Thermomechanics of a Continuous System with Internal Structure

  • U. Uhlhorn
Conference paper
Part of the IUTAM Symposia book series (IUTAM)


A motion of a three dimensional continuous body, admitting at each particle an internal structure of an unspecified nature, is represented in terms of a definite number of generalized co-ordinate fields which are given as functions of time and particle co-ordinates. With each generalized co-ordinate field is associated a generalized velocity, a generalized specific momentum, a generalized body force and a generalized contact force. Equations of motion are postulated in the form of balance equations for the generalized momenta. Balance of energy is postulated as an equation relating the rate of total energy change to the power of generalized contact and body forces and the supply of heat. The entropy principle is adopted in the form laid down by Truesdell and Toupin and a thermomechanical theory is developed in analogy to the scheme for simple materials given by Coleman and Noll. Only an outline of the general theory is given in the present report.


Hyperelastic Material Generalize Momentum Cosserat Continuum Rigid Displacement Caloric Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cosserat, E. et F.: Théorie des corps déformables. Paris 1909.Google Scholar
  2. [2]
    Hellinder, E.: Die Allgemeinen Ansätze der Mechanik der Kontinua. Encyklopädie der mathematischen Wissenschaften. Vol. 4, No. 30 (1913).Google Scholar
  3. [3]
    Truesdell, C.: Rend. Lincei 22 (8), 33–38 (1957).MathSciNetzbMATHGoogle Scholar
  4. [4]
    Duhem, P.: Tray. Mém. Fac. Lille 3 (2) ( 1893 ); Théorie thermodynamique de la viscosité du frottement et des faux équilibres chimiques. Paris 1896.Google Scholar
  5. [5]
    Hölder, E.: Leipziger Berichte 97 (2) (1950).Google Scholar
  6. [6]
    Serrin, J.: Mathematical Principles of Classical Fluid Mechanics. In: Handbuch der Physik. Vol. VIII/1. Berlin—Göttingen—Heidelberg: Springer 1959.Google Scholar
  7. [7]
    Toupin, R. A.: Arch. Ratl Mech. Anal. 17, 85 (1964).MathSciNetzbMATHGoogle Scholar
  8. [8]
    Truesdell, C., and W. Null: The Non-Linear Field Theories of Mechanics. Handbuch der Physik. Vol. III /3, p. 513. Berlin—Göttingen—Heidelberg: Springer 1965.Google Scholar
  9. [9]
    Helmiioltz, H. y.: Wissenschaftliche Abh. 3, 203 (1895).Google Scholar
  10. [10]
    Coleman, B. D., and W. NoLL: Arch. Ratl Mech. Anal. 13, 167 (1963).zbMATHGoogle Scholar
  11. [11]
    Cosserat, E. et F.: loc. cit. p. 167.Google Scholar
  12. [12]
    Truesdell, C.: Zamm44, 11 (1964).Google Scholar

Copyright information

© Springer-Verlag/Wien 1968

Authors and Affiliations

  • U. Uhlhorn
    • 1
  1. 1.LundSweden

Personalised recommendations