CrossRefGoogle Scholar
  419. Rosenberg, T., and W. Wilbrandt, 1952: Enzymatic processes in cell membrane penetration. Internat. Rev. Cytol. 1, 65–92.CrossRefGoogle Scholar
  420. Ross, E. J., 1952: The influence of insulin on the permeability of the blood-aqueous barrier to glucose. J. Physiol. (Brit.) 116, 414–423.Google Scholar
  421. Ross, E. J., 1953: Insulin and the permeability of cell membranes to glucose. Nature 171, 125.PubMedCrossRefGoogle Scholar
  422. Rothenberg, M. A., 1950: Studies on permeability in relation to nerve function. II. Ionic movements across axonal membranes, Biochim. Biophys. Acta 4, 96–114.PubMedCrossRefGoogle Scholar
  423. Rothstein, A., 1954: Enzyme systems of the cell-surface involved in the uptake of sugars by yeast. Symp. Soc. exper. Biol. 8 (in press).Google Scholar
  424. Rothstein, A., and C. Demis, 1953: The relationship of the cell surface to metabolism. The stimulation of fermentation by extracellular potassium. Arch. Biochem. Biophys. 44, 18–29.PubMedCrossRefGoogle Scholar
  425. Rothstein, A., and L. H. Enns, 1946: The relationship of potassium to carbohydrate metabolism in baker’s yeast. J. cellul. a. comp. Physiol. (Am.) 28, 231–252.CrossRefGoogle Scholar
  426. Rothstein, A., A. Frenkel, and C. Larrabee, 1948: The relationship of the cell surface to metabolism. III. Certain characteristics of the uranium complex with cell surface groups of yeast. J. cellul. a. comp. Physiol. (Am.) 32, 261–274.CrossRefGoogle Scholar
  427. Rothstein, A., and C. Larrabee, 1948: The relationship of the cell surface to metabolism. II. The cell surface of yeast as the site of inhibition of glucose metabolism by uranium. J. cellul. a. comp. Physiol. (Am.) 32, 247–259.CrossRefGoogle Scholar
  428. Rothstein, A., and R. Meier, 1951: The relationship of the cell surface to metabolism. VI. The chemical nature of uranium-complexing groups of the cell surface. J. cellul. a. comp. Physiol. (Am.) 38, 245–270.CrossRefGoogle Scholar
  429. Rothstein, A., and R. Meier, 1954: Unpublished observations.Google Scholar
  430. Rothstein, A., and R. Meier, and L. Hurwitz, 1951: The relationship of the cell surface to metabolism. V. The role of uranium-complexing loci of yeast in metabolism. J. cellul. a. comp. Physiol. (Am.) 37, 57–81.CrossRefGoogle Scholar
  431. Rothstein, A., and R. Meier, and T. Scharff, 1953: The relationship of the cell surface to metabolism. IX. The digestion of phosphorylated compounds by enzymes located on the surface of the intestinal cell. University of Rochester Atomic Energy Project, Report UR-237.Google Scholar
  432. Runnström, J., 1939: Permeabilität und Stoffwechsel bei Hefe. Arch, exper. Zellforsch. 22, 614–619.Google Scholar
  433. Runnström, J., und E. Sperber, 1938: Zur Kenntnis der Beziehungen zwischen Permeabilität und Stoffwechsel der Hefezelle. Biochem. Z. 298, 340–367.Google Scholar
  434. Russo, H. F., L. D. Wright, and H. R. Skeggs, 1947: Renal clearance of essential amino acids: threonine and phenylalanine. Proc. Soc. exper. Biol. a. Med. (Am.) 65, 215–217.Google Scholar
  435. Sabbatani, L.. 1901: Détermination du point de congélation des organes animaux. J. Physiol. Path. gén. 3, 939–950.Google Scholar
  436. Sacks, J., 1944 a: Radioactive phosphorus studies on hexosemonophosphate metabolism in resting muscle. Amer. J. Physiol. 142, 145–151.Google Scholar
  437. Sacks, J., 1944 b: Some factors influencing phosphate turnover in muscle. Amer. J. Physiol. 142, 621–626.Google Scholar
  438. Sacks, J., 1945: The effect of insulin on phosphorus turnover in muscle. Amer. J. Physiol. 143, 157–162.Google Scholar
