Advertisement

Generalized Continuum Mechanics

  • A. E. Green
  • R. S. Rivlin
Conference paper
Part of the IUTAM Symposia book series (IUTAM)

Summary

A continuum-mechanical theory is presented in which the deformation is described by a number of generalized coordinate fields. The applied force system is described by conjugate generalized force fields distributed throughout the volume of the body and on the surface. These arise as the coefficients of the rates of change of the generalized forces in an expression for the rate at which work is done by the force system acting on the body. The differential equations of the theories are obtained by the systematic use of the first and second laws of thermodynamics, together with invariant-theoretical considerations. The theory is motivated by a particle model in which each particle consists of a number of mass-points. It is seen that starting with a given model there is a considerable ambiguity in the choice of the generalized coordinates describing the deformation and hence in the form of the resulting theory.

Keywords

Internal Energy Generalize Force Director Theory Translational Velocity Classical Continuum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Coleman, B. D., and W. Noll: Arch. Ratl Mech. Anal. 13, 167 (1963).MathSciNetMATHGoogle Scholar
  2. [2]
    Ericksen, J. L.: Arch. Ratl Mech. Anal. 4, 231 (1960a).MathSciNetMATHGoogle Scholar
  3. [3]
    Ericksen, J. L.: Kolloid-Z. 173, 117 (1960b).CrossRefGoogle Scholar
  4. [4]
    Ericksen, J. L.: Trans. Soc. Rheol. 4, 29 (1960c).MathSciNetCrossRefGoogle Scholar
  5. [5]
    Ericksen, J. L.: Trans. Soc. Rheol. 5, 23 (1961).MathSciNetCrossRefGoogle Scholar
  6. [6]
    Eringen, A. C.: Int. J. Engng Sci. 2, 205 (1964).MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Eringen, A. C., and E. S. Sunubi: Int. J. Engng Sci. 2, 189 (1964a).MATHCrossRefGoogle Scholar
  8. [8]
    Eringen, A. C., and E. S. Sunubi: Int. J. Engng Sci. 2, 389 (1964b).CrossRefGoogle Scholar
  9. [9]
    Green, A. E.: Int. J. Engng Sci. 3, 533 (1965).CrossRefGoogle Scholar
  10. [10]
    Green, A. E., and R. S. Rivlin: Arch. Ratl Mech. Anal. 17, 113 (1964).MathSciNetMATHGoogle Scholar
  11. [11]
    Green, A. E., and R. S. Rivlin: ZAMP 18, 208 (1967).ADSMATHCrossRefGoogle Scholar
  12. [12]
    Mindlin, R.: Arch. Ratl Mech. Anal. 16, 51 (1964).MathSciNetMATHGoogle Scholar
  13. [13]
    Mindlin, R., and H. F. Tiersten: Arch. Ratl Mech. Anal. 11, 415 (1962).MathSciNetMATHGoogle Scholar
  14. [14]
    Toupin, R.: Arch. Ratl Mech. Anal. 11, 385 (1962).MathSciNetMATHGoogle Scholar
  15. [15]
    Truesdell, C. A., and R. Toupin: The Classical Field Theories. Handbuch der Physik. Vol. III. Berlin-Göttingen-Heidelberg: Springer. 1960.Google Scholar

Copyright information

© Springer-Verlag/Wien 1968

Authors and Affiliations

  • A. E. Green
    • 1
    • 2
  • R. S. Rivlin
    • 1
    • 2
  1. 1.Newcastle-upon-TyneEngland
  2. 2.BethlehemUSA

Personalised recommendations