A Possible Generalization of Onsager’s Theory

  • Hans Ziegler
Part of the IUTAM Symposia book series (IUTAM)


It is known that Onsager’s symmetry relations for linear irreversible processes are without meaning unless a criterion for the proper choice of fluxes and forces is given. Author proposes such a criterion. He then establishes some extremum principles which are equivalent to Onsager’s theory. These principles are compared with former ones, and it is shown that they provide a basis for the generalization of Onsager’s theory to nonlinear processes.


Dissipation Rate Entropy Production Flux Vector Dissipation Function Symmetry Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    De Groot, S. R.: Thermodynamics of Irreversible Processes. Amsterdam: North-Holland Publ. Co. 1952.Google Scholar
  2. [2]
    Prager, W.: Introduction to Mechanics of Continua. Boston: Ginn and Co. 1961.MATHGoogle Scholar
  3. [3]
    De Groot, S. R., and P. Mazur: Non-equilibrium Thermodynamics. Amsterdam: North-Holland Publ. Co. 1962.Google Scholar
  4. [4]
    Coleman, B. D., and W. Noll: Arch. Ratl Mech. Anal. 13, 167 (1963).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Ziegler, H.: Summer Course, Centro Internazionale Matematico Estivo. 1963. Roma: Ist. Matem. dell’Università.Google Scholar
  6. [6]
    Ziegler, H.: 1964 Minta Martin Lecture, Mass. Inst. of Technology and American Inst. of Aeronautics and Astronautics.Google Scholar
  7. [7]
    Coleman, B. D., and V. Mizel: Arch. Ratl Mech. Anal. 13, 245 (1963).MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Coleman, B. D., and M. E. Gurtin: Arch. Ratl Mech. Anal. 19, 266 and 317 (1965).Google Scholar
  9. [9]
    Onsager, L.: Phys. Rev. 37, 405 (1931).ADSMATHCrossRefGoogle Scholar
  10. [10]
    Onsager, L.: Phys. Rev. 38, 2265 (1931).ADSMATHCrossRefGoogle Scholar
  11. [11]
    Coleman, B. D., and C. Truesdell: J. Chem. Phys. 33, 28 (1960).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Truesdell, C.: Six Lectures on Modern Natural Philosophy. Berlin-HeidelbergNew York: Springer. 1966.MATHGoogle Scholar
  13. [13]
    Gage, D. H., and S. J. Kline: Report IT-1, Thermosciences Div., Dept. Mech. Engng, Stanford University.Google Scholar
  14. [14]
    Ziegler, H.: Ing. Arch. 30, 410 (1961).MathSciNetCrossRefGoogle Scholar
  15. [15]
    Ziegler, H.: Ing. Arch. 31, 317 (1962).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Ziegler, H.: In: Sneddon, I. N. and R. HILL, Progress in Solid Mechanics, 4. 91 (1963).Google Scholar
  17. [17]
    Biot, M. A.: J. Appl. Phys. 27, 240 (1956).MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    Drucker, D. C.: In: Reiner, M., and D. Abir, Proc. Intern. Sympos. on Second-order effects in Elasticity, Plasticity and Fluid Dynamics New York-London: Pergamon Press. 1964.Google Scholar
  19. [19]
    Odqvist, F. K. G.: Proc. 4th Intern. Congress of Applied Mechanics. p. 228. Cambridge, U. K.: 1934.Google Scholar
  20. [20]
    Slibar, A., and P. R. Paslay: In: Reiner, M., and D. Abir, IUTAM-Symp. on Second-order effects in Elasticity, Plasticity and Fluid Dynamics. p. 314. New York-London: Pergamon Press. 1964.Google Scholar

Copyright information

© Springer-Verlag/Wien 1968

Authors and Affiliations

  • Hans Ziegler
    • 1
  1. 1.ZürichSwitzerland

Personalised recommendations