  439. Sacks, J., 1948: Mechanism of phosphate transfer across cell membranes. Cold Spring Harbor Symp. Quant. Biol. 13, 180–184.CrossRefGoogle Scholar
  440. Sacks, J., 1951: Phosphate transport and turnover in the liver. Arch. Biochem. 30, 423–437.PubMedGoogle Scholar
  441. Sacks, J., and C. H. Altshuler, 1942: Radioactive phosphorus studies on striated and cardiac muscle metabolism. Amer. J. Physiol. 137, 750–760.Google Scholar
  442. Sawyer, W. H., 1951: Effect of posterior pituitary extract on permeability of frog skin to water. Amer. J. Physiol. 164, 44–48.PubMedGoogle Scholar
  443. Schlieper, C., 1933: Über die osmoregulatorische Funktion der Aalkiemen. Z. vergl. Physiol. 18, 682–695.Google Scholar
  444. Schmidt, G., L. Hecht, and S. J. Thanhauser, 1949: The effect of potassium ions on the absorption of orthophosphate and the formation of metaphosphate bv bakers’ yeast. J. biol. Chem. (Brit.) 178, 733–742.Google Scholar
  445. Schmidt-Nielsen, K., 1946: Investigations on the fat absorption in the intestine. Acta Physiol. Scand. 12, Suppl. 37.Google Scholar
  446. Schönheyder, F., 1934: Über die Permeabilität der roten Blutkörperchen für Malonamid. Skand. Arch. Physiol. 71, 39–60.Google Scholar
  447. Schoffeniels, E., 1951: L’absorption du radiophosphore par la branchie isolée de l’anodonte. Arch. internat. Physiol. 59, 245–247.PubMedCrossRefGoogle Scholar
  448. Schofield, F. A., and H. B. Lewis, 1947: A comparative study of the metabolism of α-alanine, β-alanine, serine and isoserine. J. biol. Chem. (Am.) 168, 439–445.Google Scholar
  449. Schwartz, W. B., and W. M. Wallace, 1951: Electrolyte equilibrium during mercurial diuresis. J. clin. Invest. (Am.) 30, 1089–1104.CrossRefGoogle Scholar
  450. Schwerin, P., S. P. Bessman, and H. Waelsch, 1950: The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. J. biol. Chem. (Am.) 184, 37–44.Google Scholar
  451. Shanes, A. M., 1951: Potassium movement in relation to nerve activity. J. gen. Physiol. (Am.) 34, 795–807.CrossRefGoogle Scholar
  452. Shannon, J. A., 1938: Tubular reabsorption of xylose in normal dog. Amer. J. Physiol. 122, 775–781.Google Scholar
  453. Shannon, J. A., and S. Fisher, 1938: Renal tubular reabsorption of glucose in normal dog. Amer. J. Physiol. 122, 765–774.Google Scholar
  454. Sheppard, C. W., and W. R. Martin, 1950: Cation exchange between cells and plasma of mammalian blood. I. Methods and application to potassium exchange in human blood. J. gen. Physiol. (Am.) 33, 703–722.CrossRefGoogle Scholar
  455. Sheppard, C. W., and W. R. Martin, and G. Beyl, 1951: Cation exchange between cells and plasma of mammalian blood. II. Sodium and potassium exchange in the sheep, dog, cow, and man and the effect of varying the plasma potassium concentration. J. gen. Physiol. (Am.) 34, 411–429.CrossRefGoogle Scholar
  456. Shideman, F. E., and R. M. Rene, 1951: Succinate oxidation and Krebs cycle as an energy source for renal tubular transport mechanisms. Amer. J. Physiol. 166, 104–112.PubMedGoogle Scholar
  457. Sivilla, S. V., 1953: Effect of hypertonic solutions on intestinal absorption of selective and non-selective sugars. XIXth Internat. Physiol. Congr. 761–762.Google Scholar
  458. Smith, H. W., 1910: The absorption and excretion of water and salts by marine teleosts. Amer. J. Physiol. 93, 480–505.Google Scholar
  459. Sollner, K., S. Dray, E. Grim, and R. Neihof, 1954: Electrochemical Studies with Model Membranes, in H. T. Clarke and D. Nachmansohn: Ion Transport across Membranes, New York.Google Scholar
  460. Solomon, A. K., 1952: The permeability of the human erythrocyte to sodium and potassium, J. gen. Physiol. (Am.) 36, 57–110.CrossRefGoogle Scholar
  461. Solomon, A. K. and G. L. Gold, 1955: Potassium transport in human erythrocytes: evidence for a three compartment system (in press).Google Scholar
  462. Soulairac, A., 1947: La régulation neuro-endocrinienne de l’absorption intestinale des glucides. Ann. d’Endocr. 8, 377–393.Google Scholar
  463. Soulairac, A., P. Desclaux, et J. Teysseyre, 1949: Étude histochimique de la phosphatase alcaline rénale. La régulation endocrinienne de la réabsorption tubulaire du glucose. Ann. d’Endocr. 10, 535–546.Google Scholar
  464. Spanner, D. C., 1954: The active transport of water under temperature gradients. Symp. Soc. exper. Biol. 8 (in press).Google Scholar
  465. Sperry, W. M., and F. C. Brand, 1939: Absorption of water by liver slices from “physiological” saline solutions. Proc. Soc. exper. Biol. a. Med. (Am.) 42, 147–150.Google Scholar
  466. Spiegelman, S., M. D. Kamen, and M. Sussman, 1948: Phosphate metabolism and the dissociation of anaerobic glycolysis from synthesis in the presence of sodium azide. Arch. Biochem. 18, 409–436.PubMedGoogle Scholar
  467. Stadie, W. C., 1953: Studies on the action of insulin in vitro. XIXth Internat. Physiol. Congr. 24–28.Google Scholar
  468. Stadie, W. C., 1954: Current concepts of the action of insulin. Physiol. Rev. 34, 52–100.PubMedGoogle Scholar
  469. Stadie, W. C., N. Haugaard, A. G. Hills, and J. B. Marsh, 1949: Hormonal influences on the chemical combination of insulin with rat muscle (diaphragm). Amer. J. med. Sci. 218, 275–280.PubMedCrossRefGoogle Scholar
  470. Stadie, W. C., N. Haugaard, and J. B. Marsh, 1951 a: Combination of insulin with muscle of the hypophysectomized rat. J. biol. Chem. (Am.) 188, 167–172.Google Scholar
  471. Stadie, W. C., N. Haugaard, and J. B. Marsh, 1951b: Combination of epinephrine and 2,4-dinitrophenol with muscle of the normal rat. J. biol. Chem. (Am.) 188, 173–178.Google Scholar
  472. Stadie, W. C., N. Haugaard, and J. B. Marsh, and A. G. Hills, 1949: The chemical combination of insulin with muscle (diaphragm) of normal rat. Amer. J. med. Sci. 218, 265–274.PubMedCrossRefGoogle Scholar
  473. Stadie, W. C., N. Haugaard, and M. Vaughan, 1952: Studies of insulin binding with isotopically labeled insulin. J. biol. Chem. (Am.) 199, 729–739.Google Scholar
  474. Stamler, J., 1951: Failure of tubular reabsorptive loads of ascorbic acid or amino acids to affect renal handling of sodium and potassium. Amer. J. Physiol. 165. 109–112.PubMedGoogle Scholar
  475. Stanbury, S. W., and G. H. Mudge, 1953: Potassium metabolism of liver mitochondria. Proc. Soc. exper. Biol. a. Med. (Am.) 82, 675–681.Google Scholar
  476. Steggerda, F. R., 1931: The relation of pitressin to water interchange in frogs. Amer. J. Physiol. 98, 255–261.Google Scholar
  477. Steinbach, H. B., 1940: Sodium and potassium in frog muscle. J. biol. Chem. (Am.) 133, 695–701.Google Scholar
  478. Steinbach, H. B., 1951: Permeability. Ann. Rev. Physiol. 13, 21–40.CrossRefGoogle Scholar
  479. Steinbach, H. B., 1951: Sodium extrusion from isolated frog muscle. Amer. J. Physiol. 167. 284–287.PubMedGoogle Scholar
  480. Steinbach, H. B., 1952: On the sodium and potassium balance of isolated frog muscles. Proc. Nat. Ac. Sci. 38, 451–455.CrossRefGoogle Scholar
  481. Stern, J. R., L. V. Eggleston, R. Hems, and H. A. Krebs, 1949: Accumulation of glutamic acid in isolated brain tissue. Biochem. J. 44, 410–418.Google Scholar
  482. Stewart, D. R., and M. H. Jacobs, 1932 a: The effect of fertilization on the permeability of the eggs of Arbacia and Asterias to ethylene glycol. J. cellul. a. comp. Physiol. (Am.) 1, 83–92.CrossRefGoogle Scholar
  483. Stewart, D. R., and M. H. Jacobs, 1932 b: The permeability of the egg of Arbacia to ethylene glycol at different temperatures. J. cellul. a. comp. Physiol. (Am.) 2, 275–283.CrossRefGoogle Scholar
  484. Taggart, J. V., and R. P. Forster, 1950: Renal tubular transport: effect of 2, 4-dinitrophenol and related compounds on phenol red transport in the isolated tubules of the flounder. Amer. J. Physiol. 161, 167–172.PubMedGoogle Scholar
  485. Taylor, E. S., 1947: The assimilation of amino-acids by bacteria. 3. Concentration of free amino-acids in the internal environment of various bacteria and yeasts.Google Scholar
  486. Taylor, I. M., and J. M. Weller, 1950: Studies on the permeability of human erythrocytes to potassium. Biol. Bull. (Am.) 99, 311.Google Scholar
  487. Taylor, I. M., J. M. Weller, and A. B. Hastings, 1952: Effect of Cholinesterase and choline acetylase inhibitors on the potassium concentration gradient and potassium exchange of human erythrocytes. Amer. J. Physiol. 168, 658–668.PubMedGoogle Scholar
  488. Teorell, T., 1953: Transport processes and electrical phenomena in ionic membranes. Progress in Biophysics and Biophysical Chemistry 3, 305–369.Google Scholar
  489. Terner, C., L. V. Eggleston, and H. A. Krebs, 1950: The role of glutamic acid in the transport of potassium in brain and retina. Biochem. J. 47, 159–149.Google Scholar
  490. Thompson, V., and A. Tice, 1941: Action of drugs beneficial in myasthenia gravis. I. Effect of prostigmine and guanidine on serum and muscle potassium. J. Pharm. exper. Ther. 73, 455–462.Google Scholar
  491. Tosteson, D. C., and E. T. Dunham, 1954: Effect of sickling on sodium and cesium transport. Fed. Proc. 13, 523.Google Scholar
  492. Trimble, H. C., B. W. Carey Jr., and S. J. Maddock, 1933: The rate of absorption of glucose from the gastrointestinal tract of the dog. J. biol. Chem. (Am.) 100, 125–138.Google Scholar
  493. Ussing, H. H., 1943 a: The nature of the amino nitrogen of red corpuscles. Acta Physiol. Scand. 5, 335–351.CrossRefGoogle Scholar
  494. Ussing, H. H., 1943 b: On the partition of certain amino acids between blood and tissues. Acta Physiol. Scand. 6, 222–232.CrossRefGoogle Scholar
  495. Ussing, H. H., 1945: The reabsorption of glycine and other amino acids in the kidneys of man. Acta Physiol. Scand. 9, 193–213.CrossRefGoogle Scholar
  496. Ussing, H. H., 1947: Interpretation of the exchange of radio-sodium in isolated muscle. Nature 160, 262–263.CrossRefGoogle Scholar
  497. Ussing, H. H., 1948: The use of tracers in the study of active ion transport across animal membranes. Cold Spring Harbor Symp. Quant. Biol. 13, 193–200.CrossRefGoogle Scholar
  498. Ussing, H. H., 1949: The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol. Scand. 17, 1–37.PubMedCrossRefGoogle Scholar
  499. Ussing, H. H., 1952: Some aspects of the application of tracers in permeability studies. Adv. in Enzymol. 13, 21–65.Google Scholar
  500. Ussing, H. H., 1953: Transport through biological membranes. Ann. Rev. Physiol. 15, 1–20.CrossRefGoogle Scholar
  501. Ussing, H. H., 1954: Active transport of inorganic ions. Symp. Soc. exper. Biol. 8 (in press).Google Scholar
  502. Ussing, H. H., and K. Zerahn, 1951: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23, 110–127.PubMedCrossRefGoogle Scholar
  503. Van Slyke, D. D., and G. M. Meyer, 1913: The fate of protein digestion products in the body. III. The absorption of amino-acids from the blood by the tissues. J. biol. Chem. (Am.) 16, 197–212.Google Scholar
  504. Verzár, F., 1935: Die Rolle von Diffusion und Schleimhautaktivität bei der Resorption von verschiedenen Zuckern aus dem Darm. Biochem. Z. 276, 17–27.Google Scholar
  505. Verzár, F., und L. Laszt, 1934 a: Untersuchungen über die Resorption von Fettsäuren. Biochem. Z. 270, 24–34.Google Scholar
  506. Verzár, F., und L. Laszt, 1934 b: Hemmung der Fettresorption durch Monoiodessigsäure und Phlorrhizin. Biochem. Z. 270, 35–43.Google Scholar
  507. Verzár, F., und L. Laszt, 1935 a: Die Hemmung der Fettresorption durch Phlorrhizin. Biochem. Z. 276. 1–10.Google Scholar
  508. Verzár, F., und L. Laszt, 1935 b: Die Hemmung der Fettresorption nach Exstirpation der Nebennieren. Biochem. Z. 276, 11–16.Google Scholar
  509. Verzár, F., und L. Laszt, 1935 c: Die Resorption aus dem Darm von isotonischen Lösungen von Glucose und Sorbose, verglichen mit der von Natriumsulfat. Biochem. Z. 276, 28–39.Google Scholar
  510. Verzár, F., and J. C. Somogyi, 1939: Connexion between carbohydrate and potassium metabolism in normal and adrenalectomized animale. Nature 144, 1014–1015.CrossRefGoogle Scholar
  511. Verzár, F., and J. C. Somogyi, 1940: Liberation of potassium from muscle by acetylcholine and muscle contraction and its’ absence after adrenalectomy. Nature 145, 781.CrossRefGoogle Scholar
  512. Verzár, F., and V. Wenner, 1948: The influence in vitro of deoxycorticosterone on glycogen formation in muscle. Biochem. J. 42, 35–41.Google Scholar
  513. Verzár, F., und H. WiRz, 1937: Weitere Untersuchungen über die Bedingungen der selektiven Glucoseresorption. Biochem. Z. 292, 174–181.Google Scholar
  514. Villee, C. A., and A. B. Hastings, 1949: The metabolism of C14-labelled glucose by the rat diaphragm in vitro. J. biol. Chem. (Am.) 179, 673–687.Google Scholar
  515. Villee, C. A., M. Lowens, M. Gordon, E. Leonard, and A. Rich, 1949: The incorporation of P32 into the nucleoproteins and phosphoproteins of the developing sea urchin embryo. J. cellul. a. comp. Physiol. (Am.) 33, 93–112.CrossRefGoogle Scholar
  516. Visscher, M. B., E. S. Fetcher Jr., C. W. Carr, H. P. Gregor, M. S. Bushey, and D. E. Baker, 1944: Isotopic tracer studies on the movement of water and ions between intestinal lumen and blood. Amer. J. Physiol. 142, 550–575.Google Scholar
  517. Visscher, M. B., and R. R. Roepke, 1945: Osmotic and electrolyte concentration relationships during absorption of salt solutions from ileal segments. Amer. J. Physiol. 144, 468–476.Google Scholar
  518. Visscher, M. B., R. H. Varco, C. W. Carr, R. B. Dean, and D. Erickson, 1944: Sodium ion movement between the intestinal lumen and the blood. Amer. J. Physiol. 141, 488–505.Google Scholar
  519. Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell, 1941: The collection and analysis of fluid from single nephrons of the mammalian kidney. Amer. J. Physiol. 134, 580–595.Google Scholar
  520. Walker, A. M., and C. L. Hudson, 1937 a: The reabsorption of glucose from the renal tubule in amphibia and the action of phlorizin upon it. Amer. J. Physiol. 118, 130–143.Google Scholar
  521. Walker, A. M., and C. L. Hudson, 1937 b: The rôle of the tubule in the excretion of inorganic phosphates by the amphibian kidney. Amer. J. Physiol. 118, 167–173.Google Scholar
  522. Walker, A. M., and C. L. Hudson, T. Findley Jr., and A. N. Richards, 1937: The total molecular concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia. Amer. J. Physiol. 118, 121–129.Google Scholar
  523. Webb, D. A., 1940: Ionic regulation in Carcinus maenas. Proc. roy. Soc., Loud. B129, 107–136.CrossRefGoogle Scholar
  524. Welt, L. G., J. Orloff, D. M. Kydd, and J. E. Oltman, 1950: An example of cellular hyperosmolarity. J. clin. Invest. (Am.) 29, 935–939.CrossRefGoogle Scholar
  525. Wertheimer, E., 1933: Phlorrhizinwirkung auf die Zuckerresorption. Arch. ges. Physiol. 233, 514–528.Google Scholar
  526. Wertheimer, E., Über die ersten Anfänge der Zuckerassimilation. Versuche an Hefezellen. Protoplasma 21, 522–560.Google Scholar
  527. Wesson, L. G. Jr., W. E. Cohn, and A. M. Brues, 1949: The effect of temperature on potassium equilibria in chick embryo muscle. J. gen. Physiol. (Am.) 32, 511–524.CrossRefGoogle Scholar
  528. West, C. D., S. A. Kaplan, S. J. Fomon, and S. Rapoport, 1952: Urine flow and solute excretion during osmotic diuresis in hydrated dogs: role of distal tubule in the production of hypotonic urine. Amer. J. Physiol. 170, 239–254.PubMedGoogle Scholar
  529. Westenbrink, H. G. K., 1934: Über die Anpassung der Darmresorption an die Zusammensetzung der Nahrung. Arch. Néerl. Physiol. 19, 563–583.Google Scholar
  530. Westenbrink, H. G. K., 1937: Relative velocities of the absorption of different sugars from the intestine of rat and pigeon. Nature 138, 203–204.CrossRefGoogle Scholar
  531. Westenbrink, H. G. K., und K. Gratama, 1937: Über die Spezifität der Resorption einiger Monosen aus dem Darme der Ratte und der Taube. Arch. Néerl. Physiol. 21, 433–454.Google Scholar
  532. Whittam, R., and R. E. Davies, 1953 a: Transport of water, sodium, potassium, and α-ketoglutarate in kidney cortex slices. Biochem. J. 54, vii.Google Scholar
  533. Whittam, R., and R. E. Davies, 1953 b: Measurements of the turnover-rates of sodium and potassium in kidney cortex slices. Biochem. J. 54, vii–viii.Google Scholar
  534. Whittam, R., and R. E. Davies, 1953 c: Active transport of water, sodium, potassium and α-oxoglutarate by kidney-cortex slices. Biochem. J. 55, 880–888.PubMedGoogle Scholar
  535. Whittam, R., and R. E. Davies, 1954: Relations between metabolism and the rate of turnover of sodium and potassium in guinea pig kidney-cortex slices. Biochem. J. 56, 445–453.PubMedGoogle Scholar
  536. Wick, A. N., and D. R. Drury, 1951 a: Action of insulin on the permeability of cells to sorbitol. Amer. J. Physiol. 166, 421–423.PubMedGoogle Scholar
  537. Wick, A. N., and D. R. Drury, 1951b: Does concentration of glucose in extracellular fluid influence its utilization by the tissues? Amer. J. Physiol. 167, 359–363.PubMedGoogle Scholar
  538. Wick, A. N., and D. R. Drury, 1953 a: Action of insulin on volume of distribution of galactose in the body. Amer. J. Physiol. 173, 229–232.PubMedGoogle Scholar
  539. Wick, A. N., and D. R. Drury, 1953 b: Influence of glucose concentration on the action of insulin. Amer. J. Physiol. 174, 445–447.PubMedGoogle Scholar
  540. Widdas, W. F., 1952 a: Inability of diffusion to account for placental glucose transfer in the sheep. J. Physiol. (Brit.) 115, 36 P.Google Scholar
  541. Widdas, W. F., 1952 b: Inability of diffusion to account for placental transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J. Physiol. (Brit.) 118, 23–39.Google Scholar
  542. Widdas, W. F., 1953 a: Kinetics of glucose transfer across the human erythrocyte membrane. J. Physiol. (Brit.) 120, 23 P–24 P.Google Scholar
  543. Widdas, W. F., 1953 b: Hexose permeability of mammalian foetal erythrocytes. XIXth Internat. Physiol. Congr. 885–886.Google Scholar
  544. Widdas, W. F., 1954: Facilitated transfer of hexoses across the human erythrocyte membrane. J. Physiol. (Brit.) 125, 163–180.Google Scholar
  545. Wilbrandt, W., 1938: Die Permeabilität der roten Blutkörperchen für einfache Zucker. Arch. ges. Physiol. 241, 302–309.CrossRefGoogle Scholar
  546. Wilbrandt, W., 1940 a: Die Abhängigkeit der Ionenpermeabilität der Erythrocyten vom glykolytischen Stoffwechsel. Arch. ges. Physiol. 243, 519–536.CrossRefGoogle Scholar
  547. Wilbrandt, W., 1940 b: Die Ionenpermeabilität der Erythrocyten in Nichtleiterlösungen. Arch. ges. Physiol. 243, 537–556.CrossRefGoogle Scholar
  548. Wilbrandt, W., 1941: Die Wirkung von Schwermetallsalzen auf die Erythrocyten-permeabilität für Glyzerin. Arch. ges. Physiol. 244, 637–643.CrossRefGoogle Scholar
  549. Wilbrandt, W., 1947: Die Wirkung des Phlorrhizins auf die Permeabilität der menschlichen Erythrocyten für Glukose und Pentosen. Helvet. Physiol. Acta 5, C 64–C 65.Google Scholar
  550. Wilbrandt, W., 1950: Permeabilitätsprobleme. Arch, exper. Path. Pharmakol. 212, 9–29.CrossRefGoogle Scholar
  551. Wilbrandt, W., E. Guensberg, und H. Lauener, 1947: Der Glukoseeintritt durch die Erythro-cytenmembran. Helvet. Physiol. Pharmacol. Acta 5, C 20–C 22.Google Scholar
  552. Wilbrandt, W., und L. Laszt, 1933: Untersuchungen über die Ursachen der selektiven Resorption der Zucker aus dem Darm. Biochem. Z. 259, 398–417.Google Scholar
  553. Wilbrandt, W., und T. Rosenberg, 1950: Weitere Untersuchungen über die Glukosepenetration durch die Erythrocytenmembran. Helvet. Physiol. Pharmacol. Acta 8, C 82–C 83.Google Scholar
  554. Wilbrandt, W., und T. Rosenberg, 1951: Die Kinetik des enzymatischen Transports. Helvet. Physiol. Acta 9, C 86–C 87.Google Scholar
  555. Wilmer, H. A., 1944: Renal phosphatase. The correlation between the functional activity of the renal tubule and its phosphatase content. Arch. Path. 37, 227–237.Google Scholar
  556. Wilson, R. H., 1932: The effect of phlorhizin on the rate of absorption from the gastrointestinal tract of the white rat. J. biol. Chem. (Am.) 97, 497–502.Google Scholar
  557. Wilson, T. H., 1954: Ionic permeabilitv and osmotic swelling of cells. Science 120, 104–105.PubMedCrossRefGoogle Scholar
  558. Wilson, T. H., and G. Wiseman, 1954: The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J. Physiol. (Brit.) 123, 116–125.Google Scholar
  559. Wirz, H., B. Hargitay und W. Kuhn, 1951: Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoscopie. Helvet. Physiol. Acta 9, 196–207.Google Scholar
  560. Wiseman, G., 1951: Active stereochemically selective absorption of amino-acids from rat small intestine. J. Physiol. (Brit.) 114, 7 P–8 P.Google Scholar
  561. Wiseman, G., 1953: Absorption of amino-acids using an in vitro technique. J. Physiol. (Brit.) 120, 63–72.Google Scholar
  562. Wix, G., I. Bonta, L. György, and G. Fekete, 1952: Hormonal influences on glucose resorption from the intestines. Y. Contributions to the mechanism of insulin effect. Acta Physiol. Ac. Sci. Hungar. 3, 59–68.Google Scholar
  563. Wix, G., G. Fekete, and I. Horvâth, 1951: Hormonal influences on glucose resorption from the intestines. III. The effect of adrenalin and the resorption of glucose. Acta Physiol. Ac. Sci. Hungar. 2, 451–457.Google Scholar
  564. Wood, E. H., 1941: Glucose reabsorption in the amphibian kidney. Amer. J. Physiol. 133, P497.Google Scholar
  565. Wood, E. H., D. A. Collins, and G. K. Moe, 1940: Electrolyte and water exchanges between mammalian muscle and blood in relation to activity. Amer. J. Physiol. 128, 635–652.Google Scholar
  566. Wright, L. D., H. F. Russo, H. R. Skeggs, E. A. Patch, and K. H. Beyer, 1947: The renal clearance of essential amino acids: arginine, histidine, lysine, and methionine. Amer. J. Physiol. 149, 130–134.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1955

Authors and Affiliations

  • Paul G. LeFevre
    • 1
  1. 1.Medical Branch, Division of Biology and MedicineU. S. Atomic Energy CommissionUSA

Personalised recommendations